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Orbital angular momentum dichroism
In hanoantennas

R.M. Kerber® 2, J.M. Fitzgerald?, S.S. Oh® 23, D.E. Reiter24 & O. Hess® 2

When light interacts with matter, dichroism with respect to the handedness of circularly
polarized light is well established. But what happens if the light further possesses an orbital
angular momentum? In this paper, we discuss possible definitions of orbital angular
momentum dichroism and define a new type of dichroism, the class dichroism. By numeri-
cally calculating the scattering cross-section spectra, we study the dichroism of a plasmonic
nanostructure interacting with orbital angular momentum light. By considering the exemplary
case of twisted, stacked nanorods, we show that the orbital angular momentum dichroism
can be as strong as dichroism induced by circular polarization. We present a detailed clas-
sification of the different types of orbital angular momentum dichroism, which paves the way
for new chiroptic spectroscopic techniques.
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example by the left- and right-handed circular polarization,

also denoted as spin angular momentum (SAM). Depending
on its polarization, the interaction of light with certain materials
can be different, resulting in a helicity-dependent absorption or
scattering. This dichroic response is often defined as the differ-
ence in absorption or scattering for excitations of different
handedness of circular polarization. While the well-established
term circular dichroism (CD) is used for the difference in
absorption, the difference in scattering is denoted with circular
differential scattering (CDS)!-3. On the nanoscale, CD and CDS
occur typically for chiral objects, i.e., objects which cannot be
superimposed onto their mirror image, like molecules, DNA and
other chemical or biomolecular chiral substances*-® and has been
studied for many different types of plasmonic nanostructures like
chiral single particles, chiral nanoparticle assemblies and chiral
metamaterials’~!# showing a strongly enhanced dichroism com-
pared to natural substances!10,

In addition to the circular polarization states, light can also
carry orbital angular momentum (OAM), which has emerged as a
characteristic to classify light!”!8 and is used for information
encoding!®-21. For OAM light, the interaction with matter differs
significantly compared to plane waves. For single particles, like
atoms, molecules or quantum dots, the interaction can drive
unusual transitions22~2” which are dipole forbidden. The OAM of
light is not restricted to only two states, but in principle extends
to infinite values. Similar to the circular polarization, the OAM
can take positive and negative values. This leads to the immediate
question: can we also define an orbital angular momentum
dichroism? When defining dichroism for OAM light, one has to
be mindful of the fact that the circular polarization, characterized
by its handedness s, and the OAM of light, quantizied by ¢ are
strongly intertwined; in particular, one can distinguish two dis-
tinct classes, the parallel class for £ and s having same signs and
the anti-parallel class for £ and s having opposite signs?2. In the
usual definition, dichroism describes the difference of two kinds
of beams. It is indeed not a trivial task to define dichroism for
OAM light because it offers multiple possible combinations of
SAM and OAM.

In this paper, after an introduction of a mathematical frame-
work for OAM light, we discuss how to classify the dichroism for
OAM light beams. As an example we will then study the
dichroism occurring in plasmonic nanoantennas. As a testbed we
chose stacked nanorods, which have been shown to display a
strong and tunable dichroic response to circularly polarized
light?®-33. In particular, we ask the question whether a dichroism
for OAM light can be readily observed for these nanostructures.
We study whether a dichroism emerges for the same handedness
of polarization and how the dichroism relates to OAM. We find
that for rotationally arranged nanoparticles different kinds of
dichroism emerge for different combinations of values of the
SAM and OAM of light.

I ight can be characterized by its polarization state, for

Results
OAM light. In contrast to plane waves, an OAM light beam
carries an additional phase, which is associated with the forma-
tion of a vortex or phase singularity at the beam axis. Because of
the helical phase front of an OAM beam, such light is also called
twisted light. The properties of an OAM light beam can be
quantified by its handedness of circular polarization denoted by
s==1 and its value of OAM given by £ =0, £1, £2, ... ; the
latter being also called topological charge. We emphasize that—in
contrast to s—the OAM / is not restricted to two values.
Mathematically OAM light can be described by the vector
potential A Here we describe a monochromatic Bessel beam with

frequency w in Cartesian coordinates {x, y, z} by A(r,t) = (A.e, +
Aye, + Ae)exp[—i(wt — q.z)], propagating along the z-axis with

the wave vector gq,. The components of the vector potential
22,34,35.

A1) = Ay (g,r)explite), (1)
A, (1, 1) = isAJ, (q,r)exp(ilg), 2)
A1) = —z's%AoJHs(q,r)exp(i(e +95)9), 3)

with radius r = \/x? + y2, azimuthal angle ¢ = arctan(y/x), g, the
wave vector in the transversal plane and A, the amplitude. J,(q,r)
is the Bessel function of order /. We employ Bessel beams,
because they are exact solutions of Maxwell’s equations3°. We use
a fixed ratio of g,/g, = 1.6 to result in a highly focussed beam with
a diameter of the first maximum of a twisted light beam with
¢ =1 of 1 um. The corresponding field patterns can be found,
e.g, in ref. 37,

Looking at the vector potential we can clearly identify the
additional phase factor exp(ilp) in the components, which then
gives rise to the OAM of the light. We also see that the beam are
classified by the SAM s and we note that distinct field patterns
appear for different combinations of ¢ and s. This leads to the
classification of OAM light into two distinct classes of light, called
the parallel and anti-parallel class. In the parallel class the signs
of ¢ and s are the same, while in the anti-parallel class they
are opposite. The field profiles and behaviour of the two classes
are fundamentally different and they do not evolve into each

other in time22.

Definitions of dichroism. While dichroism has been widely
studied in terms of circularly polarized excitation, only few
studies of dichroism for OAM light are available. For example,
OAM light enables the possibility to create a dichroic response
in non-chiral plasmonic nanostructures. When shining OAM
light onto a hole in a metallic plane a circular dichroic response
has been reported®®. A further example is the angular
momentum-dependent transmssion of vortex beam through
plasmonic coaxial nanorings®. In contrast, for a polymer
(which is a chiral molecule) no dichroic response was found4%-41,
When the description of OAM light-matter interaction
includes higher order interactions??, the electric quadrupole
interactions cause a significant chiroptical response influenced
by both the circular polarization and orbital angular momen-
tum*2, By using plasmonic nanoparticle aggregates, which show
strong quadrupole fields, a discrimination of enantiomers
becomes possible with OAM light*3. In analogy to CD and CDS,
which are caused by SAM, these studies thus demonstrate
the necessity to define a new type of dichroism originating from
the OAM.

For plane waves, CDS is defined as the scattering intensity
difference between right handed (s = 1) and left handed (s = —1)
beams when interacting with matter. In this paper, we will
consider as a figure of merit the scattering cross-section g, ; from
a plasmonic nanostructure excited with different kinds of Bessel
beams characterized by SAM s and OAM /. For beams with
£ = 0, we recover plane waves and the CDS is well-defined via

AcS = 00,41 — 0p,—1- (4)

This definition of dichroism can be readily generalized to OAM
light, where we keep ¢ fixed and just vary s. We name this
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dichroism SAM-D defined as

AoiAMiD =0p41 —0p—_1- (5)

The CDS is regained for the special case of ¢ =0, ie,
Ac3AM™D = AgCPS The definition of dichroism for OAM light
becomes much more complex, however, when we allow £ to vary.
In fact, for OAM light the definition of dichroism is non-trivial
because of the multiple combinations of SAM and OAM. A
straightforward definition of OAM dichroism is to fix the
handedness of the polarization s and the absolute value of ¢
and only allow the sign of OAM to vary. We call this dichroism
OAM-D defined as

OAM-D __
Aoy =0y — 0y (6)

In a more generalized definition of OAM dichroism the
absolute value of OAM could vary. As an example, we could
change the OAM by one and take the difference o}y, — 0y -
But at the beam axis, where the interaction with the plasmonic
nanostructure is most relevant, the intensity of the beam is
proportional to 2!l and the light-matter interaction will be most
likely dominated by the different intensity profiles of the beams
with different |¢|. Hence, we do not consider a generalized
definition using OAM light with different absolute values of |¢|.

Both the SAM-D and the OAM-D compare the scattering
intensities of beams of different classes, e.g, the OAM-D
AePMP =g, —0_,,, includes one beam of the parallel
class 0,11 and one of the anti-parallel class o_; ;. When
reversing the propagation direction of an OAM light beam, we
find that both SAM and OAM should be inverted, hence, under
inversion the class of the beam is conserved. Therefore, it is
reasonable to define a new type of dichroism relying on the two
classes of OAM light, i.e., the parallel and anti-parallel class. This
definition has the further advantage that the intensity profiles,
including the longitudinal components, remain the same (cf. Eq.
(3)), while the intensity profile of the transverse component of the
light fields is the same also in the SAM-D and OAM-D. We
accordingly define a new dichroism called the class-D. For the
parallel class (PC), we define

PC-D __
Aoy =041 — 01 (7)

and for the anti-parallel class (APC) as

APC-D __
Aol ™" =0 g 41— O (8)

As an example, the PC-D for /= +1 is Ac}“ P =0, ,, —
0_, _, including the two beams of the parallel class. The class-D
compares the two beams with opposite propagation directions
and, therefore, is the most similar one to the dichroism induced
by circularly polarized light, which also can be understood as two
beams with different propagation directions.

It is interesting to note that definitions of dichroism between
the two classes can be derived by combining the definitions of the
SAM-D and the OAM-D. As we argued above, we keep || fixed
to compare beams with the same intensity profiles. Already for ¢
being fixed we have six different possibilities to define a dichroism
which are now covered by our definitions (two within the SAM-
D, two for the OAM-D and two for the class-D).

Interaction with a plasmonic nanoantenna. To study the
OAM related dichroism, we choose a design consisting of
stacked nanoantennas which are composed of two identical

Fig. 1 Geometry of the plasmonic nanostructures. Single element
nanoantenna consisting of two nanorods in x-z plane (a) and in x-y plane
(b). Geometry of the dimer (¢) and trimer (d) nanoantenna consisting of
two and three elements, respectively

nanorods?8-33, Each rod has a length of L =150 nm and a cir-
cular cross-section with a diameter of D =40 nm, while the ends
of the rods are rounded by hemispheres. The upper rod lies in the
z=0 plane and the lower one is shifted down, forming a gap of
10 nm between both rods. By twisting the rods against each other
around the z-axis, quantified by the angle «, the nanostructure
obtains a chiral character. It is noteworthy that the twist angle of
the rods can be experimentally adjusted by using reconfigurable
DNA origami template and adding specifically designed DNA
fuel strands to switch between different configuration?84445,
Figure 1 shows a sketch of the geometry for a single element (a),
(b) and of nanostructures consisting of two (c) and three
elements (d).

We assume the antennas to be made of gold and surrounded
by air. To numerically calculate the scattering cross-section of the
nanoantennas, we use a boundary element method (BEM)*° with
experimental data for the dielectric function of gold?’.

In the following parts, we discuss what kinds of dichroism
appear, when an OAM light beam interacts with a nanostructure.
We start by focusing on a single element of stacked nanorods, a
monomer (Fig. 1a, b), which has been shown to exhibit dichroism
for circularly polarized light?® and probe, whether we see the
other types of dichroism in this structure excited by OAM light.
Subsequently, we then investigate structures composed of several
stacked elements, particularly in the N=2 (dimer, Fig. 1c) and
the N=3 (trimer, Fig. 1d) configurations.

Monomer. For the single element (N = 1), we consider one pair
of stacked rods as sketched in Fig. 1a, b and assume the OAM
light to be incident on the nanoantenna from the bottom and
aligned with the rotation axis of the nanostructure with the beam
axis. The scattering cross-section and CDS for a single element
N=1 are shown in Fig. 2. A characteristic scattering cross-
section spectrum is displayed in Fig. 2a for / =0, +1 and s = *1
considering a nanostructure with a rotation angle of a=45°
All spectra are normalized to the maximum value for ¢ =0
and s=+1. The spectrum shows a strong difference in
intensities for the circularly polarized light (¢ = 0) at the reso-
nance A,=710 nm (dotted black vertical line), indicating a
considerable dichroism. We further observe a shoulder for £ =0
and s = —1 at A, = 770 nm. From the surface charge distribution
(the inset of Fig. 2a), we can clearly distinguish both modes,
because the sign of surface charge in the lower rod is different.
These two resonances, which originate from the small distance
between the two stacked rods, can be explained by the hybridi-
zation model*® and are called anti-bonding and bonding mode,
respectively’l. To quantify the CDS, we plot AcCPS in Fig. 2b for
various angles a = 0° to 90°. For & = 0° (light red solid line) and
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Fig. 2 Dichroism in the monomer. Scattering cross-section o, for an angle
a = 45° for different types of Bessel beams as indicated (a) and circular
differential scattering AcCPS for different angles a (b)

o = 90° (dark blue dashed line) there is no dichroism, because the
nanostructure is not chiral. As soon as a little twist is introduced
(o #0°, 90°), the structure becomes chiral and a dichroism occurs
at the resonance wavelength, with the highest dichroism
appearing at o =45° (purple solid line). For angles & > 90° (not
shown here) the sign of the dichroism changes because the rods
are twisted in opposite direction, so that Ag“PS is simple the
mirror image respective to the wavelength axis.

Next we consider an OAM beam with ¢ = 1. From the
spectra in Fig. 2a we see that the scattering cross-section is three
orders of magnitude lower in comparison to £ = 0 and even in a
zoom-in graph, we cannot see that a resonance is excited. For
the monomer the interaction with the light field is weak, because
the center of the rods are aligned with the beam axis where the
intensity vanishes. Accordingly, no dichroism appears for OAM
light (not shown) for such a configuration.

Dimer. Next, we consider a nanostructure design consisting of
two elements with a gap which is aligned with the vortex of the
OAM light beam, and each element is twisted in the same
direction by the angle « as shown in Fig. lc. Such a structure
avoids the vortex with its vanishing electric field intensity and has
been studied previously and shown to have an OAM dependent
response to twisted light?”. Before considering the OAM light,
we check, if such a structure also exhibits a CDS. For this, we
focus on the scattering cross-section for a beam with ¢ =0
impinging on the dimer in Fig. 3a. In the scattering cross-section,
exemplarily shown for o =45° we find two distinct resonance
wavelengths at A, =730 nm and A, =780 nm belonging to the
anti-bonding and bonding mode within each element. At both
resonances, we find a difference in intensity, showing that also the
dimer nanostructure exhibits dichroism, where a stronger
intensity difference is found at A,. This is quantified in Fig. 3b,
showing a similar behaviour to the monomer with no dichroic
response found for & =0,90° and the strongest dichroism found
at o =45°.

Now we study the OAM dependent dichroic behaviour of the
dimer. Using our example with stacks having a twist angle of a =
45°, the scattering cross-section for OAM light with all
combinations of ¢ = +1 and s==1 is shown in Fig. 3c. A
different resonance mode is excited at A; = 690 nm. This is a dark
mode resulting from the out-of-phase oscillation of the surface
charges between the two elements®’. Within each element the
anti-bonding mode is excited. For the dark mode we observe a
difference in intensity for different signs of circular polarization
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Fig. 3 Dichroism in the dimer. Scattering cross-section spectrum for an
angle a = 45° for beams with £ = 0 and s = 1 (@) and circular differential
scattering AcCDPS (b). Scattering cross-section spectrum for an angle a =
45° for Bessel beams with £ = +1 and s = %1 (c). Spectra of several
dichroisms as indicated: spin angular momentum (SAM) dichroism
AasﬁM‘D for £ =1 (d), the orbital angular momentum (OAM) dichroism
AcPAMD for s=+1 (e), and the class dichroisms for the parallel class
A0S (f) and the anti-parallel class ActPCP (g)

hinting towards a dichroism. We note that at A =770nm a very
small peak is visible, which corresponds to the dark mode with
the bonding mode within each element.

We begin by checking if we have a dichroism regarding the
SAM (note that this is the generalization of the CDS) by plotting
A% M~P (Eq. (5)) for £ = +1 in Fig. 3d. Indeed, we find that we
have a non-zero dichroism Ac3AM~" with its maximal value for
a=45° at resonance wavelength of almost 15%. Because
dichroism response distinguishes between different states of
polarization, we infer that the circular polarization dichroism
found for normal beams translates in this case directly to OAM
beams, but with the dark mode taking the place of the bright
mode. We note that for a=0°90° there is a small dichroism
visible, which indicates that also the OAM plays a role.
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Next, we quantify the dichroism regarding OAM by AGEf}A’D

(Eq. (6)) for [¢| =1 and s =+ 1 in Fig. 3e. We indeed find some
small dichroism for different values of OAM, but it is one order of
magnitude weaker than the effect of the SAM, except for a« =0°
and a = 90°. We further note that the line shape is not symmetric
with respect to the wavelength-axis for two associated angles, for
example a=15° and 165° are no mirror images. This is not
surprising because OAM light can induce a dichroism in non-
chiral nanostructures3®.

We finish our discussion of the dimer case by considering the
class dichroism (see Eq. (7) and Eq. (8)) in Fig. 3f, g. Here, we
find a dichroism in the same order of magnitude than the SAM-
D. Indeed, when looking at the definition of the class dichroism,
always a change of sign of s is involved causing the class
dichroism observed here. One difference, however, is that here for
a=0° and 90° indeed the dichroism vanishes completely.

In conclusion for the dimer we find dichroism for OAM light
and the SAM-Dichroism is the strongest among the three types of
dichroism.

Trimer. In the last example we increase the number of elements
to N =3, the trimer as sketched in Fig. 1d. The corresponding
results of the scattering cross-section are displayed in Fig. 4.

Again we first check that the trimer also has a CDS by
considering the spectrum of the scattering cross-section
for circularly polarized light shown in Fig. 4a for a twist angle
of a=45°. Two resonances at A, = 730nm and at 1, = 790nm
(left and right dotted vertical line) emerge, which belong to
different configurations of surface charge and can roughly be
classified as anti-bonding and bonding mode within each
element. Like in the previous cases of the monomer and the
dimer, a dichroic response is present. It is quantified in Fig. 4b
with the largest dichroism appearing for a = 45°.

When considering OAM light in Fig. 4c, the anti-parallel
beams with ¢ = —s excite mainly the dark mode of the trimer
occuring at A; =660 nm, while the parallel beams with ¢ =s
excite the bright mode of the trimer similar to the plane waves,
which are split into bonding and anti-bonding mode. Due to the
symmetry of the OAM light field determined by SAM and OAM
and the discrete rotation symmetry of the trimer, this
nanostructure with its three arms is able to distinguish between
the two classes of twisted light>”. However the resonances are not
clearly resolved due to the complex structure of the trimer. The
spectrum already indicates that due to the different resonance
behaviour, an OAM induced dichroism is present for such a
structure.

Now we study the different dichroisms as defined in Egs. (5)-
(8) in detail in Fig. 4d-g. We find a pronounced dichroic
behaviour regarding the SAM shown by A4 ~P of the order of
10-15%. Also for the OAM dichroism we now see a pronounced
behaviour of the same order of magnitude. Note that the OAM-
dichroism here is of same magnitude as the usual CDS. We
further note, that both dichroisms behave quite similarly within
the spectrum. Around the dark mode, they are negative, while for
the bright mode the values are positive.

To further analyze the dichroism we look at the parallel (f) and
anti-parallel class dichroism (g). Here, the two dichroisms for
SAM and OAM partially cancel. For angles a=45° we still see a
strong dichroism, but mostly at higher wavelengths, which is a
combined effect from SAM and OAM. Further, we find that for
A, PC-D the dichroism is positive, while for Ag,APCD it s
negative, indicating the strong influence of the OAM induced
dichroism.

We note that the trimer behaves fundamentally different to the
dimer. This can be traced back to the higher number of available
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Fig. 4 Dichroism in the trimer. Scattering cross-section spectrum for
an angle a = 45° for beams with £ = 0 and s = £1 (a) and circular
differential scattering AcCPS (b). Scattering cross-section spectrum for
an angle a = 45° for Bessel beams with £ = +1 and s = %1 (¢). Spectra of
several dichroisms as indicated: Spin angular momentum (SAM) dichroism
AGSAM=D for ¢ =1 (d), the orbital angular momentum (OAM) dichroism
AcOAM=D for s =41 (e), and the class dichroisms for the parallel class

141
AcYCP (f) and the anti-parallel class ActPCP (g)

modes, which are able to distinguish not only between circularly
polarized and OAM light, but further can distinguish between the
positive and negative values of the OAM /. Therefore, the
dichroic response is determined by both the the SAM and OAM
dichroism.

Discussion

In this paper we have investigated dichroism for OAM light.
Using a chiral nanostructure composed of elements of two
twisted, stacked nanorods, which exhibits a CDS, we have studied
if this dichroism can be directly translated to OAM light. While
for the monomer (a single element) the light-matter interaction
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was very weak, for the dimer (two elements) the dichroic
response to circularly polarized light could be readily transferred
to OAM light. When increasing the number of elements to three,
the structure is able to distinguish between the two signs of OAM.
We showed that an OAM induced dichroism on the same order
of the SAM induced dichroism can be obtained. Using the
example of a chiral nanostructure, our results show that a strong
SAM-D does not necessarily result in a strong OAM-D. Only
when a structure is sensitive to the sign of orbital angular
momentum, an OAM induced dichroism takes place and struc-
tures can be sorted by the OAM.

In addition to the SAM-D and the OAM-D, we introduced a
new type of dichroism depending on the class of OAM light. In
this class-D a pronounced difference within the same class of
OAM light has been found in the scattering spectra. The defini-
tions of dichroism can be also used for helicity dependent
absorption as a generalization of the circular dichroism. Our
study provides a definition of dichroism for OAM light and a firm
foundation for future works, which enables progress in the field of
optical manipulation on the nanoscale’, chiroptical spectro-
scopy®® and information technologies by encoding information
with higher densities?® using the combination of OAM and
dichroism.

Code availability. The code of the Matlab BEM package is
available from Hohenester & Triigler*°.

Data availability
The data that support the findings of this study are available from
the corresponding author uopn reasonable request.
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