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Confinement and substrate topography control cell
migration in a 3D computational model
Benjamin Winkler1, Igor S. Aranson 2 & Falko Ziebert3,4

Cell movement in vivo is typically characterized by strong confinement and heterogeneous,

three-dimensional environments. Such external constraints on cell motility are known to play

important roles in many vital processes e.g. during development, differentiation, and the

immune response, as well as in pathologies like cancer metastasis. Here we develop a

physics-driven three-dimensional computational modeling framework that describes

lamellipodium-based motion of cells in arbitrarily shaped and topographically structured

surroundings. We use it to investigate the primary in vitro model scenarios currently studied

experimentally: motion in vertical confinement, confinement in microchannels, as well as

motion on fibers and on imposed modulations of surface topography. We find that con-

finement, substrate curvature and topography modulate the cell’s speed, shape and actin

organization and can induce changes in the direction of motion along axes defined by the

constraints. Our model serves as a benchmark to systematically explore lamellipodium-based

motility and its interaction with the environment.
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The motility of living cells and tissue is an equally important
topic for biology and non-equilibrium physics. Individual
and collective cellular migration are examples of a self-

organized non-equilibrium state characterized by the transduc-
tion of chemical energy delivered by the metabolism into directed
mechanical motion. Recent studies demonstrated that several
aspects of the seemingly complex dynamics of migrating cells and
tissues can be rationalized in the framework of relatively simple
physics-driven models1–4.

Due to the relative ease in observation, data analysis, and
modeling, quantitative physics-driven studies of cell motion have
in the past focused almost exclusively on cells crawling along flat
substrates5. This has been often criticized by the biology com-
munity6, since in vivo cells never live in such an idealized world.
In contrast, cells migrate in rather complex three-dimensional
(3D) environments that in addition are strongly inhomogeneous
and also reorganized by both forces and chemical action from the
cells. For instance, both leukocytes7 and metastatic cancer cells8

move along or within blood vessels until they reach a target site,
where they need to squeeze through epithelial layers, or extra-
cellular matrix (ECM). These examples already involve a plethora
of topographical and confining features, namely motion on
curved substrates, in tubular and planar confinement, on fibers or
fiber bundles, as well as through random 3D fiber networks.

A realistic in vivo situation, e.g., the movement of cancer cells
inside living tumors, is prohibitively difficult to investigate,
although progress has been achieved using novel microscopy
techniques9. Consequently, it is important to study well-defined
scenarios in a systematic manner, with the goal to deduce
general guiding principles. In the last years, experimental stu-
dies on cells in well-defined artificial or reconstituted 3D
migration assays have gained pace, see Paul et al.10 for a recent
review and Maiuri et al.11 for a comparison of different con-
fining situations. A large part of these works focuses on cells in
reconstituted networks of collagen or synthetic hydrogels12–14.
In addition, well-defined, microfabricated systems have been
developed and employed to study confined cell motion, like
microchannels15,16 and vertical confinement in slit-like
geometries17,18. Substrates with topographical features have a
longer tradition in tissue engineering19,20, and are now also
employed to study motility21–26, as is the motion on micro- or
nano-scale fibers27–29. Although a direct mapping from these
model systems to the full in vivo case is in no way direct or
obvious, these systems are in well-controlled conditions that
allow to isolate different generic features of topography and/or
confinement and their influence on cell motion.

On planar substrates, most cells move by forming lamellipodia,
thin sheets containing actin filaments that polymerize and branch
towards the cell membrane, thereby exerting protrusion
forces30,31. A long-standing question had been whether these
motile structures dominating 2D motion also exist and are rele-
vant in 3D. There is growing evidence that this is indeed the case
for fibroblasts32 and neutrophils33, at least under certain condi-
tions. Therefore, we here develop a physics-based modeling fra-
mework that transfers the knowledge of 2D lamellipodia-based
cell motion2,34,35 to 3D settings. The model is kept as simple as
possible. It nevertheless is able to reproduce a plethora of the
phenomena of single cell movement in confinement and on
curved or topographically structured substrates found in the lit-
erature and puts them into a common framework. In fact,
compared to earlier 3D models that exclusively studied flat
substrates1,36–38 (with the exception of ref. 39 on fiber networks)
the elegant use of the phase field approach40 – at the same time
for the cell and for the surroundings it interacts with – allows to
model motion in, in principle, arbitrarily shaped and topologi-
cally non-trivial environments.

Results
Computational model. We first briefly describe the modeling
framework. The developed model is a non-trivial 3D extension of
the 2D phase field approach presented in ref. 2, known to describe
the subcritical onset of cellular motion41 and realistic cell shapes,
with model extensions being able to describe guided motion on
inhomogeneous substrates42,43 and lamellipodial waves44. The
approach is conceptually simple as it has only two dynamic
variables: first, the cell’s interface is described by the transition
region of a dynamic 3D scalar phase field ρ(r, t) ϵ [0, 1] for a
closed domain representing the cell. The phase field value ρ = 1
corresponds to the cell’s interior, ρ = 0 to the outside, and the ρ =
1/2 isosurface is identified with the cell membrane. And second,
inside this domain, a 3D vector field p(r, t) describes the mean
orientation of actin filaments and the degree of their parallel
ordering (direction and absolute value of p, respectively). Arbi-
trary substrates and confinement scenarios can be modeled by
specifying two additional, static phase fields: Φ(r) describing
steric exclusion and Ψ(r) restricting the actin generation to
regions close to the substrate. They have the same overall shape
but the characteristic decay length of the latter is chosen to be
larger, to allow for substantial actin inside the cell.

The cellular motility machinery is implemented via its basic
physical features in the dynamics of ρ(r, t) and p(r, t): actin is
generated close to the membrane (i.e., the phase field interface)
and induces a protrusion force via the polymerization ratchet
mechanism45, leading to an effective interface advection rate.
Together with the cellular adhesion to the substrate, and
assuming that actin polymerization is localized close to the
substrate and predominantly tangential to the local substrate
plane, the cell then spreads and flattens. Myosin motor-induced
contraction then induces a symmetry breaking46 and overall cell
polarity41, with a region of high p at the front identified as the
lamellipodium, and the cell moves with constant speed, see
Supplementary Movie 1 for a typical polarization event.

Specifically, the 3D model equations read

∂tρ ¼DρΔρ� ρð1� ρÞðδ½ρ� � σjpj2 � ρÞ
�αp � ∇ρ� κ∇Φ � ∇ρ� λρΦ2;

ð1Þ

∂tp ¼DpΔp� βΨ½ð1� θÞP̂ð∇ρÞ þ θ∇ρ� � τ�1p

�γ ∇ρ � pð Þp�Φ2p:
ð2Þ

In Eq. (1), Dρ determines the width of the diffuse interface (and
the cell’s surface tension47, see also ref. 48 for modeling more
realistic membrane features). The second term implements
relaxational dynamics in the phase field potential
F½ρ� ¼ R

f ðρÞd3r, where f ðρÞ ¼ R ρ
0ρ′ð1� ρ′Þðδ � ρ′Þdρ′. Since

the order parameter dynamics is non-conserved (see e.g. the
discussion in ref. 40), it needs to be supplemented by a volume
conservation. We chose a simple implementation via a global
constraint,

δ½ρ� ¼ 1
2
þ μ

Z
ρ d3r� V0

� �
: ð3Þ

Here 1
2 is the stationary point, μ the constraint’s stiffness and

the term in brackets is the difference between the cell’s current
volume and the prescribed (initial) volume V0. The term α p⋅ ∇ρ
accounts for the pushing force exerted by actin ratcheting against
the cell’s boundary, with α an effective velocity (i.e., force over a
friction coefficient with the substrate). Adhesion is implemented
on a coarse-grained level49,50 via the term κ∇Φ ⋅ ∇ρ with an
adhesion strength parameter κ, but explicit adhesive dynamics
can in principle be introduced42,51. The last term describes
excluded volume interaction, with a strength λ, via the potential
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λ
2

R
ρ2Φ2 d3r. More information on the last two contributions can

be found in refs. 47,50.
The polarization dynamics has three contributions from actin

turnover, see the first line of Eq. (2): a diffusion (or elastic) term, a
source term proportional to the parameter β (related to the actin
polymerization velocity) and discussed in more detail below, and
a sink term describing degradation of actin, e.g., via depolymer-
ization, with time scale τ being of the order of the actin turnover
time (typically seconds). For the cell to be able to polarize and
move, the front-back symmetry has to be broken. Two
mechanisms, based on key experimental observations46 and
associated to the action of myosin motors in the actin network,
were already implemented in ref. 2: a term σ|p|2 added to the
parameter δ in Eq. (1), that accounts for acto-myosin contraction
with contraction rate σ and that can be motivated by active gel
theory52. And a second term, γ(∇ρ ⋅ p)p, that models the presence
of an anti-parallel acto-myosin bundle at the cell’s rear2,41 and
explicitly breaks the front-back symmetry. Finally, the last term in
Eq. (2) explicitly suppresses p inside the substrate.

Let us now discuss the source term of actin polarization, i.e.,
the second term in Eq. (2). In lamellipodia, actin nucleation is
known to occur predominantly at the cell membrane, where
regulators such as Wiskott-Aldrich Syndrome protein (WASP)
and Arp2/3 are located30,31. This effect was modeled in ref. 2 via
localizing the actin source term at the cell’s interface by using the
phase field gradient ∇ρ. However, an important issue arises in
modeling 3D cell movement: while the projected 2D area of
spreading and moving cells has been studied extensively53, and
has been explained by the prevalent forces54 (involving protru-
sion, adhesion, traction, and membrane bending), it is to date
unknown what determines the thickness of the lamellipodium,
which typically always lies in the range 100–400 nm. Although
there exist some hypotheses, e.g., involving curvature-sensitive
membrane-embedded regulators of actin nucleation55, the
mechanisms remain speculative.

On the level of phenomenological description, we hence
employed the following strategy: actin polymerization is modeled
anisotropically with respect to the local tangential plane defined
by the substrate. We introduce the (tensorial) projection operator
onto the local tangential plane, P̂ ¼ Î � bn� bn with Î the identity
and bn ¼ ∇Φ=j∇Φj the normal vector to the substrate. P̂bn ¼ 0
holds and hence the term β½ð1� θÞP̂ð∇ρÞ þ θ∇ρ� in Eq. (1)
implements a polymerization rate of β in the tangential plane and
of βθ normal to the substrate. The parameter θ ϵ [0, 1] hence
governs the degree of this anisotropy, within the two limits of θ =
0 for polymerization exclusively in the tangential plane and θ = 1
for the isotropic case. The second main addition compared to
earlier 2D models is the assumption that the actin polymerization
rate decays with the distance from the substrate. This is
implemented via the phase field Ψ(r), and enters the actin source
term as a common factor. It is motivated by the fact that actin
polymerization relies on regulatory processes close to the
membrane, and has already been employed in a similar form
in ref. 1.

Let us briefly discuss the relevant scales and typical parameters.
Eqs. (1) and (2) are already written in rescaled units, as discussed
in ref. 2. We use 1 μm and 10 s as the typical length and time
scale, since then all activity-related parameters are of order one.
Namely, the typical actin depolymerization rate of ≈1s−1

and maximum actin polymerization velocity ≈0.1–0.3 μms−1,
i.e., ~20–60 monomers per second, amount to the used values of
1/τ1 = 0.1 and β = 1–3. We chose α = β/3 since the cell’s
interface movement should be smaller then the bare polymeriza-
tion velocity – not all polymerization events create propulsion,
and there is friction. Typical myosin motor speeds are of order

0.1–0.2 μms−1, implying σ and γ of order one. Note that the
maximum center-of-mass (c.o.m.) velocities of the modeled
cells – being a model outcome – are of order one and
hence correspond to the typical maximum speed of keratocytes
(0.1 μms−1)45. Typical parameter values are listed in the
Supplementary Table 1.

In the following we mainly discuss two distinct cell types: first,
ideal “lamellipodial-type” cells, whose polymerization kinetics lies
perfectly in the tangential plane defined locally by the substrate
(θ = 0). This type corresponds best to the well-studied
keratocytes, for which it has been shown that the actin network
in the lamellipodium is very close to two-dimensional56. With
sufficiently high adhesion strength to ensure the cell’s contact
with the substrate, both stationary and motile states can be
obtained when varying the remaining actin- (α, β) and myosin-
related (γ, σ) parameters. A cell of this type moving steadily on a
planar susbstrate is exemplified in Fig. 1a. The second cell type is
refered to as of (partial) “wall pushing-type”, having finite θ. For
this type, actin generated perpendicularly to the substrate is non-
negligible, leading to stronger contact of the cell with the
substrate, even in the absence of strong adhesion. Note that a
somewhat similar motility mode was considered in ref. 57. Again
the system is bistable with both stationary and motile states. We
however found that for the same acto-myosin parameters wall-
pushing cells are less motile.

Inspired by the plethora of recent experiments15–18,21–29, we
applied our 3D model to study cell migration in confinement
(slits and channels), its sensitivity to substrate curvature including
motion on fibers, as well as motion on planar substrates with
topographical features, see Fig. 1b–f for a summary.

Motion in vertical confinement. We first considered the generic
scenario of vertical confinement, i.e., a slit geometry, where the
cell is sandwiched between two co-planar walls17 and can
accommodate its shape and migration mode only in the quasi-2D
plane. For the upper wall, we investigated two different types:
either it has properties identical to the lower substrate, i.e., the cell
can adhere, spread and form lamellipodia (“adhesive wall”).
Alternatively, the upper wall is inert and just presents a steric
obstacle for the cell to which it can neither adhere nor form a
lamellipodium (“passive wall”). The latter can be easily modeled
by putting κ = 0 there and by attributing to the wall only a steric
field Φ and no actin regulatory field Ψ.

We investigated confined cell motion using the following
generic preparation protocol: a top wall (either active or passive)
was approached from above to a cell moving on the lower
substrate gradually, in a step-by-step fashion, letting the moving
cell accommodate to the new environment before approaching
further. To test whether the effect of the confinement is reversible,
after a strong confinement state had been reached, the upper wall
was retracted in a similar step-by-step fashion. This protocol is a
generalization of the classical cell compression experiment58 to
moving cells and could be experimentally realized employing
micromanipulation techniques, e.g. involving a magnetic
upper wall.

The most interesting scenario appears for strongly driven cells,
as exemplified for the lamellipodium-type cell in a symmetric slit
(i.e., with adhesive top wall) by the snapshots shown in Fig. 2a
corresponding to the red curves in Fig. 2b, see also Supplemen-
tary Movie 3. In this case, there is a window of gap widths
exhibiting a bistability of motile modes: for the same parameters,
the cell can attach to and form lamellipodia on both walls equally,
see the blue cell in Fig. 2a, with the cell speed increasing with
decreasing the slit width. Alternatively, the cell can attach only to
one of the walls (the lower one, as the top wall was approached),
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see the green cell in Fig. 2a and moves with a speed that is
independent of gap width and higher than for a cell attached to
both walls, due to a larger lamellipodium. Upon further
decreasing the gap width, finally the cell is forced to attach to
the top wall when the latter is sufficiently close. Consequently,
vertical confinement constitutes a geometry-induced motility
hysteresis loop: the motion of a cell in a spatially inhomogeneous
vertical confinement will strongly depend on the history of its
path. In contrast, if the wall is passive, this behavior is absent
(orange curve in Fig. 2b). Only for strong confinement the cell
speeds up a little as its lamellipodium, i.e., driven area, slightly
increases.

Wall-pushing cells show a similar overall behavior in vertical
confinement as lamellipodium-type cells. For the same driving
parameters as the respective lamellipodium-type cells, they are
however effectively less driven and hence less motile. Instead of
exhibiting hysteresis, sufficiently weakly driven cells rather get
stopped when starting to feel the upper wall, see the blue curve in
Fig. 2b. Upon further decrease in gap width, they can be induced
to migrate again. Apparently, for intermediate gap widths, the
upper wall represents a perturbation inducing a shape change
towards the third dimension (i.e., the thickness of the cell) that
interferes with the in-plane dimension of the cell and renders it
less motile. In turn, sufficiently thin slits squeeze the cell, and they
become more motile than on a single flat substrate: they can move
for lower values of the actin-associated driving since the strong
confinement enlarges the region of adhesion, the lamellipodium
and hence force generation. This can be further exemplified by
studying cells on a substrate below their threshold of motion.

Slowly approaching a second wall sets them into motion (see
Supplementary Fig. 1).

We also studied briefly the possibility of guiding cells by
spatially modulated slit widths, as shown in Fig. 1c. There, two
different cells, one of lamellipodium-type (green) and one of wall-
pushing type (red; both weakly driven), were steadily moving and
adhering to both plates, before encountering a smooth variation
in the distance of the walls, orthogonal to the direction of motion.
Interestingly, the lamellipodium-type cell is deflected to thinner
gaps while the wall-pushing one prefers wider gaps. The former is
easily understandable: the part of the cell in the narrower region
broadens the active front while the one in the wider region
reduces, hence the cell turns. The latter is more subtle: it appears
that the wall-pushing cell is somewhat pinned by the gap gradient
and that the broader lamellipodium on the thinner side runs
around this pinning point, leading effectively to a turn towards
the broader gap width, see Supplementary Movie 4 for details.

Effects of substrate curvature and cylindrical confinement. We
next quantified the motion of cells on curved substrates exhibiting
a single curvature direction (i.e., cylindrical symmetry), including
confinement in a tube and motion on a fiber. We later also briefly
discuss effects of Gaussian curvature. The signed substrate cur-
vature c = 1/R (with R the signed radius of curvature) is defined
as sketched in Fig. 3a: a cell moving on the outside of a cylinder
surface along the main axis corresponds to negative and a cell
moving inside a cylindrical tube to positive curvature.

Figure 3b displays snapshots of the respective cell shapes,
clearly showing that they are severely perturbed by the imposed
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Fig. 1 Multiplicity of cell migration modes in 3D surroundings. a A 3D cell migrating on a flat substrate. Shown is the ρ = 1/2 isosurface of the cell’s phase
field in green (and of the substrate’s in yellow), the distribution of the actin polarization field |p| as color-coded arrows and the direction of motion as the
green arrow. b Vertical confinement, i.e. motion in a slit constrained by two close-by walls. Cells show bistable/hysteretic behavior: for same parameters
but depending on the initial conditions (or history), cells can attach to only one of the walls or to both, leading to different shapes and velocities. c Cell
guidance by slit width: shown are two different cells, one of pure lamellipodium-type (green) and one of wall pushing-type (red), see the main text. Upon
encountering a modulation in slit width, the former cell is deflected to thinner gaps while the latter prefers wider ones. Color curves correspond to
trajectories (to fit both cells in the same picture, the red cell was moving double the time than the green one). d A cell moving inside a tube (a
microchannel with circular cross-section), attaining a bullet-like shape. e Both the cell’s velocity and shape strongly depend on the curvature of the
substrate it crawls on. f A cell spreading on (upper image), wrapping around and finally moving along (lower image) a thin fiber. See also Supplementary
Movies 1–8 for the dynamics in the different scenarios
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curvature. This is also reflected in the cell’s center-of-mass
velocity along the cylinder axis, as quantified in Fig. 3c: Inside a
tube (right part), cells move faster than on the flat substrate. In
contrast, on the outer cylinder surface they move slower and
finally get stopped (“stalled”) for a critical cylinder radius that
depends on the driving force, i.e., on the acto-myosin parameters.

Overall, cell speed increases with signed substrate curvature,
passing by the flat state. The linear dependence of the migration
speed V on the substrate curvature 1/R can be anticipated from
the following geometric arguments. Let us assume that the
migration speed V0 on the flat substrate depends linearly on the
width of the active lamellipodium front W, since the propulsion
force depends on the total number of pushing actin filaments.
The height h of the cell does not change upon slightly curving the
substrate, as verified numerically. Assuming further that the
length of the cell (in the direction of motion) remains
approximately constant, volume conservation then implies that
the cell’s cross-sectional area (normal to the direction of motion)
does not change. Let us approximate for simplicity the cell’s
cross-section by a rectangle, S =Wh. On a substrate with positive
radius of curvature R, i.e., for a cell inside a channel, this rectangle

transforms into a cylindrical shell segment of cross-section
~S ¼ ~W=R½R2=2� ðR� hÞ2=2� ¼ ~Wh½1� h=ð2RÞ�. Using S ¼ ~S,
and solving for ~W for R � 1 we obtain �W ¼ W½1þ h=ð2RÞ� and
hence the migration speed can be given as

VðRÞ ¼ V0 1þ h
2R

� �
: ð4Þ

This relation is in excellent agreement with the simulations, as
exemplified in Fig. 3c for the weakly driven lamellipodium-type
cell by the black line, using the measured velocity and height of
the cell on the flat substrate.

For sufficiently high positive curvature, corresponding to thin
capillaries, cells adhere and form lamellipodia all around. This
corresponds to the cylindrical confinement inside a microchan-
nel, restricting the motion to quasi-1D as studied e.g. in refs. 15,16.
In the case of lamellipodium-type cells, at a certain positive radius
of curvature a competition starts between the perturbed crescent-
shape states, as observed for lower curvature, and bullet-like
shapes with cylindrical symmetry. This competition induces more
complex dynamics, as discussed below. Finally, for even thinner
tubes, the bullet-shape wins and the cell’s speed is increasing
again with signed curvature. Wall-pushing cells also switch from
crescent-like to bullet shape, close to the transition, however, they
typically become arrested.

In the regime of complex dynamics marked in Fig. 3c, the cell
apparently cannot decide which shape to adopt – the perturbed
crescent or the bullet. Consequently, the cells do not move on
average, but as they remain active they induce shape and position
oscillations inside the tube. In Fig. 4a the center of mass position
in z-direction together with a measure for the axial length of the
cell were tracked. The former oscillates, corresponding to
alternating crescent shapes attached to the top and the bottom
of the channel. In between these extremes, however, the two
wings of the crescent cells become unstable and fuse to a more
bullet shape, giving rise to double period oscillations of the axial
extension of the cell. This can be understood from the shapes
during half a period shown in Fig. 4b. The detailed dynamics is
sensitive to the specific initial conditions. The fact that the weaker
driven wall-pushing cell did not display oscillations hints at the
existence of a threshold value of activity for the phenomenon. For
longer times even more complex oscillations can emerge,
involving corkscrew-type deformations, see Fig. 4c.

Motion on fibers. Coming back to negative signed curvatures, we
also studied cell motion on fibers, as experimentally studied for
instance in refs. 27,28. As already shown in Fig. 3, cells can move
on fibers with radii larger than their unperturbed size. They can
even wrap around sufficiently thin fibers, see Fig. 1f, and move if
perturbed by adding a small initial polarization. Interestingly, we
found a generic alignment effect: cells initially polarized obliquely
to the fiber axis tend to align their direction of motion with the
axis. To obtain quantitative insight, we studied the alignment
time τ as a function of the fiber radius: cells were first allowed to
spread on fibers of different radii and then motion was initiated
with a substantial off-axis component (typically 50% of the final
axial velocity). Figure 5 displays results for wall pushing-type
cells. The alignment rate (inverse alignment time; obtained by
exponential fits to the off-axis velocity component) is roughly
linear in fiber curvature for the currently accessible range of
curvatures – note that a strict validation down to c→ 0 would
need excessively large simulation boxes. For the highest curvature,
c = 1/R = −0.06, the found value of τ ~ 800 roughly corresponds
to the time the cell needs to move 20–30 times its own size.
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Fig. 2 Quantification of the effects of confinement on cell motility.
a Snapshot of two cells moving in a slit between two flat walls at distance d.
b Analysis of the cell velocity. Two scenarios for the upper wall were
considered: either its properties are identical to the lower wall, i.e. cells can
adhere and form lamellipodia (“adhesive wall”, as shown in a), or it is inert
(“passive wall”, only steric exclusion). For large gap widths the cell attaches
only to one wall and is not influenced by the confinement. For small gap
widths d and adhesive walls (red and blue curves), cells attach to both
walls, with the speed increasing with increase of confinement. Interestingly,
in the case of strongly driven cells and adhesive top wall, there is a
hysteresis loop (red curves). For the passive wall, this behavior is absent
(orange curve). Less-driven cells can be stopped when approaching the
upper wall (blue curve). Parameters: α = 1.5, β = 4.5, γ = 0.4, σ = 0.6 for
all cells. Red and orange curves correspond to lamellipodium-type cells with
θ = 0, κ = 8; blue curve to a wall-pushing cell (effectively less driven) with
θ = 0.2, κ = 1; other parameters see Supplementary Table 1
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Effects of Gaussian curvature. We next studied the effect of a
finite Gaussian curvature cG ¼ 1

R1
� 1
R2
, i.e., of substrates displaying

two non-zero principal curvatures 1/R1, 1/R2. The simplest case is
a sphere (having R1 = R2 and cG > 0), whereon cells are found to
circle around with constant velocity. A more interesting case is
the “sphere-with-skirt” structure recently proposed in ref. 26,
which we studied by depositing cells on the top of the structure
(cG > 0, Fig. 6a), on the skirt (cG < 0, Fig. 6b), as well as on the
transition region (Fig. 6c). Experimentally it was found that cells
can not spread on the top, an effect attributed to stress fibers,
which are stiff fibers constituted of acto-myosin. Instead they
were found to spread preferentially in the region where cG
changes from positive to negative and to circle around the
structure. The first effect is not captured by our model, due to the
neglect of modeling the stiff stress fibers, i.e., cells deposited on
top spread as shown in Fig. 6a and prefer to stay there upon
perturbations. However, cells indeed prefer the region where cG
changes and then preferentially move along the azimuthal
direction, see Fig. 6c. If deposited on the region with cG < 0, cells
typically are repelled and move away from the structure as shown

in Fig. 6b. Nevertheless, if sufficiently polarized and heading
towards the structure, they can be “captured” by and then circle
around it.

To sum up the curvature effects, they can all be understood
along the line of arguments that led to Eq. (4). Namely, with the
signed substrate curvature the cell-substrate interaction increases
and concomitantly also the cell’s actin polarization field is
enhanced. In other words, cells spread more easily on positive
curvatures (the inside of capillaries) than on negatively curved
substrates (the outside of fibers), and hence the direction of
motion aligns in the direction of the maximum signed curvature.

Specifically, for cells moving on the outside of fibers, the
maximum curvature is directed along the principle axis (as the
non-zero curvature along the circumference is negative) and
hence motile cells align along that axis. For cells inside a capillary,
on the other hand, the maximum curvature is along the
circumference and we indeed find a preference of cells to circle
around the cylinder wall. This may also provide insight into the
complex dynamics regime, occurring for intermediate curvatures
as shown in Figs. 3c and 4. There, two active fronts are circling
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against each other and if they “collide” head-on, shape
oscillations are observed as shown in Fig. 4. Note that the level
of driving is important again, because the (comparatively) weaker
driven, wall-pushing type cells simply stop, not exhibiting shape
oscillations. This is to some extent analogous to the behavior in
vertical confinement, see Fig. 2b, where the two motile branches
for strongly driven cells exhibit bistability while weaker driven
cells are stopped. Finally, in the “sphere-with-skirt” geometry, the
Gaussian curvature varies from positive (spherical cap) to
negative (skirt). The skirt has one positive curvature, the other
principal curvature (with respect to the symmetry axis) is
negative and increases to zero with the distance from the
spherical cap. Hence, there is an increase of mean curvature in the
direction of the widening skirt (pointing away from the

structure), explaining why cells generally move away from such
structures.

Guiding cells by substrate topography. The 3D modeling fra-
mework also allows to study cell motion on essentially flat sub-
strates exhibiting simple topographical features, complementing
experimental and theoretical analyses of cell guidance on
microprinted adhesive patterns42,59,60. Although there are many
possible surface features, we focused here on a type that has been
extensively studied experimentally21–25, namely periodic grooves/
ridges on the substrate’s surface. Experimentally, such substrates
are supposed to model the sub-cellular topography of extra-
cellular matrix fibers, often serving as directional cues for moving
cells61.

The surface pattern was created by allowing a square wave in
the substrate’s phase field to equilibrate for a few time steps
before fixing the resulting smoothened pattern. The amplitude
and the wavelength of the pattern were varied, ranging from small
to similar compared to the height and planar extension of the cell,
respectively. Cells were initialized at a 45° angle to the periodic
grooves and then characterized by their attained direction of
motion as shown in Fig. 7a.

We found that long wavelength patterns (but still of sub-
cellular size) led to perfect alignment of motion of both
lamellipodium- and wall pushing-type cells along the grooves,
see the red circles in Fig. 7a. In addition, cells elongated on the
pattern in the direction of motion, see Fig. 7b. The alignment was
found to be rather insensitive to the (sub-cellular) pattern
amplitude, and it was typically fast, i.e., the cell only needed to
move few times its size. In contrast, patterns of smaller
wavelengths led to practically no alignment for both cell types
and all studied amplitudes (black squares), and also the shapes
were less affected. Interestingly, in between there is a wavelength
region (blue triangles) where wall pushing-type cells align, albeit
very slowly, perpendicularly to the grooves as shown in Fig. 7c.
Concluding, in general, cells prefer to align along grooves
comparable to their size. They are “attracted” by the grooves
and rather “dislike” the barriers.
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Discussion
The framework developed and analyzed here is a generic physical
model for lamellipodium-based motion. It lacks, e.g., specific
regulation mechanisms as well as the cell nucleus (which can
influence motion in confinement8) and adhesion is taken into
account only on the level of substrate friction. Moreover,
experimentally observed migration behaviors depend on the
specific cell type and even the phenotype. Direct comparisons to
experiments must hence be taken with caution. It is nevertheless
constructive to confront the general trends found in the generic
framework to available experimental evidence.

Cells confined between two co-planar walls have been inves-
tigated in refs. 17,18. However, the focus was on the transitions
from mesenchymal (i.e. adhesive, lamellipodial) to amoeboidal
(non-adhesive) motion. The transitions were induced by reducing
the adhesiveness in a confined surrounding, favoring the latter
motility mode. A detailed study of lamellipodium-based motion
in varying confinement at constant adhesiveness is lacking to
date. The non-trivial results obtained already in our simple
physical model, namely bistability and guidance (see Figs. 1c and
2) strongly suggest that it is worthwhile to carry out such a study.

Cells confined in microchannels have been investigated in
refs. 15,16, albeit with a focus on invasiveness and integrin-myosin
interplay, respectively. In both experiments, the channel cross-

section was rectangular due to microfabrication restrictions.
Nevertheless, cells adhered and formed lamellipodia all around
the channel16, as in our model. Concerning cell speeds, a velocity
increase by 30% in the channel compared to the flat substrate was
found for wild type CHO cells16. The increase was much more
pronounced when α4/paxillin binding was negatively regulated,
resulting in amoeboidal motion which is, however, beyond the
scope of our model. Amoeboidal motion was probably also
induced by the confinement in ref. 15 studying pancreatic cancer
cells, where a velocity increase by almost a factor of three was
found. The generic model suggests a typical velocity increase by
40–50%, see Fig. 3c. This increase is a consequence of the
confinement-induced shape change and the concomitant reor-
ganization of the active lamellipodial front. Consequently, the
experimentally observed increase could, at least in part, be traced
back to the physical interaction between the environment and the
cell and its internal actin structure.

Cell motion on fibers of various sizes has been experimentally
studied for instance in refs. 27–29. The early study in ref. 27

investigated various cell types on fibronectin covered glass slides
compared to thin fibronectin fibers deposited on glass slides. Little
influence on cell speed was found, but the persistence of motion
was strongly increased by the presence of the fibers. This is con-
firmed by very recent experiments29 investigating the alignment of
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Fig. 6 Effect of Gaussian curvature on cell spreading and motility. A ‘sphere-with-skirt’ surface was studied as recently suggested26. a On the top, where cG
> 0, a cell can spread but will not move if perturbed. b On the ‘skirt’, where cG < 0, cells are repelled, i.e., polarize and move away from the structure. c In
fact, as in experiments, cells prefer the region in between, where they can easily spread and circle around the structure
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fibroblasts (albeit without tracking the motion explicitly) on highly
and weakly curved cylinders. There it was found that cells align
more efficiently on cylinders with radii of the order of their own
size compared to larger radii. These results are in agreement
with the alignment effect found in the model and shown in Fig. 5.
Collective cell migration on fibers has been also studied28.
Although different from single cell motion, an arrest of motion for
submicron fibers was observed. Since at this scale the front con-
sists of a single cell, this arrest may be related to the one observed
in the model (see Fig. 3c) for small fiber radii.

The effect of Gaussian curvature, see Fig. 6, was already criti-
cally discussed above in view of the recent experiments of ref. 26.
For a better reproduction of the experimentally observed beha-
vior, the model has to be augmented by actin stress fibers and
possibly the cell’s nucleus.

Cell motion on periodic grooves or ridges on the surface of planar
substrates has been extensively studied experimentally21–25. The
alignment along the grooves as obtained in our model for patterns
with long but still sub-cellular wavelengths (see red circles in Fig. 7a)
has been found in all these experiments. In addition, the elongation
of cells along the direction of motion (see Fig. 7b) was found in
refs. 24,25 for both T cells and Dictyostelium cells. Nevertheless, the
perpendicular motion could also be observed implying less elon-
gated cells25, as recovered by the model (Fig. 7c). Ref. 25 even
determined a “contact guidance efficiency” that first increased with
the pattern wavelength before decreasing again when ridges become
too distant for a single cell to sense. Although the model displays fast
alignment (within a few cell sizes traveled) for long but sub-cellular
wavelengths, which is the optimum range obtained in ref. 25, the
time scale is quite sensitive to the actin parameters (especially θ).
Hence, on the modeling side, the model should be tuned to a spe-
cific cell type to become quantitative. On the experimental side, it
would be very interesting to include systematic variations of the
pattern’s amplitude, to finally obtain a full picture of the contact
guidance mechanism and its determining factors.

Let us also briefly compare our modeling framework to pre-
vious 3D cell migration modeling efforts. Previously, a two-fluid
framework37 had been developed that allowed to reproduce
shapes reminiscent of both fibroblasts and keratocytes36. Starting
from a disc-shaped cell one had, however, to assume a certain
fraction of the cell’s circumference to be (and always remain)
protrusive. A more recent approach1 used active gel theory, but
also had to assume a predefined leading edge. Hence while both
models are more detailed concerning the internal cellular
dynamics, the cell symmetry was broken (and hence cell polarity
induced) by construction. Contrary, in our model, the equations
of motion are completely symmetric and symmetry breaking
emerges spontaneously in a self-organized way, as also recently
confirmed by the occurrence of shape waves in a 2D version of
the model44. Recently, a finite-element framework similar to
ref. 36, but including adhesion, was used to model pseudopod-
based migration38. All these works only investigated motion on
flat substrates, but possibly would in principle allow for a
detailed analysis of motion in confinement, curved substrates,
and topographical features, as performed here, which would be
interesting to critically assess our findings. Concerning motion in
3D fiber matrices, there are already a few modeling studies on
ameboidal motion. In ref. 62, a hybrid agent-based/finite-element
model was developed that includes pseudopod formation and
even blebbing (via variable actin-plasma membrane linkage),
while ref. 39 used a phase field approach using multiple internal
density fields and especially an actin activator located but dif-
fusing on the cell’s surface. These works are clearly com-
plementary to our work, as they focus on activated pseudopods
instead of well-defined lamellipodia. It would be very interesting
to study within our model cell motion on an ensemble of few

fibers, to compare the two distinct motility modes in this
biologically relevant setting.

To conclude, we have demonstrated that the developed three-
dimensional computational model is capable to describe
lamellipodium-driven crawling motion of cells in – in principle –
arbitrarily shaped surroundings and for a variety of cell types.
Additionally, in contrast to earlier 3D models1,36–38, the approach
does not need to pre-define protrusive regions in the cell, as it
inherently displays bistability between immobile vs. moving
states2. We investigated in depth several well-defined and
experimentally studied scenarios of geometrical perturbation
during cellular motion: such as a systematic variation of the
substrate’s curvature (from cells on thin fibers to the movement
inside a capillary), vertical confinement between two plates, as
well as motion on topographically structured substrates. The
discovered modulations in cell behavior and the resulting guiding
principles of motile cells are due to purely physical effects (con-
finement, curvature) and their interplay with the self-organized
shape and acto-myosin machinery. This study will therefore be
fruitful in helping to differentiate such simpler effects from
more complex cellular response due to biochemical cues and
regulation.

The model was intentionally kept simple. We have already
shown for the two-dimensional case that the modeling
approach is modular63, hence explicit adhesion dynamics and
substrate deformation42,43, global feedback on actin due to
membrane tension48, as well as regulation (e.g., via Rho
GTPases64,65) or additional components involved in the moti-
lity66 can be added without too much complication. Our
approach may pave the way to study other 3D modes of motion
beyond lamellipodia in the future, which are often triggered by
confinement8,67. For instance, a confinement-induced transi-
tion of slow mesenchymal cells to a fast ameboidal motion has
been found in the slit geometry17. Modes of 3D cellular motion
distinct from lamellipodia also comprise blebbing68, osmotic
force69 (i.e., flow of water through the cell), as well as pseudo-/
lobopodial motion32,39,62 or the formation of invadopodia70.
The latter is especially interesting as they allow cells to modify
their surroundings and hence feedback on the confinement8,61

not only by deforming, but also by chemically degrading the
extracellular matrix71. Another route is related to the cell
nucleus affecting migration, especially when the confinement or
radius of curvature becomes comparable to the nucleus size.
The nucleus can be included into the computational framework
via an additional passive phase-field, as done in 2D in ref. 72. In
fact, including a deformable nucleus for motion in complex 3D
environments would be a worthwhile endeavor for future
investigations. Ultimately, motion inside 3D networks should
become accessible73, similar as developed in ref. 39 for ame-
boidal motion employing pseudopods. Also for lamellipodial
motion, this situation is arguably the most abundant and gen-
eric scenario for 3D motility. There, the mesh size vs. the size
and deformability of the nucleus present new limiting steps on
motion8, including feedback between motility and the genetic
program of cells.

Methods
Numerical method and model validation. The Eqs. (1) and (2) are solved on a
cubic, typically 2563, grid with an operator split Fourier pseudo-spectral code on
graphical processing units (GPUs) using the CUDA programming language. The
static substrate fields, Φ and Ψ are predefined beforehand. The simulation data
were rendered and displayed using ParaView, a 3D data analysis and visualization
application.

To validate the model, we studied the spreading dynamics, see Supplementary
Fig. 2, and the onset of motion on flat substrates, see Supplementary Fig. 3. The
latter reproduces the 2D behavior described in ref. 2, see also Fig. 1a). More details
on the model implementation and testing can be found in Supplementary Note 1.
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