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Spin supercurrent in two-dimensional
superconductors with Rashba spin-orbit interaction
James Jun He 1,3*, Kanta Hiroki2,3, Keita Hamamoto2 & Naoto Nagaosa1,2

Spin current is a central theme in spintronics, and its generation is a keen issue. The spin-

polarized current injection from the ferromagnet, spin battery, and spin Hall effect have been

used to generate spin current, but Ohmic currents in the normal state are involved in all of

these methods. On the other hand, the spin and spin current manipulation by the super-

current in superconductors is a promising route for dissipationless spintronics. Here we show

theoretically that, in two-dimensional superconductors with Rashba spin-orbit interaction, the

generation of dissipationless bulk spin current by charge supercurrent becomes highly effi-

cient, exceeding that in normal states in the dilute limit, i.e. when the chemical potential is

close to the band edge, although the spin density becomes small there. This result manifests

the possibility of creating new spintronic devices with long-range coherence.
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In spintronics, spin current plays an essential role to transfer
the information associated with the spin degrees of freedom.
Therefore the generation of spin current is an important issue,

and several methods have been proposed and experimentally
verified1. Various methods, such as the spin-polarized current
injection from the ferromagnet2–4, spin battery5–9, and spin Hall
effect10–16, have been employed to generate the spin current. It
has been proposed also that the spin current second order in the
electric field can be generated in noncentrosymmetric systems
with spin-orbit interaction17,18. The spin currents mentioned
above are either carried by itinerant electrons through dissipative
electric currents, or by localized magnetic moments through
exchange interactions. However, there can also be non-dissipative
spin current in itinerant-electron systems. In this case, it is an
equilibrium spin current without dissipation19. Although such a
spin current is detectable according to Sonin20, it does not con-
tribute to the transport property in a set up where the spin
current can flow in and out.

On the other hand, superconducting spintronics is an emerging
field attracting recent interest21–34. Although the spin degrees of
freedom are usually quenched in singlet superconductors, the
triplet component can be finite in noncentrosymmetric super-
conductors, ferromagnet-superconductor hybrids and Josephson
junctions, or odd-parity superconductors, where the spins
become (partially) active. Therefore, it is an intriguing issue if one
can generate a spin current in superconductors with zero or small
dissipation. Actually, the spin supercurrent has been discussed in
He3 related to the internal degrees of freedom39. Recently, Leurs
et al.40 have reexamined the spin supercurrent in spin-orbit
coupled systems, and classified it to the coherent and non-
coherent parts, only the latter of which contributes to the con-
tinuity equation of the spin density and its generation or
manipulation is the focus of superconducting spintronics.

The superconducting magnetoelectric effect35–38 is also a result
of the spins of Cooper pairs being active. For example, the spin
density (or magnetization) induced by a supercurrent has been
discussed by Edelstein35 in the case where the Fermi energy is
large compared to the spin splitting by the Rashba interaction.
Although this is justified in many situations, there are also sys-
tems where the spin-orbit splitting is comparable or even larger
than the Fermi energy, e.g., the interface between LaAlO3 and
SrTiO3

41, where the electron density can be tuned by gating.
Therefore, it is desirable to cover the wide range of parameters,
e.g., chemical potential, the strength of Rashba interaction, and
temperature.

Here, we study spin density and spin current produced by a
superconducting current in a two-dimensional superconductor
with Rashba spin-orbit interaction for wide parameter regions.
We investigate in detail the properties of spin current in this

system and find that the spin current generation efficiency is
comparable to or even larger than that of normal state when
normalized with the charge current density. The spin current we
discuss here corresponds to the non-coherent part in the classi-
fication by Leurs et al.40 and hence contributes to the spin
accumulation, unlike the equilibrium spin current in normal
systems19. Furthermore, it is different from those in other
superconducting spintronic setups involving ferromagnet-
superconductor hybrids where the spin degrees of freedom of
Cooper pairs become active due to the presence of ferromagnets.
In contrast, what we obtain here is a bulk spin supercurrent
induced by charge supercurrent without time-reversal symmetry
breaking of the ground state. The spin degrees of freedom become
active because of the spin-orbit coupling and the flow of a Cooper
pair condensate. Similar to normal spin currents, such a spin
supercurrent may be detected by connecting to a material that
shows inverse spin Hall effect and converts the injected spin
currents into a transverse voltage. The study of the bulk spin
supercurrent carried by Cooper pairs is a significant step towards
non-dissipative spintronics.

Results
Model. A two-dimensional superconductor (SC) with Rashba
spin-orbit interaction (SOI) can be described by the following
Hamiltonian,

Ĥ0 ¼
X
k

_2k2

2m
� μ

� �
cys;kcs;k þ αðσss0 ´ _kÞ � ẑcys;kcs0;k þ Δcy";kc

y
#;�k þ h:c:

� �
;

ð1Þ
where α is the Rashba SOI strength, Δ is the SC order parameter
and σ ¼ x̂σx þ ŷσy þ ẑσz is a spatial vector of Pauli matrices. The
constants m and _ are the electron mass and the Planck constant
respectively. Summation over implicit indexes is assumed.

Without superconductivity, the normal-state band structure is
schematically shown in Fig. 1a. When μ � ER, ER ¼ mα2=2
being the Rasbha band splitting energy, the Fermi level is far
above the band touching point. If μ ¼ 0, the Fermi level cuts
through this point and the inner Fermi surface shrinks to a point.
The band bottom is reached when μ ¼ �ER.

The superconductivity order parameter considered here is
spin-singlet s-wave. In systems with Rashba spin-orbit interaction
and superconductivity, s-wave may be mixed with p-wave and a
general theory should include all of them. It has been shown that
the actual amplitudes of the two different pairing potential
depend on the form of the interaction42,43. When only even-
parity interaction is considered, the p-wave order parameter
vanishes. We assume pure s-wave order parameter in our
calculation for simplicity.
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Fig. 1 Schematic pictures of the bands and the spin current. a The schematic normal state band structure of materials with Rashba splitting energy ER . E is
the energy eigenvalue and k is the magnitude of the wave vector. The band edge is reached if the chemical potential μ ¼ �ER . b Cartoon picture showing
the generation of magnetization My and spin current Jyx by a charge supercurrent Jx in a two-dimensional superconductor (SC) with Rashba spin-orbit
interaction
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Although we do not assume any spin-triplet order parameters
in the Hamiltonian, the anomalous Green’s function
Fðω; kÞ ¼ ðψs þ d � σÞiσy , which carries the full information
about the Cooper pairs, has both spin-singlet part ψs and spin-
triplet components d when spin-orbit interaction is present43. As
a result, the Cooper pairs become spin-active due to SOI even
though the pairing potential is purely s-wave. When time-reversal
symmetry is broken, such as by the supercurrent Jx � qx in our
case, the spin of the Cooper pairs become polarized and the
polarization is given by S � id ´ d� (more discussion in
Supplementary Note 1). Since the pairs carry both polarized
spin and momentum, they generate spin currents. This is
illustrated schematically in Fig. 1b.

To investigate the spin and charge properties, it is convenient
to introduce an SU(2) gauge field Wνσν40,44,45 along with the
electromagnetic field A. Electrons coupled with both fields are
described by the Hamiltonian

Ĥ ¼
X
k

1
2m

_k þ eA� _

2
Wνσν

� �2

� μ

" #
ss0
cys;kcs0;k þ Δcy";kc

y
#;�k þ h:c:

( )
:

ð2Þ
Apparently, the Rashba term in Ĥ0 breaks SU(2) symmetry. It is
actually equivalent to a constant gauge field (neglecting a numeric
constant) �W ¼ ð �Wx

yσ
x; �Wy

xσ
y; 0Þ, with �Wx

y ¼ � �Wy
x ¼ 2mα=_46.

In this formulism, the spin current operator is conveniently
defined as Ĵ

ν ¼ ∂Ĥ=∂Wν . Or, starting from the free energy, the
spin current can be obtained as Jν ¼ �∂F=∂Wν .

When a uniform supercurrent is flowing (say along x-direc-
tion), the SC order parameter acquires a constant phase gradient,
i.e. Δ ¼ Δ0 exp½2iqxx�. Or, by a gauge transformation, it is
equivalent to a constant vector potential Ax ¼ _qx=e, which is
effective only for SCs. Before showing the results, it is helpful to
discuss the symmetry properties of the involved physical
quantities. The spin current (spin density) is odd (even) under
spatial inversion but even (odd) under time-reversal operation,
while charge current, or qx , is odd under both of them.
Consequently, the lowest order of the spin current is Jν � q2x
and that of spin density is Mν � qx . Both of them must be odd
functions of α.

Spin density and spin current. At zero temperature, the free
energy F is just the ground state energy. For arbitrary Rashba
SOI strength and chemical potential, the spin polarization is
along y-direction and the density is (derivation in the Methods
section)

My ¼
mαqx
4π

g
Δ

ER
;
μþ ER

ER

� �
; ð3Þ

gðd; uÞ ¼ 1
2
� 1
2

Z 1

0

x2 � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 � uð Þ2

q dx; ð4Þ

where we have defined the Rashba splitting energy ER ¼ mα2=2.
This is a generalized SC Edelstein effect35 in large-Rashba sys-
tems. The μ-dependence of the spin density My is shown in
Fig. 2a with various values of the pairing potential. When
μ � ER � Δ, we get Myðμ � ERÞ ¼ mαqx=4π, in which the
dependence on μ is absent. When μ<0, the spin density gradually
decreases as μ goes down.

In Fig. 2a, one readily notes that the spin density remains finite
when Δ approaches zero. On the other hand, if Δ ¼ 0, i.e. in a
normal state, spin density due to the vector potential must vanish
since one can trivially gauge out qx . Thus, there is a discontinuity
in My=qx at Δ ! 0. However, as we will see later, My actually

vanishes when Δ decreases to zero since the supercurrent Jx (and
thus qx) also approaches zero, as discussed in Supplementary
Note 2. Also, this discontinuity is absent at finite temperature, as
shown in Supplementary Note 3. The Δ-dependence of the
function g is shown in the inset of Fig. 2a, where a finite value is
obtained at Δ ! 0 for μ=ER>�1. In the limit Δ=ER ! 0, Eq. (3)
simply becomes

My ¼
mαqx
4π

1; when μ > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=ER þ 1

p
; when 0 > μ > �ER;

0; when μ < �ER:

8><
>: ð5Þ

Due to the form of the Rashba SOI, and as indicated by the
direction of the spin density obtained above, the only non-
vanishing spin current induced by the supercurrent in x-direction
is Jy . In the limit where the chemical potential is high and the
order parameter is small, i.e. μ � ER � Δ, the spin current
density is (derivation in the Methods section)

jyþ ¼ α_q2xx̂=16π; ð6Þ

and all other spin current components vanish. This expression is
independent of μ and Δ, similar to the spin density discussed
previously.
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Fig. 2 Spin density and spin current density for a given Cooper pair wave
vector qx. a The spin density My as a function of the chemical potential μ.
The Rashba splitting energy ER is used as the reference energy scale. (The
explicit dependence on the spin-orbit interaction strength is shown in
Supplementary Note 6.) Note that the band edge in the normal state is
reached when μ ¼ �ER below which the normal state is insulating. The
inset shows the dependence of the same quantity on the order parameter Δ
for chosen values of μ. The quantity m is the electron mass and α is the
Rashba strength. b The spin current as a function of chemical potential with
various values of Δ. Peaks appear near the band edge. The inset shows how
the peak position μpeak and peak height jymax=q

2
x change as we increase Δ. In

all the results of this paper, we have set the electron charge e ¼ 1 and the
Planck constant _ ¼ 1
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When �ER < μ< 0 and Δ is small, the spin current density can
be written as

jy� ¼ α_q2x
32π

f
Δ

ER
;
μþ ER

ER

� �
x̂; ð7Þ

f ðd; uÞ ¼ �5
ffiffiffi
u

p þ
Z 1

0

d2ð4x2 þ 3Þ
½d2 þ ðx2 � uÞ2�3=2

dx: ð8Þ

Particularly, when d ¼ Δ=ER ! 0, the function f ðd; uÞ simplifies
to f ðd ! 0; uÞ ¼ 3=

ffiffiffi
u

p � ffiffiffi
u

p
. Combined with Eq. (7), this leads

to the same spin current density as Eq. (6) when u ¼ 1
(corresponding to the band crossing point μ ¼ 0). Also, the spin
current increases because of the increase of the density of states
when the chemical potential goes down until it reaches the band
edge at μ ! �ER where it diverges, as shown by the dashed curve
in Fig. 2b. The two Fermi surfaces have the same (opposite) spin
textures and the contributions from the two sub-bands add up
(tend to cancel) when μ is negative (positive). While the spin
current is similar to spin density for large μ in the sense that they
both keep constant, it shows different behavior when μ< 0. Note
that the μ-dependence of spin current resembles the density of
states of the normal Rashba band, which also diverges at the
band edge.

For general parameters, the spin current of the SC is calculated
numerically and shown in Fig. 2b. Because of finite Δ, the
aforementioned divergence of the spin current at the band edge is
smoothed out while the spin current at μ> 0 is hardly changed
even the pairing potential reaches 0:5ER. The change of the peak
position (μpeak) and peak height (jymax=q

2
x) as functions of Δ are

shown in the inset of Fig. 2b. It turns out that the peak position
shifts almost linearly from the band edge when the order
parameter increases while the height of the peak decreases in a
nonlinearly.

Bose-Einstein condensation regime. When the chemical
potential is below the band edge, i.e. μ<�ER, the normal elec-
tronic state has no Fermi surface and SC cannot happen in the
weak coupling limit of the Bardeen-Cooper-Schrieffer (BCS)
theory. Assuming that the SC exists, it must be in BEC regime
where electrons are tightly bond and the critical temperature is
determined by the Bose-Einstein condensation (BEC)
temperature47,48. As shown in Fig. 2, spin density and spin cur-
rent quickly drops to zero when μ<�ER if Δ is small. However,
when the pairing potential is large and a BEC superconductor is
achieved, they become finite. Especially, when �u � d and
�u � 1, direct expansions of Eq. (3) and Eq. (7) respect to d and
u�1 give My � mαqx

32π d2=u2 and jyBEC ¼ α_q2xd
2ð12πÞ�1juj�3x̂. Both

the spin density and spin current show power-law decay as μ
decreases. Note that the discontinuity at Δ ! 0 does not appear
when μ<�ER.

Efficiency. To relate our calculation to experiments, it is useful to
convert the wave vector qx to the supercurrent density jx . To
calculate jx , we note that (charge) current operator in a Rashba
system is Ĵx ¼ e

R
d2k½_m ðkx þ qxÞ � ασy�ss0c

y
s;kcs0;k: At T ¼ 0, the

usual paramagnetic term vanishes while the diamagnetic term
remains. The last term proportional to α contributes a super-
current of eαMy=_. So the zero temperature supercurrent density
can be written as

j x ¼ e_qxneðuÞ=m� 2eαMy=_

¼ ½_neðuÞ=m� gðd; uÞER=ðπ_Þ�eqx:
ð9Þ

The quantity ne is the electron density. Eq. (9) may be regarded as
the generalized London equation for Rashba systems.

Since jx � qx, we define two coefficients

γ ¼ My=jx; η ¼ jy=j2x; ð10Þ

which denote the efficiency of spin density and spin-current
generation, respectively, for given charge current density. They
are shown in Fig. 3. For large μ, both the spin density and spin
current decrease in power-law, γ � ðμþ ERÞ�1, η � ðμþ ERÞ�2.
When μ goes below zero, both γ and η increase. Interestingly, if Δ
is small compared to Rashba splitting, γ stays constant for μ< 0
until it reaches the band edge, below which it decreases again. For
spin current, the ratio η keep increasing before μ reaches the band
edge. Below that, η decreases very slowly. That means the
efficiency of spin current generation in the BEC regime is very
high.

Relation between spin density and spin current. As shown
above, the functional behaviors of the spin density and spin
current are similar in some parameter regions but very different
in others. To further clarify the mechanism of the spin-current
generation, we investigate its relation to the spin polarization.
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Fig. 3 Spin density My and spin current density jy for a given charge current
density jx. a The logarithm of spin density generation efficiency, defined as,
γ ¼ My=jx as a function of the chemical potential μ for various values of the
superconductivity order parameter Δ. The black dashed curve is for the
normal state. b The logarithm of spin current generation efficiency, defined
as η ¼ jy=j2x , as a function of the chemical potential μ for various values of
the Δ. The dashed colorful curves are for the quantity η0 ¼ jy0=j

2
x where

jy0 ¼ ðjx=eÞðMy=neÞ denotes a direction product of the particle current ðjx=eÞ
and the spin polarization per particle ðMy=neÞ. ne denotes the electron
density and e is the electron charge. The same color corresponds to the
same value of Δ. The insets are the log–log plot of η emphasizing the
regime with negative μ
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When spin polarization is induced by supercurrent, we may
intuitively expect a spin current

jy0 ¼ ðMy=neÞðjx=eÞ ¼ η0j
2
x; ð11Þ

which is just the particle current times the spin polarization of
each particle. Using Eqs. (9)–(11) and Eq. (3), we get η0 ¼ γe=ne
and γ ¼ mα_

4eER

gðd;uÞ
π_2neðuÞ=ðmERÞ�gðd;uÞ : In Fig. 3b, by comparing η (solid

curves) with η0 (dashed curves in corresponding colors), we find
that the differences between them are not small in general. Thus,
Eq. (11) does not fully describe the origin of the spin current
because the spin and momentum degrees of freedom cannot be
separated in systems with SOI.

Comparison to normal states. In normal dissipative Rashba
systems, spin density49 and spin current17,18 can also be gener-
ated when an external electric field E is applied. In such a case, the
coefficients γ and η are shown by the black dashed curves in
Fig. 3. It turns out that the spin polarization efficiency for SC state
and that for normal state are almost the same if Δ is small. For
spin current generation, η for the SC state is smaller than the
normal state in most of the parameter regime. Only when μ is
very close to the band edge and Δ is small, the SC state shows a
higher efficiency. The comparison of the normal state and the SC
state becomes clearer in the log-log plots as shown in the insets of
Fig. 3. When μ<�ER, it is not possible to pass a current in the
normal state at T ¼ 0. However, there could be BEC SCs in this
limit, which can carry supercurrent and gives nonzero spin
densities and spin currents.

Although a dissipative normal system seems actually better at
generating spin current than its SC counterpart for most of the
parameter space, we should note that, in the normal state, the
spin current, as well as the charge current, is generated by an
electric field and suffers from dissipation and heating, making it
impossible to maintain long-range coherence. On the other hand,
the spin current in the SC state has very low dissipation (if any)
because it is purely due to the flow of a supercurrent. In other
words, it is the property of the Cooper pair condensate and long-
range coherence is guaranteed, making it a spin
supercurrent27,50–52.

It should be emphasized that the spin current in a coherent
system does not necessarily correspond to the coherent spin
current as defined by Leurs et al.40 as mentioned previously. In
the formalism of non-Abelian gauge fields, the spin current
operator can be decomposed into two parts, Ĵ

a ¼ Ĵ
a
NC þ Ĵ

a
C . The

first term Ĵ
a
NC ¼ ĴŜ

a
is a direct product of the charge current

operator and the spin operator and is called non-coherent. The
second term Ĵ

a
C involves spin entanglement, according to Leurs at

al., and is called coherent. In our calculation, the spin current

operator is actually Ĵ
a
NC. Such spin supercurrent carried by

Cooper pairs does induce spin transport and may be used to
create new spintronic devices with long-range coherence.

Discussion
We have shown that a supercurrent in an superconductor with
Rashba SOI can induce spin density and spin current. Let’s take
the interface between a LaAlO3 and a SrTiO3 as an example and
estimate the realistic magnitude of these effects. The critical
current density (2D) is �10�3A=cm, effective mass m� ¼ 1:5me
and the super-fluid density ns � 1013 cm�253. Assuming ER �
10meV (α � 105 m=s) and replacing the electron density ne by
the super-fluid density ns, the second term in Eq. (9) has the same
order of magnitude as the first term when the Fermi level is high,
i.e. or u � 1. For a super-current density of jx � 10�5 A=cm,
which is about 1=100 of the critical current density, the corre-
sponding qx � 103 m�1. Then, according to Eqs. (6) and (3), the
spin current density jy � 108_ � s�1cm�1 and spin density
My � 107_ � cm�2. Converted to charge current by replacing _=2
by e, such a spin current corresponds to an charge current density
of �0:01 nA=cm. This is rather small. However, If the Fermi level
is decreased, say by gating41,54–56, and it is still superconducting,
the spin current can be enhanced by several orders of magnitude
as shown in Fig. 3b. In that case, it should be detectable by inverse
spin Hall effect57, by connecting the superconductor with a light-
emitting diode58, or by other methods. Our results may be gen-
eralized to other spin-orbit coupled systems where general
properties of the Edelstein effect have been recently studied38.

Another important issue is the effect of finite temperature
which affects the results through both the Fermi distribution of
the quasi-particles and change of Δ. In the following, we assume
that the function ΔðTÞ is determined by the BCS theory. Fig. 4a
shows the spin density as a function of temperature for different
values of μ. Generally, the spin density starts to grow linearly
when T <Tc, and it saturates when T ! 0. It is exactly the same
feature as the superfluid density ρs in standard BCS theory. This is
no surprise since Eq. (9) indicates that the spin density is part of
the supercurrent. When the Fermi level moves downward, the
temperature dependence remains the same. In Fig. 4b, we show
the temperature dependence of the spin current. Further discus-
sion about temperature effect can be found in Supplementary
Note 3. The temperature dependence in the case of normal state
is shown in Supplementary Note 4 for comparison. The spin
current generation efficiency as a function of chemical potential is
obtained for finite temperature in Supplementary Note 5 which
shows that our conclusions are still valid.

One may also note that this system is a paradigm for the study
of topological superconductors. In fact, an out-of-plane Zeeman
field can drive it into a topological phase with Majorana edge
modes if μ � 0. Then the following questions become interesting:
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Fig. 4 Temperature effect. a The spin density (with a given Cooper pair wave vector qx) as a function of temperature for various values of the chemical
potential μ. The Rashba splitting energy ER is used as the energy scale. The superconductivity critical temperature is set to be Tc ¼ 0:1ER=kB with kB being
the Boltzmann constant. b The spin current density (with a given qx) as a function of temperature for various values of the chemical potential μ
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(1) What is the spin current contributed by the edge modes, if
any? (2) How are topological phase transitions affected by the
supercurrent? In fact, the second question has recently been
discussed but in a quasi-one-dimensional system where it is
found that a supercurrent shifts the topological phase transi-
tions59. Similar things may happen for two-dimensional systems
as well. In this way, one may control topological phases by a
supercurrent, achieving new methods for coherent quantum-
device manipulation.

To conclude, we have studied the spin and spin current gen-
eration by the supercurrent in two-dimensional noncentrosym-
metric superconductor with Rashba spin-orbit interaction. The
spin degrees of freedom are partially activated due to the non-
centrosymmetry even when on-site pairing between up and down
spins is considered. When the chemical potential is below the
band crossing point and approaching to the Band edge, i.e., in
dilute electron density limit, the large enhancement of the spin
supercurrent generation occurs although the spin density is small.
The efficiency of the spin supercurrent does not decrease so much
even when the chemical potential is below the band edge, i.e., in
the BEC limit of the superconductivity. Furthermore, the carrier
density can be controlled there by gating, and the chemical
potential dependence can be studied experimentally. These stu-
dies will pave a route toward the dissipationless superconducting
spintronics, where the transfer of spin information without the
energy loss is possible through the long-range quantum coher-
ence of the system.

Methods
Non-Abelian gauge fields and Rashba spin-orbit interaction. The Hamiltonian
with SU(2) gauge symmetry of free electrons in magnetic field is

ĤN ¼
X
k

cys1 ;kHs1 ;s2
ðkÞcs2 ;k ; ð12Þ

HðkÞ ¼ 1
2m

ð_k þ eA� �gWνσνÞ2 þ μBB
νσν � μ; ð13Þ

where A is the U(1) gauge potential of electromagnetic field and Wν is the SU(2)
gauge potential. The constant μB denotes the Bohr magneton and σν¼1;2;3 are Pauli
matrices. The coefficient �g is a coupling constant to be assigned later. Rashba SOI
corresponds to the existence of the following SU(2) gauge field46,

�g �Wν

i ¼ e_
mc2

ϵijνEj: ð14Þ

Note that we have introduced the speed of light c and the Levi-Civita symbol ϵijν .
The Hamiltonian with this gauge field can be rewritten as

HðkÞ ¼ 1
2m

ð_k þ eAÞ2 þ 1
2m

ð �Wν

j σ
ν �Wγ

j σ
γÞ� 1

m
½ð_ki þ eAiÞ �Wν

i σ
ν � þ μBB

νσν� μ;

ð15Þ

¼ 1
2m

ð_k þ eAÞ2 þ e_Ej

m2c2
ð_ki þ eAiÞϵjiνσν þ μBB

νσν � μþ 1
2m

�Wν

j
�Wν

j ; ð16Þ

¼ 1
2m

ð_k þ eAÞ2 þ e_
m2c2

E � ð_k þ eAÞ ´ σ þ μBB
νσν � μþ 1

m
e_
mc2

� �2

jEj2:

ð17Þ
The second term describes the Rashba SOI. So, the Rashba SOI will be included by
assuming a constant SU(2) gauge field ~W

ν
and the SU(2) gauge symmetric

Hamiltonian with certain Rashba strength becomes

HRðkÞ ¼
1
2m

½_k þ eA� �gðδWν þ �WνÞσν �2 ð18Þ

þ μBB
νσν � μ; ð19Þ

¼ 1
2m

ð_k þ eA� �gδWνσνÞ2 þ αð_k þ eAÞ ´ σ ð20Þ

þ μBB
νσν � μþ �g2

m
δWν

j
�Wν

j þ
1
m

e_
mc2

� �2

jEj2: ð21Þ

The last two terms are just constant energy shift due to the electric field of the
Rashba SOI, which we ignore hereafter. Then we have

HRðkÞ ¼
1
2m

ð_k þ eA� �gδWνσνÞ2 ð22Þ

þ αð_k þ eAÞ ´ σ þ μBB
νσν � μ: ð23Þ

In order for the non-Abelian gauge field Wν to couple with the spin, we set

�g ¼ _=2: ð24Þ

Derivation of spin density. We calculate the spin density induced by the super-
current, or by the vector potential A ¼ ð_qx=eÞx̂ in Eq. (2), using perturbation
method. The perturbation Hamiltonian Ĥ0 including both the test fields (Wν and
B) and the external field (A) is

Ĥ0 ¼ δĤA1 þ δĤA2 þ δĤW þ δĤAW þ δĤB; ð25Þ
with

δĤA1 ¼
X
k

� _k � eA
m

δss0 þ αeðAxσ
yÞss0

� �
cys;kcs0 ;k ; ð26Þ

δĤA2 ¼
X
k

� e2jAj2
2m

δss0

� �
cys;kcs0 ;k ; ð27Þ

δĤW ¼
X
k

�_2

m

�
k � δWνσνss0 ð28Þ

þ α_ðδWy
x � δWx

yÞδss0
�
cys;kcs0 ;k ; ð29Þ

δĤAW ¼
X
k

e_
m

A � δWνσνss0

� �
cys;kcs0 ;k ; ð30Þ

δĤB ¼
X
k

μBB � σss0 cys;kcs0 ;k ; ð31Þ

which is composed of terms linear and quadratic in A respectively, a term pro-
portional to non-Abelian gauge field Wν , a term bilinear in A and Wν , and the
term due to the field B. As mentioned previously, the spin densityMy is linear in qx
(or Ax) to the lowest order. Consequently, we should calculate the contribution to
the free energy by Ĥ 0 up to the second order.

At zero temperature, the free energy is simply the ground state energy.

F0 ¼
X
k;±

Eh ± ðkÞ ¼
L2

4π2

Z
Eh ± ðkÞkdkdθ: ð32Þ

The subscript h labels the hole bands, i.e. Eh± ðkÞ< 0. Here we ignored the energy
due to Cooper pairs, assuming that the order parameter is not affected by the
perturbation term. The unperturbed energy spectrum of the system is

E0
e± ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ ± ðkÞ2 þ Δ2

q
; ð33Þ

E0
h ± ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ ± ðkÞ2 þ Δ2

q
: ð34Þ

ξ ± ¼ _2k2

2m � μ± α_k are the energy spectrum of the normal Rashba bands. The
lowest order term of the spin density is from the bilinear term � qxBi. Then, the
perturbation correction to the free energy is

δFM ¼ L2_Byqx
16π

´
Z 1

0
dk

ξ�ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ�ðkÞ2 þ Δ2

q � ξþðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþðkÞ2 þ Δ2

q
0
B@

1
CA: ð35Þ

The spin density is

My ¼ � 1

L2
∂δFM

∂By
¼ _qx

16π

Z 1

0
dk

ξþðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþðkÞ2 þ Δ2

q � ξ�ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ�ðkÞ2 þ Δ2

q
0
B@

1
CA: ð36Þ

After substituting the expressions of ξ ± into the above integral and defining
k ± ¼ k±mα=_, it becomes
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M y ¼
_qx
16π

Z 1þαm
_

αm
_

k2þ_
2

2m � μþ ERð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ k2þ_

2

2m � μþ ERð Þ
� �2r dkþ

2
664

�
Z 1�αm

_

�αm
_

k2�_
2

2m � μþ ERð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ k2�_

2

2m � μþ ERð Þ
� �2r dk�

3
775

ð37Þ

¼ _qx
16π

αm
_

Z 1þ1

1

x2 � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 � uð Þ2

q dx

2
64

�
Z 1�1

�1

x2 � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 � uð Þ2

q dx

3
75

ð38Þ

¼ _qx
16π

αm
_

2�
Z 1

�1

x2 � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 � uð Þ2

q dx

0
B@

1
CA ð39Þ

¼ mαqx
4π

gðd; uÞ; ð40Þ

with u ¼ μ=ER þ 1 and d ¼ Δ=ER.

Derivation of spin current. Similar to the spin density derivation, we use per-
turbation theory to obtain the correction to the free energy δFJ . The difference here
is that we need to go to the third order perturbation due to the fact that the spin
current is quadratic in qx . After lengthy but straightforward calculation, the free
energy correction is

δFJ ¼
Z 1

0
dk½F�ðαÞ � F�ð�αÞ�; ð41Þ

The general form of the function F� is complicated. However, in the limit Δ ! 0,
it becomes

F�ðαÞ �
L2q2xW

y
x

16π2

(
5π_2

8m
sgnðξ � kα_Þ

� πkΔ2_3ð4k_� αmÞ
8m2 Δ2 þ ðξ � αk_Þ2	 
3=2

)
:

ð42Þ

By change of integral variable from k to k� to x similar to the previous calculation,
the integral can be written as

δ FJ ¼� L2kq2xW
y
x

16π2

(
� 5π_2

4m
ðk2 � k1Þ

þ πα_

Z 1

0

2d2 x2 þ 3=4ð Þ
d2 þ x2 � uð Þ2	 
3=2 dx

þ 7πα_
4

1þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p
 !)

:

ð43Þ

The spin current density is

j yx ¼ � ∂δFJ

∂Wy
x
¼ q2x
16π2

(
� 5π_2

4m
ðk2 � k1Þ

þ πα_

Z 1

0

2d2 x2 þ 3=4ð Þ
d2 þ x2 � uð Þ2	 
3=2 dx

þ 7πα_
4

1þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p
 !)

:

ð44Þ

We have defined two wave vectors k2 and k1 which denotes the Fermi wave
number of the outer and inner Fermi surfaces respectively.

k2 � k1 ¼
2αm=_; if μ> 0;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 2μþα2mð Þ

p
_ ; if �ER< μ< 0:

(
ð45Þ

When μ is large, the integral of the second term is negligible and the first and third
terms lead to Eq. (6) of the main text. When �ER < μ< 0, the third term becomes
negligible and Eqs. (7)–(8) are obtained.

Data availability
All essential data are available in the manuscript. Additional data are given in
Supplementary Figs. 2–8. Further supporting data can be provided from the
corresponding author upon request.
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