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The sound of Bell states
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Nonseparable states, analogous to “entangled” states, have generated great scientific interest

since the very beginning of quantum mechanics. To date, however, the concept of “classical

nonseparability” has only been applied to nonseparable states of different degrees-of-

freedom in laser beams. Here, we experimentally demonstrate the preparation and tunability

of acoustic nonseparable states, i.e. Bell states, supported by coupled elastic waveguides. A

Bell state is constructed as a superposition of elastic waves, each a tensor product of a spinor

part and an orbital angular momentum (OAM) part, which cannot be factored as a single

tensor product. We also find that the amplitude coefficients of the nonseparable super-

position of states must be complex. By tuning these complex amplitudes, we are able to

experimentally navigate a sizeable portion of the Bell state’s Hilbert space. The current

experimental findings open the door to the extension of classical nonseparability to the

emerging field of phononics.
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The preparation and control of entangled superposition of
states (e.g., Bell states) is an essential ingredient for har-
nessing the second quantum revolution1. Nonlocality and

nonseparability are two distinctive attributes of entangled states.
While nonlocality is a unique feature of quantum states, non-
separability is not. The idea of classical “entanglement,” that is,
local nonseparable superposition of states, also known as classical
nonseparability2–4, has been discussed in great detail in the field
of optics, both from the theoretical and the experimental point of
view. Spin and orbital degrees of freedom in laser beams can be in
a nonseparable state5–12. Nonseparability among different parties
such as orbital angular momentum (OAM), polarization, and
radial degrees of freedom or propagation direction of a laser beam
has also been achieved13–15. The classical entanglement of laser
beams has found applications in quantum information science16–18.
In contrast, little attention has been paid to the nonseparability of
sound waves.

Remarkable new behaviors of sound, analogous to quantum
physics, are emerging from the amplitude of acoustic waves,
which under the conditions of symmetry breaking may acquire a
geometric phase that leads to non-conventional topology19.
Elastic waves in parallelly coupled one-dimensional (1D) wave-
guides, with either broken time-reversal or parity symmetry, obey
Dirac-like equations and possess spin-like (spinor) topology20,21.
The amplitude of these pseudospin elastic waves takes the form of
a spinor in the two-dimensional Hilbert space of the direction of
propagation along the waveguide. In parallel arrays of elastically
coupled 1D waveguides, the amplitude also spans an N-dimen-
sional Hilbert subspace, where N is the number of waveguides,
and becomes analogous to OAM degrees of freedom22,23. These
two degrees of freedom can be used to create nonfactorizable Bell
elastic states in the form of linear combinations of tensor pro-
ducts of OAM and spinor (spin-like) amplitudes. Building on
these principles, in the current study, we experimentally realize
the nonfactorizable superpositions of elastic states, that is, the
acoustic Bell states in a coupled elastic waveguides that are not
separable, and tune them over a wide region of the tensor product
Hilbert space of the directional spinor and OAM subspaces.

Results
Representation and identification of elastic wave states. We
consider a system composed of N= 3 nearly identical 1D wave-
guides coupled elastically along their length (Fig. 1). The propa-
gation of longitudinal modes along the waveguides in the long
wavelength limit, that is, the continuum limit, is characterized by
the equations of motion:

H � I3 ´ 3 þ α2M3 ´ 3
� �

u3 ´ 1 ¼ 0; ð1Þ

where the propagation of elastic waves is modeled by the dyna-

mical differential operator H ¼ ∂2

∂t2 � β2 ∂2

∂x2

� �
in the direction x

along the waveguides. The sound speed in the waveguide medium
is related to the parameter β. The parameter α measures the
elastic coupling strength between the neighboring waveguides
(here we take α to be the same for all coupled waveguides). u3 ´ 1 is
a vector whose components, ui; i ¼ 1; 2; 3, define the ith
waveguide displacement. I3×3 is the 3 × 3 identity matrix and the
elastic coupling matrix M3 × 3 describes the coupling between
waveguides. In our experiment, the coupling matrix takes the

form: M3 ´ 3 ¼
1 �1 0
�1 2 �1
0 �1 1

0
@

1
A (see Supplementary Note 2).

The generalized Klein–Gordon equation (1) is Dirac factorizable
leading to the two equations:

U3 ´ 3 � σ1
∂

∂t
þ βU3 ´ 3 � ð�iσ2Þ

∂

∂x
± iαU6´ 6

ffiffiffiffiffiffiffiffiffiffiffi
M3 ´ 3

p � σ1

� �
Ψ6 ´ 1 ¼ 0:

ð2Þ
In Eq. (2), the antidiagonal matrices are U3 × 3 and U6 × 6 with unit

elements. σ1 ¼ 0 1
1 0

	 

and σ2 ¼ 0 i

�i 0

	 

are the Pauli

matrices, and Ψ6 × 1 is a six-dimensional vector. The modes of
vibration of the coupled three waveguides (Fig. 1) are represented
by Ψ6 × 1 projected in the two possible (forward and backward)
directions of propagation. The

ffiffiffiffiffiffiffiffiffiffiffi
M3 ´ 3

p
is not unique. Since the

eigen vectors of
ffiffiffiffiffiffiffiffiffiffiffi
M3 ´ 3

p
are also the eigen vectors of M3 × 3 itself;

this non-uniqueness does not affect in the calculation of the
elastic modes of the waveguides of Eq. (2). Let us take the solution
of Ψ6 × 1 in the form of plane waves ψI ¼ aIe

ikxeiωt ; I ¼ 1; ¼ ; 6,
where k is the wave number, ω is the angular frequency, and
a6 × 1 is the amplitude vector. The amplitude can be written as
a6 ´ 1 ¼ en; 3 ´ 1 � s2 ´ 1; where en;3 ´ 1 and λn are the nth eigen
vector and eigen values of

ffiffiffiffiffiffiffiffiffiffiffi
M3 ´ 3

p
, respectively. Here, the matrix

M3 × 3 as well as its corresponding eigen values and vectors are
consistent with the concept of OAM of elastic waves traveling
along the elastic system of Fig. 1. The three OAM eigen vectors
corresponding to the eigen values of λ1 ¼ 0, λ2 ¼ 1, and λ3 ¼ 3
are:

e1 ¼
1ffiffiffi
3

p
1

1

1

0
B@

1
CA; e2 ¼

1ffiffiffi
2

p
1

0

�1

0
B@

1
CA; e3 ¼

1ffiffiffi
6

p
1

�2

1

0
B@

1
CA:

The spinor s2 ´ 1 is solution of the equation:

ωn � βk ± αλn
± αλn ωn þ βk

	 

s1
s2

	 

¼ 0: ð3Þ

From the above eigen equation (3), we find the dispersion relation
as ω2

n ¼ βkð Þ2þλn αð Þ2 and the spinor eigen vectors as

s2 ´ 1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn þ βk

p
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn � βk

p	 

, which is projected into the space of

propagation directions. The spinor components are dependent on
each other through the wave number k and form a coherent
superposition of states in the space of two possible (forward and
backward) propagation directions. These spinor components
physically correspond to quasi-standing waves, that is, the char-
acteristics of true standing wave at wave number k= 0 and the
characteristics of true traveling wave as k→∞.

As mentioned before, the experimental realization requires a
mechanical system, which elastic wave behavior is effectively
described by Eq. (1). We, therefore, develop a model of the
experimental system by starting with a discrete mass spring

Rod 1

Rod 2

Rod 3

Epoxy coupling medium

Lateral gap

Ultrasonic transducer

a b

Fig. 1 Experimental coupled elastic waveguides. a Side view and b front
view of the experimental three-rod elastic system designed to support Bell
states. The system is composed of three aluminum rods elastically coupled
with epoxy (lateral gap of 2 mm). A set of three transducers are used to
drive the system at one end. Three more transducers are used as detectors
at the other end. Rubber bands are used to maintain a constant pressure on
the transducers. Honey is employed as ultrasonic couplant between the
transducers and the rods
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model, which in the long wavelength limit approaches the
continuum system (see Supplementary Note 2). The experiment
is carried out by first stimulating the coupled waveguides with
each of the OAM eigen vectors at one end of the rods and
collecting the transmission recorded by transducers at the other
end of the rods (see Fig. 1). The experimental setup is devised to
explore only longitudinal modes in the system (see Methods and
Supplementary Note 3). The finite length rods show resonant
peaks in the transmission that are dependent on the mode of
stimulation (Fig. 2a). The frequency spectrum of the first OAM
eigen mode e1 of Fig. 2a (mode 1 1 1: red) shows well-defined
resonances corresponding to the standing wave modes supported
by the finite coupled waveguides. The wavelength corresponding
to these standing waves can be easily determined from the
expression λ ¼ 2Le=n, where n is an integer. Here it is
straightforward to assign a value of n to each mode as the
observed resonant modes span the complete range of frequencies
and their frequency separation is almost uniform. A wave number
can subsequently be calculated as k ¼ 1=λ. Figure 2b shows the
resultant dispersion relation by combining data from spectra of
Fig. 2a. The speed of sound of the nearly one-dimensional rod is
extracted by fitting the low-frequency resonant modes to a linear
relation passing through the origin, which is a dispersion relation:
ωk;1 ¼ βk. We find that β= 4467 m s−1.

The second and third OAM eigen modes (e2 and e2) (mode
10 �1 : blue and mode 1 �2 1: green of Fig. 2a) exhibit transmission
spectra that differ from that of the first eigen mode. Both spectra
show a significant depression in the transmission amplitude
below around a cutoff frequency, namely, 14.23 kHz for e2 and
24.27 kHz for e3. Above the cutoff frequencies, the transmission
spectra show well-defined resonances with non-uniform fre-
quency spacing. The resonances are spaced more closely at low
frequency.

To calculate the dispersion relation of the second and third
bands, ω2

k;m ¼ βkð Þ2þλm αmð Þ2; m ¼ 2; 3, we need to determine

the wave number (k) associated with each resonant frequency
ωkð Þ observed in the spectra. Similar to the case of the first band,
the wave numbers for the other two bands are also multiples of
2Le (due to the finite length of the rods that only support standing
waves). Therefore, we label each resonance with the lowest
resolvable frequency as being m= 1 and rewrite the dispersion
relation as ω2

k;m ¼ β2Δk2ðm0 þmÞ2 þ λm αmð Þ2; m ¼ 2; 3. We
then determine the cutoff frequency αm and the associated m0

from the frequency resonances ωk;m

� �
from Fig. 2b. Using

Matlab’s least-squares fitting procedure, we numerically obtain
α2;m0ð Þ ¼ 14:23 kHz; 0ð Þ and α3;m0ð Þ ¼ 24:27 kHz; 1ð Þ. The
cutoff frequencies are consistent with the measured transmission
spectra of Fig. 2a. The dispersion relations are reported in Fig. 2b.
The transmission spectra associated with the e2 and e3 modes
clearly show very low transmission below the cutoff frequency.
These resonances correspond essentially to separable states.

Nonseparability of states. Equation (2) is linear, and hence the
solution of Eq. (2) can also be obtained by the superposition of
modes. It is therefore possible to construct the nonseparable
superposition of isofrequency states in the bands corresponding
to the two non-zero OAM eigen values:

Ψ6 ´ 1 ¼ Ae2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk2

p
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk2

p
 !

eik2xeiωt þ Be3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk3

p
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk3

p
 !

eik3xeiωt :

ð4Þ
In Eq. (4), A and B are the Bell state complex coefficients and

we have chosen ω2 ¼ ω3 ¼ ω. k2 and k3 are the wave numbers
corresponding to the modes in the two bands with same
frequency ω. In the superposition of Eq. (4), the eigen vectors
of the OAM e2; e3ð Þ and the spinor amplitudes are different. This
superposition of nonseparable states cannot be written in the
form of a tensor product of one spinor and one OAM eigen
vector.

For experimental realization of Bell elastic states given by Eq.
(4), we consider isofrequency states. To excite such a nonsepar-
able state, we need to identify a frequency at which there is
substantial transmission for OAM eigen vectors e2 and e3, but
little transmission for e1. The right inset of Fig. 2a shows that
these conditions are satisfied at a frequency of 33.25 kHz.
Therefore, to create a nonseparable superposition of eigen modes
e2 and e3, we drive the coupled waveguide system at 33.25 kHz by
exciting rods 1 and 2 out of phase, that is, a phase difference of π,
and not exciting rod 3. Furthermore, we anticipate that the
contribution from these two eigen modes (A and B) can be
manipulated by varying the ratio of the amplitude of excitation of
rods 1 and 2. The driving amplitudes of rods 1, 2, and 3 are
therefore represented by the vector F1;�F2; 0ð Þ with the
amplitude ratio of the excitation given by r ¼ F1=F2j j. Figure 3a
shows the phase difference between the transmission of each pair
of rods as a function of r. We do, indeed, see that manipulation of
the excitation amplitude ratio can be used to tune the eigen mode
superposition.

We determine the Bell state coefficients, A and B, in Eq. (4), for
the three excitation amplitude ratios: r= 0.0944, 0.4356, and 1
corresponding to the states labeled (i), (ii), and (iii) and reported
in Fig. 3b. Remarkably, we find that if we fix B to be a real
number, we need to allow A to be a complex number to obtain
the phases observed in the experiment. In particular, for the three
illustrated ratios, we find the following values of
AðiÞ � 0:00496ei

7π
16 , AðiiÞ � 0:00627ei

7π
8 ; and AðiiiÞ � 0:01640ei

29π
32

with an estimated experimental uncertainty of 1
62 π in arg Að Þ,

and BðiÞ � 0:00377, BðiiÞ � 0:00751, and BðiiiÞ � 0:01433 (see
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Fig. 2 Identification of elastic wave states. a Transmission spectrum of the
coupled waveguides for the three orbital angular momentum (OAM) eigen
modes e1 (red), e2 (blue), and e3 (green). The inset on the left shows the
transmission amplitudes at low frequency <10 kHz, identifying the first two
resonances of the e1 mode and very low transmission of the other two
modes. The inset on the right focuses on a frequency interval showing
nearly overlapping e2 and e3 resonances and a trough between two
resonances in the e1 transmission around 33.25 kHz. The transmission
amplitude is in arbitrary units. b Band structure of the coupled waveguides
system. The dispersion curves are obtained by fitting the identifiable
resonances (open circles) to dispersion relations with cutoff frequencies ω0

¼ 0; 14:23; and 24:27 kHz, respectively
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Methods for details). We calculate the entropy of “entanglement,”
S ρOAM
� �

; for the states labeled (i), (ii), and (iii), and we find

S ρOAM
� � ið Þ¼ 15

16 ln 2; S ρOAM
� � iið Þ¼ 31

32 ln 2, and S ρOAM
� � iiið Þ¼ 63

64 ln 2
(see Supplementary Note 1).

The complex coefficients of the driven Bell state arise naturally
from the Lorentzian character of the resonances. This astonishing
result indicates that the coefficients for our Bell elastic state can be
tuned through the modification of a single input, the relative
excitation amplitudes of rods 1 and 2, allowing us to navigate a
sizeable portion of the nonseparable states in the tensor product
Hilbert space of the directional and OAM subspaces. Further, we
expect that the full gamut of possible phases and, hence, the full
range of complex A could be explored through more elaborate
excitation schemes.

Discussion
Using a classical system in the current work, we have been able to
capture the characteristic of nonseparability between different
degrees of freedom of the same physical manifestation. The
experimental realization of these nonseparable superpositions of
elastic states, that is, the Bell states consisted of a set of coupled
elastic waveguides. We further quantified the Bell state and to our
surprise we found the coefficients must be complex. By tuning
these complex coefficients, we were able to experimentally navi-
gate a sizeable portion of the nonseparable states. The stronger
coupling, available in the considered acoustic system with the use
of epoxy coupling medium, allowed us to realize the full benefit of
a much wider scope of possible relationships in the acoustic
coherent superpositions.

The experimental demonstration of the acoustic Bell state in a
parallel array of three elastically coupled waveguides opens
the door to the extension of the notion of classical nonseparability
to the emerging field of phononics. The ability to prepare
and tune the complex amplitudes of the nonseparable super-
position of elastic states by exciting the waveguides with the
appropriate combination of frequency, phase and amplitude
suggests that elastic waves may offer a classical alternative to
true quantum systems in some quantum information processing
applications.

Methods
Sample fabrication. The experimental sample (coupled acoustic waveguide) is
composed of three (nearly) identical aluminum rods of d ¼ 1=2 in: diameter and
length L ¼ 0:6096 m with a density of 2660 kg m−3 (6061 aluminum with certi-
fication: McMaster-Carr 1615T172). The rods are coupled elastically by filling the
2 mm gap that separates them with epoxy (J.-B. Weld 50176 KwikWeld Steel
Reinforced Epoxy) along the length of the rod (cf., Fig. 1). Special care was taken to
ensure a uniform gap between the rods and a uniform filling along the rods. The
length of the epoxy filling is Le ¼ 0:5786 m.

Experimental details. We have used different types of attachments of the trans-
ducers (Olympus V133-RM Fingertip case style with 1=4 in: element diameter) to
the ends of the rods as well as different ultrasonic couplants. However, the observed
elastic modes are essentially invariant, and the couplant and attachment method
only affect the number of modes that can be resolved. Optimal resolution of the
elastic modes is achieved by wrapping rubber bands (supersize bands from Wal-
mart, 564755837) around the transducer/rod assembly and employing honey as
ultrasonic couplant between the transducers and the rods. The layer (thickness) of
couplant on the surface of the sample was kept constant by maintaining a uniform
pressure on the transducers throughout all experiments. Moreover, the use of
rubber bands better eliminated trapped air from the contact region of the trans-
ducer/rod assembly. Since honey provides high acoustic impedance (due to its high
viscosity that contributed to its acoustic impedance of 2:89MPam�2, whereas the
acoustic impedance of the experimental aluminum rods is 11:88MPam�2), it
produces better transmission of sound waves into the waveguides. Furthermore, the
use of honey couplant in conjunction with the longitudinal wave transducers
suppress all non-longitudinal modes (torsional, transversal, etc.) of the aluminum
waveguides, as shown in Supplementary Fig. 1 in the Supplementary Note 3 for N
= 1 free standing aluminum rod.

Preparation of a Bell state. The resonances shown in Fig. 2 correspond essentially
to separable states. To realize Bell elastic states we need to form an isofrequency
nonfactorizable linear combination of tensor products of the OAM and spinor
degrees of freedom. To create such a nonseparable state, we have identified a
frequency, 33.25 kHz, at which there is substantial transmission for the OAM eigen
vectors e2 and e3, but little transmission for e1. Driving the system at that frequency
will result in near-resonant excitations of the e2 and e3 modes and very weak
resonant amplitudes for the e1 mode.

Bell state measurement and tenability. The spinors in Eq. (4) correspond to
quasi-standing elastic waves with the components of the spinor representing the
amplitude of the wave in the forward and backward directions of propagation,
respectively18. However, due to the finite length of the experimental waveguides,
the spinor components need to be converted to standing waves. The Bell state given
by Eq. (4) can be generalized by superposing solutions for positive and negative
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wave numbers:

Ψ6 ´ 1 ¼ Ae2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk2

p
eik2x þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk2
p

e�ik2x

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk2

p
eik2x ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk2

p
e�ik2x

 !
eiωt

þBe3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk3

p
eik3x þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk3
p

e�ik3x

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk3

p
eik3x ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk3

p
e�ik3x

 !
eiωt :

ð5Þ

The spinor components represent standing wave displacements in the finite rods if
the wave numbers k2 and k3 are integer multiples of πL. For the case of isofrequency
state at ω ¼ 33:25 kHz, from Fig. 2b we have k2 ¼ 2π

2L 8 and k3 ¼ 2π
2L 6. At that

frequency, Eq. (5) when applied to the ends of the rods, x = L, where measure-
ments are performed, reduces to the scalar expression:

Affiffi
2

p
1

0

�1

0
B@

1
CA 1ffiffiffiffi

2ω
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk2

p� �þ Bffiffi
6

p
1

�2

1

0
B@

1
CA 1ffiffiffiffi

2ω
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk3

p� � ¼ C1e
iϕ1

C2e
iϕ2

C3e
iϕ3

0
B@

1
CA:

ð6Þ
In Eq. (6) we have normalized the spinors. A and B are the Bell state complex
coefficients, Ci is the maximum displacement amplitude recorded by the detecting
transducer at the end of rod i, i ¼ 1; 2; 3, and ϕi is the corresponding phases. The
right-hand side term of Eq. (6) can be reformulated in terms of the phase difference
between the transmission of each pair of rods and for the sake of simplicity (and
without loss of generality) assume ϕ2 ¼ 0;

C1e
iϕ12

C2

C3e
�iϕ23

0
B@

1
CA;

where ϕ12 ¼ ϕ1 � ϕ2 and ϕ23 ¼ ϕ2 � ϕ3. Using Eq. (6), we are able to extract the
Bell state, that is, the complex coefficients A and B with an experimental uncer-
tainty of no more than 1

64 π.
The coefficients A and B are also functions of the amplitudes Cið Þ and phases

ϕi
� �

recorded by the detecting transducers at the end of each rod, which are also a
functions of the excitation amplitude of the rods as shown in Fig. 3a. Therefore, Eq.
(6) also demonstrates how we can tune the eigen mode superposition, that is, the
Bell state.

Data availability
The data that support our findings of the present study are available from the
corresponding author upon request.
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