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Room temperature continuous-wave excited
biexciton emission in perovskite nanoplatelets
via plasmonic nonlinear fano resonance
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Pengchong Liu1,2, Xinyu Sui1,2, Xianxin Wu1,2, Rui Wang1, Bo Peng 6, Haizheng Zhong 7, Guichuan Xing8,

Xiaohui Qiu1,2, Tze Chien Sum 9 & Xinfeng Liu 1,2

Biexcitons are a manifestation of many-body excitonic interactions, which are crucial for

quantum information and computation in the construction of coherent combinations of

quantum states. However, due to their small binding energy and low transition efficiency,

most biexcitons in conventional semiconductors exist either at cryogenic temperatures or

under femto-second pulse laser excitation. Herein, we demonstrated strong biexciton

emissions from CsPbBr3 nanoplatelets with continuous-wave excitation at room temperature

by coupling them with a plasmonic nanogap. The exciton occupancy required to generate

biexciton was reduced ~106 times in the Ag nanowire–Ag film nanogaps. The extremely large

enhancement of biexciton emissions was driven by nonlinear Fano resonance between

biexcitons and surface plasmon cavity modes. These results provide new pathways to

develop high efficiency non-blinking single photon sources of biexciton (with spectral filter for

biexciton), entangled light sources, and lasers based on biexciton states.
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Lead halide perovskites, with their outstanding carrier
transport characteristics, high emission quantum yields,
tunable bandgaps, and large absorption coefficients1–4, have

attracted considerable interest for applications across a range of
technologies from solar energy conversion1,2,5 to light-emitting
diodes (LEDs)6. Recently the energy conversion and LED effi-
ciencies of lead halid perovsktes reached 23.2% and 20.7%,
respectively7,8. In perovskites, electrons and holes are confined to
inorganic [PbX6]4− (X= Cl, Br, I) octahedral networks, which
leads to enormous Coulomb interactions between electrons and
holes and thereby, strong excitonic effects9,10. In low-dimensional
perovskite structures, i.e., nanocrystals (NCs) or nanoplatelets
(NPLs), the electron–hole interactions are further enlarged as a
result of the increased spatial overlap between electrons and
holes. For instance, the exciton-binding energy of CsPbBr3 bulk
crystals is 40 meV11, while the value increases to 120meV in
NCs12. Furthermore, CsPbBr3 perovskite NCs exhibit high pho-
toluminescence (PL) quantum yield of ~90%13. The large exciton-
binding energy and high-quantum efficiencies of CsPbBr3 per-
ovskite NCs hold the key to the development of excitonic and
quantum devices due to their stable excitons at room tempera-
ture. Furthermore, excitons in perovskite NCs may be coupled
with free carriers, forming trions14. A trion can decay to a single
electron (hole) by the emission of circularly polarized light, and it
can achieve population inversion and laser action. The trion state
shows a lower threshold compared with the neutral state, which
requires a higher excited state to achieve optical gain. This is
advantageous to realize low-threshold lasers15.

A biexciton is formed by two free excitons in condensed
exciton systems16, two photon absorption17, or excitation from
the single exciton state to the biexciton state. Biexcitons are of
fundamental interest and practical importance for quantum
information and computation due to their overwhelming
advantage for constructing of coherent combinations of quantum
states. The coherent control of biexcitons via their four physically
distinguishable quantum states can be applied to basic quantum
operations, i.e. two-bit physical quantum and conditional quan-
tum logic gates18–20. If fine structure splitting of the exciton state
is smaller than the natural linewidth, the two indistinguishable
radiative decay pathways of a biexciton can render a source of
polarization entangled photon pairs. Furthermore, the nonlinear
optical nature of the biexciton process can generate probabilistic
number of entangled-photon pairs per excitation cycle21, which is
similar to the standard entangled source parametric down con-
version22 and four-wave mixing sources23. Moreover, light
sources based on biexciton may achieve no blinking and high
saturation intensity24,25. These intrinsic outstanding physical
properties make biexciton interesting for inherent and coherent
light sources including lasers, light emitting diodes, etc.26,27. Till
now, biexcitons have been realized in semiconductor hetero-
structures28, NCs26, and two-dimensional semiconductors16,29,
etc. Due to the small biexciton-binding energy and large Auger
effect, biexcitonic effects have only been realized either under
intense pumping by short pulsed lasers (~MW/cm2) or in cryo-
genic conditions, which severely limits their practical applica-
tions. Resonant excitations can increase the probability of
biexciton transition. For example, in quantum wells, biexciton
emission was observed under a continuous wave (CW) excitation
beam with a power of ~70 mW/cm2, but only below liquid helium
temperature due to the small biexciton-binding energy30,31. So
far, CW excitation of biexciton at room temperature, which has
fundamental practical significance is extremely challenging.

Plasmonic nanogap structures have been extensively explored
in quantum electromagnetic dynamics due to their extraordinary
capabilities for tailoring strong and weak light–matter interac-
tions in the deep-subwavelength regime32–34. In the last decade,

plasmonic nanogap have been widely used to enhance a variety of
linear and nonlinear optical processes including emissions, hot
carrier generation, Raman, high harmonic generation, etc.35–38.
Near a metal structure, the increasing local density of states in a
plasmonic nanostructure can shorten the fluorescence lifetime
and greatly suppress Auger recombination, even to the point
where Auger recombination is negligible39. When coupled to a
metal structure, quantum dots (QDs) show super-Poissonian
statistics of photon emissions, which is different from the beha-
vior of QDs on quartz substrates that exhibit photon anti-
bunching as single quantum emitters40. In this case, QDs exhibit
strong photon bunching which leads to multiexciton emissions41.
This provides a way to achieve biexciton emissions with a sig-
nificantly lower pump energy, which consequently highly sup-
presses the biexciton Auger recombination with decreasing pump
density42–44. The interactions between plasmons and QDs have
been widely discussed41,45,46. Surface plasmons are regarded as
continuous energy states while quantum dot excitations are dis-
crete energy levels. The coupling between continuous and discrete
energy states leads to Fano effect47,48. With increasing incident
light intensity and enhanced coupling strength, the two-photon
process will take the place of a single photon process which leads
to nonlinear Fano effect45,49.

In this work, we demonstrate strong biexciton emissions from
CsPbBr3 NPLs with continuous-wave excitation at room tem-
perature, and the biexcitonic behavior is validated through
experiments and simulations. By utilizing a Ag nanowire-Ag film
nanogap structure, the exciton occupancy for biexciton emissions
of CsPbBr3 NPLs is reduced ~106 times. The extremely large
enhancement of biexciton emissions is attributed to the nonlinear
Fano resonance between the biexciton and surface plasmon cavity
modes. Our experimental results provide new pathways to
develop high efficiency non-blinking single photon sources with
spectral filtering of biexciton emission, entangled light sources,
lasers, and high-efficiency LED based on biexciton states.

Results
Schematic of biexciton and plasmonic structure. Figure 1a
shows the energy level diagrams for the excitation and decay of a
single exciton. The single exciton bright state can decay to the
ground state by emitting one photon, while the dark state decays
to the ground state mainly by nonradiative processes. Two states
are coupled by a spin–flip process. For perovskite NCs, the dark
state exhibit microsecond-order decay times with a lower
energy50. The dark state energy may be higher than that of the
exciton due to the large Rashba spin-orbital effect51. Figure 1b
shows the energy level diagrams of a biexciton. Biexciton is
composed of two bright excitons and can decay to either of two
single exciton states (bright state) accompanied by the emission of
one photon32. The biexciton emission energy ħωxx is determined
by the energy gap between the biexciton energy, Exx and single
exciton emission Ex via ħωxx= Exx‒Ex. Therefore, when two
excitons bind together to form one biexciton, the energy of the
whole system decreases by Δxx= ħωx‒ħωxx, which is the so-called
biexciton-binding energy. Figure 1c shows the two processes for
the plasmon-enhanced biexciton state: NPLs absorb one
electron–hole excitation to the exciton state (I) and then reach the
biexciton state (II) by absorbing another one, while the
electron–hole excitations in metal relax to the ground state. The
plasmon excited by optical pumping decay by two following
channels: (1) via transformation into photons and (2) via non-
radiative decay into electron–hole excitations. The latter fall into
two categories: intraband excitations and interband excitations52.
As the dephasing time of perovskite is much longer than silver
nanowire53, electron–hole excitations in plasmonic cavity decay
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and perovskite NPLs obtain the energy. The resonant effect
between the plasmonic cavity and the perovskite biexciton energy
extensively promote excitation cross-section of biexciton, which
leads to an increased biexciton transition. The electron–hole
excitations in metallic material loses energy via electron–phonon
coupling on a picosecond time scale54. The Fano resonance can
be set up within 10 fs which is much faster than electron–hole
excitations decay time in plasmon55. Our designed structure is
shown in Fig. 1d, which is a sandwiched structure of silver (Ag)
nanowire/NPLs/Ag film. A thin layer of SiO2 and perovskite
NPLs were coated onto Ag film step by step. SiO2 was used to
control the gap width dG between the Ag nanowire and film and
also prevent the perovskite NPLs from PL quenching nearby
metal surface. To reduce the scattering and radiation losses in the
plasmonic nanogap due to surface discontinuity, the growth
condition of the SiO2/Ag film was optimized with a surface
roughness ~1.1 nm (Supplementary Note 1). Figure 1e shows the
schematic of the biexcitons of CsPbBr3 PLNs in the plasmonic
nanogap. Perovskite NPLs (Supplementary Note 2) were depos-
ited onto the SiO2 layer by solution-processed spin-coating
methods. To isolate the perovskite NPLs with Ag nanowire, the 4-
Methyl-1-acetoxycalix[6]arene (4M1AC6, 0.5% in chlor-
obenzene) polymer film was spin-coated onto the CsPbBr3 NPLs.
The thickness of the perovskite NPL layer and polymer film was
13 nm, as measured by ellipsometry (Supplementary Note 3). A
cross-section SEM image (Fig. 1f) shows that the perovskite NPL
layer was uniform in scale of millimeters.

Crystal structure of perovskite NPLs. Transmission electron
microscopy (TEM) images of the CsPbBr3 NPLs are presented in
Fig. 2a. The dispersed CsPbBr3 NPLs had an average lateral size
of 30 nm. HRTEM images of the CsPbBr3 NPLs in Fig. 2b,
combined with single photoluminance (PL) peak in solution

(Supplementary Note 4), confirms that the CsPbBr3 NPLs pos-
sessed good crystallinity. The Fourier transform diffraction spot is
illustrated at the upper right corner, which shows the perovskite
NPLs cubic crystal structure with a 5.92 Å lattice constant. X-ray
diffraction (XRD) patterns within the 2θ range of 10–50° were
recorded at room temperature and are shown in Fig. 2c. The XRD
pattern of the CsPbBr3 NPL show strong diffraction peaks, which
were assigned to the pure cubic crystal structure13 consistent with
the HRTEM Fourier transform diffraction spot. The thicknesses
of the CsPbBr3 NPLs are shown in Fig. 2d with the atomic force
microscopy (AFM) image on SiO2/Si substrate. A single CsPbBr3
NPL was characterized in Fig. 2e with a height ~4 nm and a
lateral size ~30 nm corresponding to the TEM lateral size shown
in Fig. 2b. Thickness statistics of the CsPbBr3 NPLs are shown in
Fig. 2f with an average thickness ~3.8 nm and an exciton-binding
energy of ~120 meV (Supplementary Note 5). Combined with the
excitonic Bohr radius of 7 nm13, the NPLs exhibited a strong
confinement in the z direction.

Cavity-coupled perovskite NPLs fluorescence. To probe the
biexciton effect in perovskite NPLs, PL of the perovskite NPLs on
and off the plasmonic nanogaps was performed with a CW laser
(Fig. 3, wavelength: 405 nm; spot diameter: 2 μm). The PL spec-
trum far from the plasmonic nanogap (P1, blue line) was assigned
to single exciton recombination of CsPbBr356. It shows a single
symmetric peak located at 500 nm, which corresponds to a free
exciton when the excitation power P is 1.6 μW. In contrast, on the
nanogap (P2, red line), a new peak arouse at 520 nm with an
intensity much higher than that of single exciton emission.
Although the nanowire is much smaller than the excitation spot
diameter. Two obvious phenomena can be seen: (1) the strong
biexciton emission is observed, which comes from the perovskite
NPLs in the plasmonic cavity due to nonlinear Fano effect; (2) the
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Fig. 1 Schematic of biexciton and formation process. a Schematic diagram of exciton and biexciton transitions. Exciton has a bright state which can arrive in
the ground state by radiation or non-radiation transitions. The corresponding dark state coupled though a spin–flip process arrives in the ground state
mainly by non-radiation transitions. The dark state energy may be higher than that of the exciton due to the large Rashba spin-orbital effect. b The biexciton
levels are formed by a four-level system: biexciton level, two bright exciton levels, and ground state. The two bright exciton levels are separated by fine
structure splitting. The biexciton decays through a cascade process of either emitting two horizontally or vertically polarized photons. c Schematic diagram
of biexciton formation process with nonlinear Fano effect. Nanoplatelets (NPLs) absorb one electron–hole excitation to the exciton state (I) and then reach
the biexciton state (II) by absorbing another one, while the electron–hole excitations in metal relax to the ground state. d Schematic view of the structure.
The cavity is composed of a Ag nanowire and Ag substrate separated by a SiO2 gap of 5 nm and perovskite nanoplatelets. e Schematic view of the exciton
and biexciton in the cavity. The NPL is covered with 4-Methyl-1-acetoxycalix[6]arene molecular. f Cross-sectional scanning electron microscope (SEM)
image of the sample. The scale bar is 20 nm
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exciton emission signal on silver nanowire is about three times
(Fig. 3) than that off nanowire, which is attributed to the per-
ovskite NPLs in the plasmonic cavity area due to strong field
enhancement. These results suggest that the plasmonic nano-
cavities yield a strong effect in the biexciton emission process (the
corresponding linear coordinate PL spectrum is shown in Sup-
plementary Note 6). The energy difference between the single
exciton (500 nm, 2.480 eV) and new emission peak (520 nm,
2.385 eV) was ~95 meV, which is almost the same as the

biexciton-binding energy of CsPbBr3 quantum dot reported
previously (~100 meV)27.

Power law of perovskite NPLs PL integral intensities. Under
full thermal equilibrium conditions of the biexciton recombina-
tion process, the emission intensity of biexciton Ibx is propor-
tional to the square of the single exciton emission intensity
Iex57,58. And biexciton lifetime is about half of single exciton
lifetime. Excitation power-dependent PL and time-resolved PL
(TRPL) spectroscopy were conducted to confirm the occurrence
of biexciton. Figure 4a, b shows the power-dependent PL spectra
on and off the Ag nanowire on the Ag film, respectively. Figure 4c
shows the integrated emission intensity of exciton (Iex) and
biexciton (Ibx) as a function of the fluence intensity P. As the
pumping power increased from 20 to 130 μW, the PL spectrum
away from the plasmonic nanogap (Fig. 4a) showed one emission
peak at 500 nm with the intensity I exhibiting a linear dependence
on the pumping power P (Fig. 4c, purple), which is ascribed to
single exciton recombination. However, on the plasmonic nano-
gap, a 520 nm peak due to biexciton emissions emerged, with the
intensity Ibx growing more rapidly than that of the single exciton
(Fig. 4b). Although the biexciton emission peak onset emerged
when P > 100 mW/cm2 (0.5 μW, ~20 μm) (Supplementary
Note 7), we performed emission spectroscopy with P > 500W/
cm2 (20 μW, ~2 μm) to lower the fitting error, when separating
the power dependence of the biexciton emission from that of the
single exciton emission. Figure 4c shows the integrated emission
intensity of the exciton (Iex) and biexciton (Ibx) as a function of
the fluence intensity. The power dependence of the biexciton
emissions could be described adequately by a superlinear function
with a power law of k= 1.83. The power law of the biexciton
(1.83) was about 1.91 times greater than that for the single exciton
(0.96), strongly suggesting the occurrence of biexciton emissions.
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Lifetimes of excited states. Further, TRPL spectroscopy was
conducted to probe the exciton and biexciton dynamics. Quan-
titatively under the condition of thermal equilibrium, the time
evolution of the exciton and biexciton can be modeled with the
transition function59 nbx � n0bxe

�2t=τex , where exchange interac-
tions between excitons with different spin are ignored. In other
words, the biexciton decay rate is indeed about twice that of single
exciton, as suggested in bulk semiconductor60, QDs59, quantum
wells61, and 2D semiconductors62. Figure 5a, b show the TRPL
spectra of the CsPbBr3 NPLs on (a) and off (b) the plasmonic
nanogap. To avoid any biexciton effects away from plasmonic
nanogap under high pumping conditions, the excitation fluence
of the femto-second pulsed laser was ~0.1 nJ/cm2, and thereby,
the PL spectra showed only single exciton emission. The single
exciton recombination curve could be well fit by a single expo-
nential decay function with a time constant of τex= 1170 ± 10 ps.
The TRPL spectroscopy of the biexciton emission was pumped
with a power ~70 nJ/cm2 and could be well-fit by a single
exponential decay curve, suggesting the emissions on the plas-
monic nanogap were dominated by biexciton recombination. The
lifetime of the biexciton τbx= 510 ± 5 ps, was half of single the
exciton lifetime (1170 ± 10 ps), which is consistent with the
transition properties of the biexciton states as discussed above.
Therefore, we can conclude that the 520 nm peak arising on
plasmonic nanogap was due to biexciton recombination.

Fano effect of silver nanowire and perovskite NPLs. In the
plasmonic nanogap, biexciton emission was observed when the
pumping fluence exceeded 100 mW/cm2 (Supplementary Note 7).
The estimated exciton occupancy 〈N〉~10−5 was much lower than
1, which indicates that the biexciton emission were not produced
by exciton–exciton bounding in this nanogap region. However,
the enhancement factor should be much larger than the local field
enhancement factor (<100, Supplementary Note 8) in the plas-
monic nanogap. This indicates that the enhanced biexciton
emission was not mainly due to local field enhancement. More-
over, the Purcell effect of the NPLs was observed in the plasmon
nanocavity and the factor is ~2.5 (Supplementary Note 9).
However, it did not play an important role in biexciton formation
process and can be negligible.

Biexciton forms mainly through the following three methods:
(1) two photon absorption, (2) exciton–exciton bounding in

condensed exciton environment, and (3) resonant excitation from
a single exciton. The first two pathways required intense
pumping, which is not feasible under CW excitation conditions.
To confirm that the plasmon mode affected the biexciton between
the Ag nanowire and Ag film, the emission polarization behavior
was measured. As shown in Fig. 6a, the biexciton emission was
strongest when the excitation polarization direction was parallel
to the long axis of the nanowires (0°, 180°) and weakest when the
excitation polarization direction was perpendicular to the long
axis (90°, 270°). However, the emission intensity of the perovskite
NPLs away from the Ag nanowire was almost the same
(Supplementary Note 10). The polarization resolved emission
properties of the 520 nm peak suggests the modulation of the Ag
nanowire’s plasmonic mode which is transverse magnetic mode.
Moreover, an asymmetric peak appeared with a zero detuning
position around the perovskite biexciton resonant energy,
resulting from Fano interference between biexciton resonance
excitation and background continuum states excitation of surface
plasmon modes as shown in Fig. 6b. The scattering spectra were
fitted with Fano-line profiles, σsca¼ A qþΩð Þ2þB

� �
= 1þΩ2ð Þ,

where q is the Fano parameter, Ω ¼ 2 E � E0ð Þ=Γ, Γ is the
resonant width and E0 is the resonant energy, which is centered at
the biexciton emission position63. The fitted Fano factors were
−0.25 and −0.2, when the polarization was parallel and vertical
to long axis of nanowire, respectively. The scattering lineshape
was simulated by the finite-difference time-domain (FDTD)
method, as shown in Fig. 6c. It is noticed that the nonlinear Fano
resonance lineshape was only observed in the scattering spectra of
the Ag nanowire–NPLs–Ag film system with strong biexciton
emissions, which suggests that the exciton–plasmon energy
transfer plays a vital role in the formation of biexciton. Plasmon
resonant energy transfer can only occur when the plasmon peak
overlaps with the biexciton states (Supplementary Note 11).
Without energy transfer, the NPLs in the gap only show exciton
emission (Supplementary Note 12). The nonlinear interaction
witnessed as the Fano resonance contributed to the biexciton
emission.

The nonlinear Fano resonance suffers from the distance of
metal structure with NPLs and external field. With a gap of 13 nm
and external field of 0.1W/cm2, the interaction can be viewed as
linear interaction dominant, which can be seen as the threshold of
biexcion emissions45,49. Due to the large binding energy of the
CsPbBr3 NPLs, room temperature biexciton emissions off the
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nanogap could be excited only by fs laser pulse of amplifier (1
kHz, 80 fs) and the pumping fluence was on the magnitude of
~1011W/cm2 with an estimated average NPL exciton occupancy
〈N〉~30 (Supplementary Note 13). The threshold in our system
was much higher than 〈N〉~1, since a larger pump intensity leads
to ionization64 and a faster Auger recombination rate with a very
rapid growth of the carrier density65. To make sure the NPLs is
not damaged, the increasing and decreasing power-dependent PL
is measured (Supplementary Note 14). Moreover, the power-
dependent PL is also pumped with fs laser pulses of oscillator (80
MHz, 100 fs), however, biexciton is not emerged until NPLs is
damaged (Supplementary Note 15). Therefore, the exciton
occupancy to generate biexciton in the plasmonic nanogap was
reduced by ~106 times when comparing with fs laser pulse of
amplifier.

Discussion
A resonant excitation process is proposed to explain the huge
biexciton effect driven by surface plasmon cavity. As shown in
Fig. 1b, since the single exciton–biexciton transition energy was
nearly the surface plasmon energy, a nonlinear process with
energies ω and ωʹ can be absorbed though resonant energy
transfer from surface plasmons to NPLs, leading to the excitation
of biexciton and annihilation of surface plasmons. The

interference of the two excitation processes results in the non-
linear Fano resonance lineshape in the scattering spectra, where
an asymmetric peak confirmed the process occurred. The surface
plasmon-driven mechanism is similar to the biexciton generation
by a resonant pump-probe in single carbon nanotube66. The
highly populated energy of plasmon was confirmed by zero
detuning position of scattering spectra, which is almost over-
lapped with the biexciton transition energy. The resonance effect
extensively promoted the excitation cross-section of biexciton
from exciton states.

In conclusion, we found clear evidence for the presence of
high-efficiency biexciton generation in perovskite NPLs in a
metallic nanostructure under CW pumping at room temperature.
The observation of the biexciton was a consequence of the clear
emission spectra besides exciton with a binding energy ~95 meV,
which was verified by the activation energy. The fluorescence
power law and lifetime provided further evidence of the biexciton
emission. Moreover, the nonlinear Fano effects were confirmed
by measuring the scattering spectrum. By fitting the spectrum
with Fano parameters and FDTD simulations, we are sure that
this demonstration of the four-particle complex in plasmonic
nanostructure will give rise to new interesting effects, such like
quantum logic gates, Bose–Einstein condensation of exciton,
source of polarization-entangled photons, single-photon source
and high-efficiency LEDs.
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Methods
Sample preparation. The SiO2/silver substrate was made though magnetron
sputtering with silver thickness of 50 nm and SiO2 thickness of 5 nm on a SiO2/Si
substrate. CsPbBr3 NPLs were spin-coated on the SiO2/silver substrate at a speed of
3000 r/min. The 4-Methyl-1-acetoxycalix[6]arene (4M1AC6, 0.5% in chlor-
obenzene) was spin-coated on the CsPbBr3 NPLs at a speed of 5000 r/min. After
waiting for about 30 min to allow the 4M1AC6 to dry, silver nanowires were spin-
coated in isopropyl alcohol at a speed 2000 r/min.

SEM and TEM measurements. The samples were forced apart after liquid
nitrogen treatment. The SEM equipment was a Merlin-61-53 with a working
distance of 4.3 mm and a voltage of 5 kV. The perovskite NPLs for the TEM
measurement were dropped onto TEM grids. High-resolution transmission elec-
tron microscopy (HRTEM) was performed with an FEI Tecnai F20 operated with
an acceleration voltage of 200 kV.

Time-resolved PL spectroscopy. For time-resolved PL measurements, the exci-
tation pulses (wavelength 400 nm) were doubled frequencies of a Coherent Mira
900 (120 fs, 800 nm, 76MHz) and filtered by a 655 short-pass filter to generate 400
nm light. The backscattered signal was collected using a time correlated single
photon counting (TCSPC, SPC-150) which has an ultimate temporal resolution of
∼40 ps. A 442 nm long-pass filter was placed before the optical fiber to filter out the
residual 400 nm light.

PL measurements. The output from a 405 nm CW laser was circularly polarized
by a quarter-wave plate, and focused on a sample by a microscope objective lens
(×100, NA= 0.95, with spot size ~2 μm). The PL signal was then back collected by
the same lens, and filtered by a long-pass filter before entering a spectrometer (PI
Acton 2500i with a liquid nitrogen-cooled charge coupled device—CCD camera).
The low-temperature PL was measured when the sample was in the liquid nitrogen
refrigeration cryogenic instrument.

FDTD simulation. The FDTD simulations of the silver nanowire and QDs were
simulated using the Lorentz model67. We modeled the CsPbBr3 nanoplatelet layer
using a dielectric function as a single Lorentzian function. The dielectric constant
for bulk CsPbBr3 is 3.868. The biexciton energy and plasmon resonant energy
transfer were considered, while other high-order transitions were ignored. The
biexciton linewidth was used as the transition linewidth. The metal dielectric
function was treated as a Lorentz–Drude model.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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