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Single plasmon hot carrier generation in metallic
nanoparticles
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Hot carriers produced from the decay of localized surface plasmons in metallic nanoparticles

are intensely studied because of their optoelectronic, photovoltaic and photocatalytic appli-

cations. From a classical perspective, plasmons are coherent oscillations of the electrons in

the nanoparticle, but their quantized nature comes to the fore in the novel field of quantum

plasmonics. In this work, we introduce a quantum-mechanical material-specific approach for

describing the decay of single quantized plasmons into hot electrons and holes. We find that

hot carrier generation rates differ significantly from semiclassical predictions. We also

investigate the decay of excitations without plasmonic character and show that their hot

carrier rates are comparable to those from the decay of plasmonic excitations for small

nanoparticles. Our study provides a rigorous and general foundation for further development

of plasmonic hot carrier studies in the plasmonic regime required for the design of ultrasmall

devices.
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Localized surface plasmons (LSPs) in metallic nanoparticles
facilitate drastic electric field enhancements and large light
absorption cross-sections that can be harnessed in nano-

photonic applications, such as plasmon-enhanced biosensing1,
surface-enhanced Raman scattering2, data storage3, or
nanoheaters4,5. Recently, there has been significant interest in the
decay of the LSPs into electrons and holes. The resulting carriers
are energetic or “hot” and can be used in solar energy conversion
applications, including solar cells6,7 or photocatalysts8–10. For
example, Mukherjee and coworkers demonstrated that hot elec-
trons can induce challenging chemical reactions, such as the
dissociation of hydrogen molecules on gold surfaces11. Moreover,
the fast decay of LSPs can be used for new quantum information
devices and in nanocircuitry12,13.

To provide insight and guidance in this rapidly evolving field, a
detailed theoretical understanding of hot electron processes,
including plasmon decay, hot carrier thermalization, and
recombination dynamics, is needed. Using semiclassical approa-
ches, which combine a classical description of the LSP with a
quantum-mechanical description of hot carriers, several groups
analyzed the distribution of hot carriers resulting from the plas-
mon decay and studied its dependence on the nanoparticle size,
material, and environment14–17. Providing general insight, the
semiclassical approach is frequently based on a bulk dielectric
function (such as a Drude model) and therefore cannot be used to
describe small nanoparticles where quantum confinement effects
play an important role18,19. In addition, it has been observed that
non-plasmonic excitations, such as electron–hole pairs, can take
place at similar energies as the plasmon resonance, but such
excitations are not described accurately on the basis of a the
semiclassical approach20–22. Finally, a classical description of
plasmons is less appropriate in the limit of low plasmon densities,
where their quantized character must be captured23–25. Other
groups have employed first-principles real-time time-dependent
density-functional theory (TDDFT) to study plasmon26,27 and
hot carrier properties in small metallic nanoparticles21,28–30.
While this method allows the study of nonlinear properties and
scales favorably with the system size, it does not include a
quantized treatment of the plasmon. Few attempts have been
made to describe the effect of electron–plasmon interactions
using quantized plasmons in metallic nanoparticles. Notably,
Gerchikov and coworkers31 and Weick et al.32 used a separation
of centre-of-mass motion and relative motion of the electrons to
derive a quantized electron–plasmon Hamiltonian. However,
their approach cannot be used to study the decay of other neutral
excitations, such as electron–hole pairs.

In this paper, we thus present a fully quantum-mechanical
approach to calculating the properties of hot carriers resulting
from the decay of neutral excitations, such as LSPs or
electron–hole pairs. In particular, we employ an effective
Hamiltonian which describes the interaction of fermionic quasi-
particles with bosonic neutral excitations and determine its
parameters, including quasiparticle and plasmon energies and
electron–plasmon coupling constants, using quantum-mechanical
calculations. Most importantly, the electron–plasmon coupling
strength is derived by comparing the electronic self energy of the
effective Hamiltonian with the first-principles self energy within
the GW approximation (where the electron self energy is
approximated as the product of the electron Green’s function G
and the screened Coulomb interaction W). After identifying the
dominant plasmonic and non-plasmonic neutral excitations, we
first calculate the hot carrier generation rates for spherical
nanoparticles with different radii and study the effect of quantum
confinement on the hot carrier distributions. We find that a larger
fraction of the plasmon energy is distributed to the electrons
rather than the holes. Secondly, we compare hot carrier rates

from the decay of plasmonic and non-plasmonic excitations. We
also compare our quantum-mechanical results with semiclassical
calculations and show that there is a significant discrepancy in the
hot carriers rates for small nanoparticles.

Results
Electron–plasmon coupling. To describe the interaction between
charged fermionic quasiparticles and neutral bosonic excitations,
such as plasmons and electron–hole pairs, in metallic nanos-
tructures, we employ the following effective Hamiltonian:

Ĥeff ¼
X
i

ϵi ĉ
y
i ĉi þ

X
I

�hωI b̂
y
I b̂I þ

X
i;j;I

gIij ĉ
y
i ĉjðb̂I þ b̂yI Þ; ð1Þ

where b̂yI ðb̂IÞ creates (annihilates) a neutral excitation in state I
with energy ℏωI and ĉyi ð̂ciÞ creates (destroys) a quasiparticle in
state i with energy εi. Also, gIij is the electron–plasmon coupling,
i.e., the matrix element that describes the scattering of quasi-
particles from state i into state j via the emission or absorption of
a collective excitation in state I. See Supplementary Note 1 for the
definition of the single plasmon operator within the second
quantization formalism.

A key challenge in using Heff to describe metallic nanoparticles
is the accurate determination of the various parameters, including
energies of neutral and quasiparticle excitations and their
coupling. Quasiparticle energies are formally defined as the poles
of the one-electron Green’s function and can be measured in
photoemission and inverse photoemission experiments33. Calcu-
lating the Green’s function, for example via the GW method, is
very challenging for metallic nanoparticles34 and therefore
quasiparticle energies are often approximated using Kohn–Sham
energies obtained from density-functional theory (DFT)35.

Similarly, energies of neutral excitations are defined as poles of
a two-particle Green’s function and can be obtained by solving
the Bethe–Salpeter equation or from TDDFT. Plasmons arise
because of the long-ranged nature of the Coulomb interaction.
This is captured by the Hartree contribution to the total energy36,
while exchange-correlation effects often play a minor role for
plasmon properties. Neglecting exchange-correlation effects
results in the well-known random-phase approximation (RPA)
for neutral excitations37.

To determine the electron–plasmon coupling, we follow
Lundqvist’s approach38 for the homogeneous electron gas and
compare the second-order electron self-energy of Heff with the
correlation contribution of the ab initio GW self energy, see
Fig. 1a. The latter is given by39

ϕm ΣGWðωÞ�� ��ϕm� � ¼ X
j;I

jVI
mjj2

�hω� ϵj � �hωIηj � iδ
; ð2Þ

where the coefficient ηj has the value +1 for unoccupied orbitals
and −1 for occupied orbitals, δ represents a positive infinitesimal

ΣGW =

a b

Fig. 1 Feynman diagrams. a Ab initio GW self energy. b Decay of a plasmon
(or more generally, a neutral excitation) into an electron–hole pair. Solid
lines indicate Green’s functions G that describe the propagation of
fermionic quasiparticle excitations, such as quasi-electrons and quasi-holes,
and wiggly lines denote the screened Coulomb interaction W, which
describes the propagation of neutral bosonic excitations, such as plasmons
or electron–hole pairs
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and VI
mj denotes the fluctuation potential given by

VI
mj ¼

Z
dr
Z

dr′ϕmðrÞϕjðrÞ
e2

jr� r′j ρIðr′Þ ð3Þ

with the transition density

ρIðrÞ ¼
X
vc

FI
vc

ϵc � ϵv
�hωI

� �1=2

ϕvðrÞϕcðrÞ ð4Þ

characterizing the I-th neutral excitation. Note that ϕv(r) (ϕc(r))
denote single-particle wavefunctions of occupied (empty) states
and the coefficients FI

vc are obtained by solving the Casida
equation, see Methods section.

For the second-order electron self energy of Ĥeff , we find40

ϕm Σeff ðωÞ�� ��ϕm� � ¼ X
j;I

jgImjj2
�hω� ϵj � �hωIηj � iδ

: ð5Þ

Comparing Eqs. (2) and (5) yields the final expression for the
electron–plasmon coupling which is given by

gImj ¼ VI
mj: ð6Þ

This result has the intuitive interpretation that the coupling
between the neutral excitation I and the quasiparticles states m
and j is due to the electric potential induced by the transition
density of the neutral excitation, see Eq. (3). Note that the
expression is completely general and does not depend on the
dimensionality, material or size of the system under
consideration.

Hot carrier generation. To model the decay of neutral excita-
tions, such as a plasmon, into hot electrons and holes, we cal-
culate the self energy of the neutral excitation and evaluate the
Feynman diagram shown in Fig. 1b. The resulting decay rate ΓI is
given by15

ΓI ¼
2π
�h

X
vc

jgIvcj2δðϵc � ϵv � �hωIÞ: ð7Þ

In our numerical calculations, the delta function was replaced
by a Gaussian with a standard deviation of 0.12 eV.

The generation rate NI
e ðEÞ of hot electrons with energy E from

the decay of the I-th neutral excitation is given by

NI
eðEÞ ¼

2π
�h

X
vc

jgIvcj2δðϵc � ϵv � �hωIÞδðE � ϵcÞ: ð8Þ

A similar formula describes the generation rate of hot holes
NI
hðEÞ. In our numerical calculations, the second delta function

was replaced by a Gaussian with a standard deviation of 0.05 eV.
Finally, the total generation rate NI

tot of hot electrons resulting
from the decay of the I-th collective excitation is given by14

NI
tot ¼

Z 1

EFþδE
dENI

eðEÞ; ð9Þ

where EF denotes the Fermi energy which for metallic
nanoparticles is defined as the middle of the gap between the
highest occupied state and the lowest unoccupied one and δE is a
threshold energy which is typically chosen larger than the
available thermal energy. As we are dealing with small
nanoparticles, the energy gaps between occupied and unoccupied
states are always larger than the thermal energy at room
temperature and we therefore set δE to zero. Note that the total
rate of excited electrons is equal to the total rate of excited holes.

Semiclassical approach. To model plasmon decay and hot carrier
generation in nanoplasmonic systems, a semiclassical approach is
usually employed14,15. In this approach, the metallic nanoparticle

of radius R is assumed to be exposed to an incident electric field
(along the z-direction) with strength E0. The total potential due to
the perturbing field and the induced polarization in the nano-
particle is calculated using the quasistatic approximation
according to

Φscðr;ωÞ ¼ E0
εðωÞ � 1
εðωÞ þ 2

r cos θ for r � R;

R3 cos θ
r2 for r>R:

(
ð10Þ

Here, ε(ω) denotes the dielectric function of the bulk material
which is often described using a Drude model

εðωÞ ¼ 1� ω2
0

ω2 þ iωγP=�h
; ð11Þ

where γP denotes the plasmon width and ω0 is the bulk plasmon
frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πne2=m

p
where e, m, and n denote the

electron charge, mass, and density, respectively. Improved results
can be obtained by using non-local approximations to the
dielectric function41,42.

The hot-carrier generation rates are then obtained by
evaluating Fermi’s Golden Rule in Eq. (7) with the
electron–plasmon coupling strength

gSCij ¼ hϕijΦscjϕji: ð12Þ
Importantly, the semiclassical expression for the

electron–plasmon coupling depends on the strength of the
incident light field which excites the plasmon. In contrast, the
quantum definition, Eq. (6), does not depend on E0. To resolve
this discrepancy, we note that the semiclassical result contains the
interaction of the electrons with both the induced charge density
and the external light field, while the quantum result only
describes the interaction with the (light induced) neutral
excitations. Moreover, the semiclassical result captures the effect
of exciting multiple plasmons (in fact, the expression becomes
exact in the limit of a large number of plasmon quanta), while the
quantum result describes the decay of a single plasmon excitation.

In order to meaningfully compare the results of the two
approaches, we derive an expression for the electric field strength
E1PL
0 which is required to excite a single plasmon, see

Supplementary Note 2. We find that

E1PL
0 ¼ γP

μP
; ð13Þ

where μP denotes the dipole moment of the plasmonic state. The
corresponding semiclassical transition dipole moment is given by

μSCðωÞ ¼ R3 εðωÞ�1
εðωÞþ2

� 	
E1PL
0 . When evaluated at the classical Mie

frequency ωcl ¼ ω0=
ffiffiffi
3

p
, we obtain μSC(ωcl)= R3ℏωcl/μP, which is

independent of the plasmon linewidth γP.

Numerical results. We present results for three sodium nano-
particles: Na40, Na58, and Na92, which consist of 40, 58, and 92 Na
atoms, respectively. These systems are modeled as jellium spheres
with diameters of 1.4, 1.6, and 1.9 nm, respectively. We first
analyze the neutral excitations of these systems and identify those
with plasmonic character and then calculate the hot carrier dis-
tributions resulting from their decay. We also compare our results
to semiclassical calculations and obtain hot carrier rates for
nanoparticles in different dielectric environments.

Identifying plasmonic excitations. Distinguishing plasmon-like
excitations, which are typically thought of as collective oscillations
of all electrons in the nanoparticle, from other neutral excitations,
such as bound or unbound electron–hole pairs, is difficult.
Recently, several approaches have been proposed to address this
problem, for example by scaling the electron–electron
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interactions43,44, by studying the time-dependent occupations of
the Kohn–Sham states45 or by investigating the optical response
of the nanostructure46,47 that led to the introduction of the
generalized plasmonicity index. Below, we present an alternative
method for identifying the plasmon which is based on a graphical
analysis of various physically transparent quantities (such as the
excitation energy and oscillator strength of neutral excitations)
which are directly obtained from a solution of Casida’s equation.
Importantly, this approach does not require multiple solutions of
Casida’s equation at different strengths of the electron–electron
interaction and shares many advantages of the generalized plas-
monicity index, which is proportional to the total induced dipole
moment of a transition.

Importantly, our quantum method for calculating hot-carrier
rates can be used for both plasmon-like and electron–hole pair-
like excitations. However, to enable a comparison with semi-
classical calculations, we have employed the following approach
to identify excitations with a plasmonic character. In particular,
we analyze three properties of neutral excitations: (i) the energy
ℏωI of the excitation, (ii) its oscillator strength fI, and (iii) its
collectivity CI, see Methods section. For plasmon-like excitations,
we expect both high oscillator strengths and collectivities as well
as energies not too far from the classical plasmon energy ℏωcl. For
sodium nanoparticles, the classical plasmon energy is given by
ℏωcl= 3.40 eV.

Figure 2a–c summarizes the properties of neutral excitations
for the three sodium nanoparticles under consideration. In these
graphs, each circle represents an excited state with its radius being
proportional to CI. For Na40, we find one state (denoted PL for
plasmon in Fig. 2a) with a high oscillator strength, large
collectivity, and energy close to ℏωcl. This state gives rise to a
strong peak in the absorption spectrum (see inset) and its
transition density has a dipolar shape, see Fig. 3. We therefore
assign this state a plasmonic character. For Na58, we find two
states with large oscillator strengths and high collectivities. The
energies of both states are within 0.3 eV from ℏωcl and their
transition densities are both plasmon-like. We therefore assign
both excitations plasmonic character (and denote them by PL1
and PL2 in Fig. 2b). For Na92, we find two states with high
oscillator strengths. The state with energy ℏωSP= 2.87 eV has a
low collectivity and therefore electron–hole pair character
(denoted SP for single pair in Fig. 2c), while the state with
energy ℏωP= 3.07 eV has a high collectivity and plasmonic
character (denoted PL in the figure).

Table 1 shows an overall redshift of the plasmonic excitation
energy as the nanoparticle size increases. This is caused by
quantum confinement effects and the spill-out of the electron
wave functions beyond the geometrical radius of the nanopar-
ticle32. However, the redshift is not monotonic which has also
been observed experimentally for nanoparticles with a diameter
smaller than 3.5 nm48,49 and was predicted theoretically for small
nanoparticles32. Moreover, the presence of more than one
plasmonic resonance for a given nanoparticle could explain the
experimentally observed scattered distribution of energies in this
size regime48.

Figure 3 shows the transition densities of the plasmonic
excitations in Na40, Na58, and Na92. The transition densities
exhibit a clear dipolar shape, but are significantly more complex
than predicted by classical electrodynamics. In particular, the
transition densities are not only localized at the surface of the
nanoparticles and show multiple regions of positive and negative
charge. While the transition density of the smallest system (Na40)
is extended throughout the nanoparticle, it becomes more
localized in the surface regions for the larger nanoparticles in
agreement with the classical result. In contrast, the transition
densities of single-pair excitations can exhibit different features.
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Fig. 2 Characterization of neutral excitations. a Neutral excitations in Na40.
b Neutral excitations in Na58. c Neutral excitations in Na92. Each neutral
excitation is represented by a circle. The radius of each circle is proportional
to the collectivity of the excitation. Plasmonic excitations (denoted PL) are
expected to have a high oscillator strength and collectivity as well as
energies close to the classical Mie plasmon energy (denoted by the dashed
vertical line). In contrast, electron–hole pair excitations (denoted SP) have a
low collectivity. The insets show the corresponding optical absorption
spectra
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For example, the transition density of the dominant single-pair
state of Na92, see inset of Fig. 4, is localized in the centre of the
nanoparticle.

Hot carrier distributions. Figure 5 shows the energy distribution
of electrons and holes resulting from the decay of a plasmon in
the three sodium nanoparticles under consideration. Energy
conservation imposes that the distribution of electrons (blue
curve) has the same shape as the distribution of holes (red curve),
but shifted by the plasmon energy. For the smaller nanoparticles,
Na40 and Na58, the distributions exhibit only a few peaks. This is a

consequence of the large energy level spacing (due to quantum
confinement) which makes it difficult to find energy-conserving
transitions, see insets of Fig. 5a–d. In contrast, a large number of
peaks are observed in the hot carrier distributions of Na92, where
the energy level spacing is significantly reduced. Interestingly, the
larger fraction of the plasmon energy is transferred to the hot
electrons in these systems.

Table 1 shows the total number of hot carriers generated by the
decay of a single excitation in the three Na nanoparticles. The
total generation rate for the dominant plasmonic excitation (PL
in Na40 and Na92 and PL2 in Na58) does not show a strong
dependence on the nanoparticle radius. It is important to recall,
however, that these rates are calculated for a single excitation
quantum. As the transition dipole moment of these excitations
increases with system size, see Table 1, more excitation quanta are
excited per incoming photon and this gives rise to a larger
number of hot carriers in larger nanoparticles.

As discussed in the Methods section, our approach can also be
used to study the hot-carrier distribution resulting from the decay
of neutral excitations without plasmonic character. Figure 4
shows the hot-carrier distributions resulting from the decay of the
prominent single-pair excitations in Na92 (denoted SP in Fig. 2c).
Similar to the plasmonic excitation in this system, the larger
fraction of the excitation energy is transferred to the hot
electrons. Interestingly, the total rate of hot carriers from the
decay of the electron–hole pair excitation is larger than from the
decay of the plasmonic excitation in this system, see Table 1.

The energy of the LSP can be easily modified by placing the
nanoparticle in different dielectric environments. Specifically, the
plasmon energy is reduced as the dielectric constant of the
environment increases. To study the effect of the dielectric
environment on the hot-carrier generation rates resulting from
the decay of plasmonic excitations, we evaluated Eq. (7) with a
reduced plasmon energy ~ωP (but keeping the orbital energies and
coupling strengths unchanged). Figure 6 shows the resulting total
hot-carrier generation rates for three Na nanoparticles as a
function of the environment-screened plasmon energy. We
observe that the reduction of the plasmon energy can lead to
significant enhancements in the total hot-carrier rates when the
reduced plasmon energy matches the energy of multiple
transitions from occupied to empty states in the quasiparticle
spectrum. A particularly strong increase is found for plasmon
energies smaller than half of the unscreened value ωP. This is
caused by a strong increase of the electron–plasmon coupling
strength for low-energy transitions, see Fig. 6b.

Comparison to the semiclassical approach. To compare the hot-
carrier rates from our quantum approach to the semiclassical
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Table 1 Excitation energies, total hot-carrier generation
rates, and transition dipole moments μI of the dominant
neutral excitations in small sodium nanoparticles

System Excitation ℏωI (eV) Ntot (1/ps) μI (10−20 C nm)

Na40 PL 3.63 27.2 5.6
Na58 PL1 3.67 8.2 6.8
Na58 PL2 3.21 35.2 6.3
Na92 PL 3.07 25.7 9.1
Na92 SP 2.87 30.3 10.3
Na92 Classical PL 3.40 976.8 57.7

SP refers to electron–hole pair excitations and PL refers to plasmonic excitations
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Fig. 4 Hot carrier distribution for a single-pair state. Energy distribution of
hot electrons and holes from the decay of the dominant electron–hole pair
excitation in Na92. The dashed line denotes the Fermi energy. The inset
shows the transition density of the electron–hole pair excitation
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approximation, we carry out semiclassical calculations using the
electric field strength E1PL

0 which generates a single plasmon in
the nanoparticle. Table 1 shows the resulting total hot-carrier rate
for Na92 for the classical plasmon energy. Surprisingly, we find
that the semiclassical rate is more than an order of magnitude
larger than the quantum result.

To understand this discrepancy, we compare the transition
dipole moment of the LSP obtained from the quantum
calculation with the results from the semiclassical approach.
Table 1 shows that the semiclassical transition dipole moment of
the plasmon is six times larger than the quantum mechanical one.
This is consequence of two factors: (i) as discussed above, the
transition density of the plasmons in small nanoparticles deviates
significantly from the perfect dipolar shape predicted by classical
electrodynamics (see Fig. 3) and (ii) in small nanoparticles, the
plasmon is one of many excitations which share the total available
oscillator strength (according to the f-sum rule), while in the
semiclassical approach the total oscillator strength is concentrated
in the plasmon, see Supplementary Note 3. Because of their
smaller transition dipole moments, the quantum plasmons couple
less strongly to the transition dipole moments of the hot
electron–hole pairs resulting in significantly reduced generation
rates compared to the semiclassical calculations.

Discussion
We have presented a new approach for studying hot carrier
generation in metallic nanoparticles which takes quantum plas-
monic effects, such as the bosonic nature of the plasmon, fully
into account. We employ an effective fermion–boson Hamilto-
nian and determine its parameters for specific nanoparticles using
(time-dependent) density-functional theory and many-body
perturbation theory within the GW approximation. In parti-
cular, an expression for the coupling strength of quasiparticles to
neutral excitations is obtained by comparing the self energy of the
effective Hamiltonian with the first-principles GW self energy.
We have used this approach to study the decay of single plasmons
into hot carriers in small sodium nanoparticles with different
radii. We find that some systems exhibit multiple plasmonic
excitations, while others have electron–hole pair excitations with
large oscillator strengths. The hot carrier distributions from the
decay of these excitations exhibit a molecular character with
discrete peaks that are more closely spaced as the nanoparticle
size increases. Interestingly, we find that in all systems a large
fraction of the plasmon energy is transferred to the hot electrons.
We also compare our results to semiclassical calculations and find
that the semiclassical results provide qualitative insights but
overestimate hot carrier rates for the small nanoparticles under
consideration. Our approach opens the possibility to study hot
carrier generation in the quantum plasmonic regime with
potential application to quantum-controlled devices, including
single-photon sources, transistors, and ultra-compact circuitry at
the nanoscale.

Methods
In this section, we describe how the various parameters of the effective
electron–plasmon Hamiltonian Heff, Eq. (1), are obtained.

Quasiparticle energies. To model the electronic structure of spherical metallic
nanoparticles of radius R= rsN1/3 (where rs denotes the Wigner–Seitz radius of the
bulk material and N is the number of electrons in the nanoparticle), we employ the
jellium approach which has been widely used to describe metallic clusters50–53. In this
parameter-free method, the positive charge of the atomic nuclei is smeared out
homogeneously throughout the volume of the nanoparticle. The jellium approach
often yields accurate electronic properties for metals with s- or p-electron bands, but
at a significantly reduced computational cost compared to full atomistic descriptions.
Other authors14,54 have used phenomenological spherical well models to describe the
electronic structure of metallic nanoparticles, but we have found that such models do
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Fig. 5 Energy distributions of hot electrons and holes from the decay of
plasmonic excitations. a From the decay of the plasmonic excitation in Na40.
b From the decay of the plasmonic excitation PL1 in Na58. c From the decay
of the plasmonic excitation PL2 in Na58. d From the decay of the plasmonic
excitation in Na92. Blue lines for electrons and red lines for holes. The
dashed lines denote the Fermi energy. The insets show the corresponding
electronic transitions from occupied (blue) to empty (red) levels
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not reproduce the experimentally observed ordering of energy levels55 when
electron–electron interactions are included. For example, photoelectron spectroscopy
of sodium clusters reveals the following ordering of energy levels (in order of
increasing energy): 1s, 1p, 1d, 2s, 1f, and 2p55. This ordering is reproduced by the
jellium approach, but not by the interacting spherical well approach.

Ground state properties, such as the total energy or the electron density, are
obtained by solving the Kohn–Sham equations

� �h2

2m
∇2 þ VKSðrÞ


 �
ϕiðrÞ ¼ εiϕiðrÞ; ð14Þ

where ϕi(r), VKS(r), and εi denote the Kohn–Sham orbitals, Kohn–Sham potential,
and Kohn–Sham energies, respectively. The Kohn–Sham potential consists of a
nuclear, a Hartree, and an exchange-correlation contribution, for which we employ
the Perdew–Zunger parametrization of the local density approximation (LDA)56.

We only carry out calculations for nanoparticles with closed electronic shells.
For such systems, the Kohn–Sham potential exhibits spherical symmetry and the
Kohn–Sham orbitals can be expressed as the product of a spherical harmonic and a
radial function which is obtained by direct integration on a real-space grid. To
approximate quasiparticle energies which correspond to electron addition or
removal energies, we have calculated the ionization potential of the nanoparticles
using the Δ-SCF approach (i.e., by calculating the total energy difference of the
neutral and ionized nanoparticles) and shifted all Kohn–Sham energies such that
the energy of the highest occupied orbital agrees with the calculated ionization
potential. Alternatively, the quasiparticle energies can be obtained from GW
calculations, but at a significantly larger computational cost. Figure 7 shows the
resulting quasiparticle energy levels and Kohn–Sham potential for a sodium
nanoparticle (rs= 4.00 Bohr) consisting of 92 atoms.

Neutral excitations. Neutral excitations are obtained using the RPA. In particular,
we solve Casida’s equation57X

v′c′
Ωvc;v′c′F

I
v′c′ ¼ �h2ω2

I F
I
vc; ð15Þ

where ℏωI denotes the energy of the neutral excitations and FI
vc is the corre-

sponding eigenvector, which determines the transition density, see Eq. (4). The
Casida matrix is given by

Ωvc;v′c′ ¼ δcc′δvv′ðϵc � ϵvÞ2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fvcðϵc � ϵvÞ

p
Kvc;v′c′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fv′c′ðϵc′ � ϵv′Þ

p
; ð16Þ

where Kvc,v′c′ denote Coulomb matrix elements

Kvc;v′c′ ¼
Z

dr
Z

dr′ϕvðrÞϕcðrÞ
e2

jr� r′j ϕv′ðr′Þϕc′ðr′Þ: ð17Þ
The Coulomb integrals were computed using the LIBERI library58 which we

modified to perform integrals using real spherical harmonics. Note that we have
chosen to work within a linear-response framework because it allows exploitation
of spherical symmetry which is broken by the perturbing electric field in a real-time
framework.

Besides their energy, other important properties of neutral excitations are their
oscillator strength fI and their collectivity CI. The oscillator strength is obtained
from the eigenvectors of Casida’s equation via

fI ¼
2m

�h2
X
vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fvcðϵc � ϵvÞ

p
μvcF

I
vc

�����
�����
2

� 2m
�h

ωIμ
2
I ; ð18Þ

where μvc ¼ e
R
drzϕvðrÞϕcðrÞ denotes the dipole moment matrix element for the

vc-transition in the z-direction, which is parallel to the perturbing electric field, μI
is the transition dipole moment of the excitation I and fvc is the occupation number
difference.

To define the collectivity of a neutral excitation, we first discuss the two extreme
cases. When an excitation is perfectly collective, we expect that all components of
jFI

vcj2 are equal to 1/Npair, where Npair denotes the total number of electron–hole
pair states (note that this is finite as we only consider bound electron states). For an
ideal electron–hole pair excitation, on the other hand, all components of jFI

vcj2 are
zero except for one whose value is unity. For a general excitation, we first test if any
component of jFI

vcj2 is larger than λ/Npair, where λ is set to 500 (we have tested that
our results do not depend strongly on the choice of λ). If such a component is
found, the state is identified as an electron–hole pair state and CI is set equal to the
number of such components. Otherwise, the state is identified as collective and the
collectivity is calculated as the total number of non-zero components of jFI

vcj2. In
practice, we find that excitations with a plasmonic character have collectivity values
corresponding to ~10% of non-zero components, while for electron–hole pairs
typical CI is less than 1%. All DFT and TDDFT calculations were carried out using
in-house computer codes.

Data availability
The data sets analyzed and the code used during the current study are available from the
corresponding author on reasonable request.
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