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Rotating lamellipodium waves in polarizing cells
Cody Reeves1, Benjamin Winkler2, Falko Ziebert3 & Igor S. Aranson4

Cellular protrusion- and lamellipodium waves are widespread for both non-motile and moving

cells and observed for many cell types. They are involved in the cell’s exploration of the

substrate, its internal organization, as well as for the establishment of self-polarization prior

to the onset of motion. Here we apply the recently developed phase field approach to model

shape waves and their competition on the level of a whole cell, including all main physical

effects (acto-myosin, cell membrane, adhesion formation and substrate deformation via

traction) but ignoring specific biochemistry and regulation. We derive an analytic description

of the emergence of a single wave deformation, which is of Burgers/Fisher-Kolmogorov type.

Finally, we develop an amplitude equation approach to study multiple competing rotational

waves and show how they allow the cell to transition from a non-moving state towards a

polarized, steady moving state.

DOI: 10.1038/s42005-018-0075-7 OPEN

1 Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA. 2 Physikalisches Institut, Albert-
Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany. 3 Institute for Theoretical Physics, Heidelberg University,
Philosophenweg 19, 69120 Heidelberg, Germany. 4Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
16802, USA. Correspondence and requests for materials should be addressed to I.S.A. (email: isa12@psu.edu)

COMMUNICATIONS PHYSICS |            (2018) 1:73 | DOI: 10.1038/s42005-018-0075-7 |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

mailto:isa12@psu.edu
www.nature.com/commsphys
www.nature.com/commsphys


Animal cells adhere and move along substrates using a
machinery involving the acto-myosin cytoskeleton for
force generation1–3 and adhesion protein complexes to

link and transfer these forces to the substrate4. In many cases,
spreading and motion are not monotonous processes in time but
involve actin- and shape-wave phenomena5–7. For instance,
periodic lamellipodium contraction waves have been found in
adhering fibroblasts, traveling both rearwards and laterally, i.e.,
along the cell’s periphery8,9. Lateral waves typically annihilate10,
hinting at excitable medium type of waves. Similar waves were
also found in stationary Xenopus tissue culture cells11. A biolo-
gical reason for the emergence of waves may be that cells try to
explore the substrate to find other cells or to select an optimal
environment. More recently, protrusion waves have been sug-
gested to be also important for structuring the position of
adhesion sites12,13. Interestingly, shape waves have also been
found in Dictyostelium discoideum, without any contact to the
substrate14. Finally, non-steady moving cells often display actin-
related shape waves. For instance, wave generation was reported
for crawling keratocyte cells15,16 on highly adhesive substrates,
where lamellipodial protrusion waves traveled at the cell’s leading
edge from side to side with periods of few minutes.

A second important occurrence of cellular shape waves relates
to the spontaneous onset of shape polarization and directed cell
migration. There, the development of a single protrusion is
needed that grows and, when a sufficiently strong front–back
asymmetry has been achieved, leads to persistent motion17.
Instead of this generic scenario, the formation of multiple
lamellipodia was reported18 upon a decrease in membrane ten-
sion that apparently impedes the establishment of such a global
asymmetry. Similarly, by studying keratocytes from different
developmental stages of zebrafish, ref. 19 reported about cells that
form several (typically 2–4) protrusions that induce an overall
rotational motion of the cell, corresponding to lamellipodia
running around the cell’s periphery. Here the multiple protru-
sions are caused by regulatory processes, the rotating cell type
having a higher myosin light chain kinase level, a molecule which
decreases the lifetime of protrusions by increasing myosin
activity. Quite similar multiple protrusion and rotating states
have been also found for standard fish keratocytes directly after
making first contact to the substrate when arriving from sus-
pension20. There, apparently different protrusion waves are
coupled and competing, with eventually one winning and taking
it all and polarizing the cell.

One can argue that cell protrusion and lamellipodium waves
are widespread and observed for many cell types. In contrast to
actin polymerization waves that occur also in bulk7,21–23, the
coupling to both the membrane and the substrate makes the
problem much richer. One-dimensional (1D) models for this
phenomenon have been proposed in refs. 11,16, including several
regulation steps. In two dimensions, multiple protrusions were
described by a simple phenomenological model based on the cell-
edge dynamics controlled by the distance from the cell center20.
However, to date no model of lamellipodia waves exists on the
level of a whole cell. Using the recently developed phase field
approach, see refs. 24–36 for recent comprehensive reviews, we
demonstrate the occurrence of protrusion waves and analyze their
formation and competition within a minimal physical model. Our
study revealed that the onset and competition of rotating lamel-
lipodium waves can be captured in the framework of a model
incorporating cell shape dynamics, actin polymerization, sub-
strate deformation, and adhesion. Our numerical analysis of the
phase field equations is supplemented by reduced models of cell
membrane dynamics where qualitatively similar wave phenom-
ena are observed. We demonstrate that the formation of rotating
protrusions can be interpreted as a propagation of shock waves

described by a Burgers-like equation for the position of the cell
membrane. Furthermore, simple ordinary differential equations
for wave competition and the onset of cell polarization can be
derived, explaining why standing waves (corresponding to
breathing shape modes) are ultimately unstable and how waves
trigger the onset of cell polarization and motion. This work hence
demonstrates that, while biochemical regulation pathways are
obviously relevant to orchestrate the phenomenon and tailor it to
the desired function, the emergence of waves only needs the
interplay of protrusion, adhesion, and contraction. In addition to
migrating cells, our findings may provide additional insights into
the onset and complex shape dynamics of active droplets37,38.

Results
Rotating lamellipodia in the computational model. The
numerical results were obtained using an effectively two-
dimensional (2D) model framework, whose parts have been
developed previously in refs. 27–31. Namely, the cell shape is
described by a phase field ρ(r, t), which evaluates to 1 inside and
to 0 outside with a smooth transition region in between these two
states defining the membrane position. The dynamics of the actin
cytoskeleton is described via a vector field p(r, t), which has a
source located at the membrane (modeling actin nucleation) and
exerting forces on it (modeling actin polymerization ratcheting,
parameter α) provided that adhesive bonds A(r, t) have been
formed. Adhesive bonds follow a reaction–diffusion dynamics
inside the cell and transfer pushing actin forces to the substrate
via traction forces T(r, t). The substrate is deformed (described
via the displacement field u(r, t) and Kelvin–Voigt viscoelastic
response of shear modulus G), which can lead to adhesive rup-
ture. This “feedback loop” between force exertion, transmission,
and bond rupture can induce stick-slip motion, also of parts of
the cell, as described previously28,29. Details of the model are
given in the Methods section.

Although the model was originally designed to describe cell
motion, Fig. 1 shows that it also captures a variety of rotational
lamellipodium states. While the model is known to describe
polarized, moving states—see Supplementary Movie 1—depend-
ing on parameters a cell may not be capable of polarizing, or the
initial condition may not be sufficiently biased to allow for it. In
both cases, transient rotational states emerge, with the cell finally
settling to a non-motile circularly symmetric state in the former
case or polarizing with a single lamellipodium and adopting a
persistent motion in the latter. The simplest case is one rotating
shape wave as demonstrated in Fig. 1a–d and Supplementary
Movie 2. Multiple localized lamellipodia are also possible as
demonstrated in Fig. 1e–h and Supplementary Movie 3 showing
two counter-propagating shape waves and in Fig. 1i–l and
Supplementary Movie 4 showing two co-propagating shape
waves. Higher-order deformation modes are also observed, see
Supplementary Movies 5 and 6.

Figure 2 displays the traction distribution of a polarized cell
(Fig. 2a) compared to a cell displaying two counter-rotating
lamellipodia (Fig. 2b) (similar to Fig. 1e–h). It is evident that
both, the traction distribution and the polarization (as already
shown in Fig. 1) have local maxima close to the shape
deformations. Hence, they can be interpreted as local lamellipo-
dia, similar to those occurring in the experiments18–20.
Since the cell shape, the actin distribution, as well as the

adhesion build-up and substrate deformation are all coupled,
lamellipodium waves are expected to be in nonlinear competition.
In fact, typically all but one wave is damped in the long term, with
a dominant wave gaining in amplitude and polarizing the whole
cell. For cells displaying a single shape wave, the wave travels
along the cell’s periphery for several turns until it eventually
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polarizes the whole cell. One can conclude that the wave
phenomena are transient and that they finally induce directed
motion. This suggests a coupling of deformation modes and the
translational mode, see the discussion of wave competition below.

Figure 2c shows a phase diagram of the cellular dynamics
obtained when varying the substrate stiffness G vs. the actin-
associated pushing rate, α. For soft substrates, the cell polarizes
immediately without noticeable initial oscillation. In turn, if the
substrate is too stiff, all oscillatory modes are strongly dampened
and the cell remains stationary. For slow actin dynamics, cells
display a very slow, ameboid-like gliding behavior, as its effect is
too weak to polarize the cell, see Supplementary Movie 7. For too
high values of α, the cell is unable to maintain its integrity, with
(lamellipodium) fragments beginning to split off from the main
cell body. In between these boundaries in parameter space,
rotational states with a diversity of modes exist: single rotating
lamellipodia, double co-rotating and counter-rotating lamellipo-
dia, and even higher modes. This corroborates that the wave
phenomena emerge in the transition region between conditions
where cells are easily polarizable and conditions where cells can
not polarize, as an additional route to break the symmetry and
initiate cell motion. Overall, the number of protrusions tends to
increase with the cell’s size, although the detailed dependence
is not simple.

Fourier analysis of rotating states. To obtain additional insight,
we extracted the Fourier modes of the cellular shape as a
function of time. The position of the membrane was identified
with the location of the ρ= 1/2-isoline. The membrane was
then discretized using quadratic interpolation to produce

discrete Cartesian coordinates, which were transformed into
radial coordinates (ϕ, r(ϕ)) relative to the center of mass (c.o.m.)
determined by rc:o:m: =

R
ρrdxdy=

R
ρdxdy. The Fourier modes as

defined by

~rk ¼
XN�1

n¼0

r ϕn
� �

e�i2πnk=N for k ¼ 0; 1; 2; ¼N � 1 ð1Þ

were then determined numerically performing a Fast-Fourier
Transform (FFT) of r(ϕ).

The leading order Fourier modes are shown in Fig. 3a for the
case of a single rotating wave and in Fig. 3b for the case of two
counter-rotating waves. For the single wave case, the leading
Fourier modes monotonically increase until the rotating wave is
strong enough to polarize the cell. For the two wave case, the plot
shows a periodic pattern—as the two waves separate on one side
of the cell and collide on the opposite side. Eventually, one wave
wins the competition, the weaker becomes damped and from
this point on the Fourier modes resemble the single wave case.
In the process of polarization, the cell typically forms a transient
elongated elliptical shape, as demonstrated in Fig. 1c. Finally, it
eventually stabilizes into the steady gliding shape, as seen in
Fig. 1d. The build-up of this transient elongated shape is why the
second mode dominates the Fourier spectrum prior to cell
polarization.

In the following, we will investigate in more detail the
formation of the waves, how these waves interact and compete
with each other, and how the rotational states eventually polarize
the cell.

a b c d

e

i j k l

f g h

Time

Fig. 1 Time evolution of three select rotational states. a–d shows a cell with one lamellipodium wave rotating clockwise. Finally, the cell polarizes, i.e. forms
a single stable lamellipodium, leading to persistent motion. e–h shows a cell with two lamellipodium waves rotating in opposite directions. The two waves
are in nonlinear competition, with one of them finally winning (h), again leading to polarization and persistent motion, similar to the former case. i–l shows
a cell with two lamellipodium waves rotating in the the same (counterclockwise) direction. The waves exhibit similar nonlinear competition and the same
long-term motility behavior as in the previous cases. The magnitude of actin polarization, p(r), is color coded (with blue for small and yellow for large
values) and its direction shown as the black arrows. The gray arrows indicate the direction of rotation for the deformation waves or the direction of motion
in case of a polarized cell
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Formation of rotational waves. To understand the formation
process of localized lamellipodium waves, we performed an
asymptotic reduction of the full computational model. We
approximate the phase field for a quasi-circular cell close to the
stationary state as

ρðr; ϕ; tÞ ¼ 1
2

1� tanh
r � r0ðϕ; tÞ
2
ffiffiffiffiffiffiffiffi
2Dρ

p !" #
; ð2Þ

where r0(ϕ, t) is the location of the cell membrane, see also ref. 39.
As shown in Methods, we can approximate the stationary values
of the adhesion field and the actin polarization close to the cell’s
boundary by As ≈ anlρ/s, and ps ≈−β∇ρ/ τ�1

1 þ ð3=4Þτ�1
2

� �
. Using

these approximations, the dynamic phase field equation can then
be reduced by evaluating the corresponding solvability condition
to a single 1D partial differential equation for the membrane
deformation, δr0, from a reference value R0, i.e., δr0(ϕ, t)= r0(ϕ,
t)− R0:

∂t δr0ð Þ ¼ Dρ

R2
0
∂2ϕ δr0ð Þ � ffiffiffiffiffiffiffiffi

2Dρ

p
μδV

� Dρ

R0
1� δr0

R0

� �
þ ~αþ ~α

R2
0

∂ϕ δr0ð Þ
� �2

;
ð3Þ

where δV = 1
2

R 2π
0 δr0 þ R0ð Þ2dϕ� πR2

0 is related to the volume
conservation of the cell (corresponding in the effective 2D model
to the conservation of the cell’s contact area). ~α is an effective
parameter containing the actin polymerization rate, the pushing
force it exerts, and the myosin-mediated contractile forces in a
combined fashion (see Methods, Eq. (27), and subsequent dis-
cussion). The equation has a diffusive term and a contribution
from volume conservation. The third term leads to linear growth
of perturbations, while the nonlinear term ~(∂ϕδr0)2 saturates the
growth. Finally, the pushing due to actin polymerization leads to
a source term attempting to globally increase δr0.

This Burgers-like equation suggests that the lamellipodium
waves are a kind of shock wave traveling around the cell’s periphery
as the result of some small local perturbation in δr0. In fact, a
numerical integration of Eq. (3), using as initial condition a small
narrow peak, is shown in Fig. 4a and Supplementary Movie 8: two
rotating waves develop and travel in opposite directions; the front
of the wave is where j∂ϕδr0j is the largest. The diffusion term
diminishes the back end of the wave, while δV ensures the
conservation of the overall volume of the cell. The qualitative
behavior is the same as for the full phase field model shown in
Fig. 4b, where the cell radius r0 was interpolated from a simulation,
see the Fourier analysis of rotating states discussed above.
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Fig. 2 Traction distribution and diagram of cellular states. Shown is the distribution of traction forces, T(r), for a polarized cell (a) and for a cell with two
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pushing rate α vs. substrate stiffness G. The area enclosed in dashed lines (guide to the eye) is the region where rotational waves are observed
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The deformation dynamics of lamellipodia is caused by the
simultaneous action of molecular motors and the ratcheting of
actin, pushing the membrane out radially in a, in general, non-
uniform fashion. This is countered by a restoring force resulting
from the conservation of area. Since actin is oriented roughly
normal to the membrane, once a lamellipodium protrusion forms
the actin along the sides of the lamellipodium has a significant
component in the azimuthal direction. This effect is present in
Eq. (3) as the last term as j∂ϕ δr0ð Þj is greatest along the
lamellipodium sides. The azimuthal component then forces the
lamellipodium to begin rotating with the lamellipodium sides
becoming the wave fronts: the actin along one side forces it
clockwise and the other counterclockwise, effectively splitting the
protrusion into two separate counter-rotating waves. The most
generic scenario observed is hence a pair of counter-rotating
waves originating from a single lamellipodium.

By applying a Cole–Hopf transformation, δr0 =ðDρ=~αÞlogðWÞ, the Burgers-like Eq. (3) can be reduced to a
Fisher–Kolmogorov–Petrovsky–Piskunov-type equation40

∂tW ¼ Dρ

R2
0
∂2ϕW � ~α

R0
W 1þ fδV � Dρ

~αR0
logðWÞ

	 

; ð4Þ

where fδV = R0
~α ð

ffiffiffiffiffiffiffiffi
2Dρ

p
μδV � ~αÞ. From its structure, this

equation is known to allow for moving fronts connecting
stable and unstable equilibria in certain parameter regimes.
Further analysis of this equation is detailed in Methods.
Especially, the existence of transient traveling wave solutions
around r0≃ R0 is found by phase plane analysis, supporting the
numerical findings.

Competition of rotational waves. While the previous section
explains the formation of the rotating waves, the question
remains how different rotational modes are coupled together,
as well as how the waves affect the cell’s velocity and vice
versa. We here propose a phenomenological dimension-
less reduced system of ordinary differential equations to explain
the dynamics of wave competition, as well as how waves trigger
cell polarization.

For simplicity, consider two rotating waves with complex
amplitudes R1 and R2, each with corresponding frequency ω1 and
ω2. The waves are assumed to be small perturbations of the
circular cell, i.e., r0(ϕ, t)= R0[1+ R1(ϕ, t)exp(iω1t)+ R2(ϕ, t)exp
(iω2t)]+ c.c., such that R1j j; R2j j � 1. Then, as detailed in
Methods, a system of amplitude equations can be derived by
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Fig. 3 Time evolution of the amplitudes (in logarithmic scale) of the leading Fourier modes of the cellular shape. a A single rotating wave and b two
competing counter-rotating waves, with finally one of them winning
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evaluating the solvability condition of the system:

∂tR1 ¼ ϵR1 � ζ R1j j2þγ R2j j2� �
R1; ð5Þ

∂tR2 ¼ ϵR2 � ζ R2j j2þγ R1j j2� �
R2: ð6Þ

Here ϵ is the supercriticality parameter, ζ describes amplitude
saturation, and γ is the wave coupling parameter. For γ > 1, only
one wave survives competition, the surviving wave being
determined by the initial conditions. As we obtain γ= 2 (see
Methods), this is indeed the case for the system at hand,
explaining the behavior observed in Fig. 3b). As shown in the
Methods section, the supercriticality parameter ϵ is proportional
to the (square of the) actin polymerization parameter β of the
phase field model: in fact, actin pushes the membrane outwards
radially and causes the waves to grow in size. The amplitude
saturation parameter ζ in turn is proportional to the parameter d0
in the underlying model, which describes the rupturing of
adhesions due to high cell traction: the higher the rupturing rate,
the lower the force that can be transferred and consequently the
lower the protrusion force and the size of the protrusion. Note
that this parameter was not significant for the formation of the
waves, but it is for the competition of multiple waves.

Now let us consider the time evolution for the cell’s center of
mass velocity. It is convenient to formally rewrite the velocity
vector, v ¼ vxx̂ þ vyŷ, as a “complex velocity,” V̂ ¼ vx þ ivy .
First, we take the velocity to be uncoupled to the rotating waves.
Motivated by the observation that in the full model cells exhibit a
subcritical transition to the moving state27,28, we suggest the
following generic equation for the onset

∂t V̂ ¼ g V̂
� � ¼ �aV̂ þ b V̂

�� ��2�c V̂
�� ��4V̂ : ð7Þ

In fact, this equation has a subcritical transition toward motion, if
a, b, c > 0 and (b/c)2− 4a/c > 0. In this case, there are three
equilibria: V0= 0 and

V2
± ¼ b=2c±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=2cÞ2 � a=c

q
: ð8Þ

Both V0 (stationary cell) and V+ (polarized cell) are stable, while
V− is an unstable solution.

Now, the symmetry—i.e., the fact that the translation mode has
the angular dependence exp(iϕ)—suggests the following leading
order coupling of the center of mass velocity and the rotational
waves

∂t V̂ ¼ g V̂
� �þ q1 R1e

iω1t þ R2e
iω2t

� �þ q2 R1j j2þ R2j j2� �
V̂ ; ð9Þ

∂tR1 ¼ ϵR1 � ζ R1j j2þγ R2j j2þw V̂
�� ��2� �

R1; ð10Þ

∂tR2 ¼ ϵR2 � ζ R2j j2þγ R1j j2þw V̂
�� ��2� �

R2: ð11Þ

For our sakes, we are only concerned with the real components of
the rotating waves. Results from Eqs. (9)–(11) can also be
compared to simulations using the full computational model in a
similar fashion as described above for the Fourier mode analysis:
we interpolated r0 and determined the location of the peak of the
jth wave in polar coordinates (rj, ϕj). Its amplitude can then be
evaluated as Rj= exp(iϕj)(rj− R0)/R0. Finally, the cell’s center of
mass velocity can be evaluated by taking the time derivative of the
center of mass position, v ¼ _rc:o:m:.

Let us first consider the case of one wave rotating with
frequency ω1= ω. As shown in Fig. 5a as the solid curves, the
rotating wave perturbs the cell, inducing oscillations of the cell’s
center of mass velocity, as seen in the terms ∝q1, q2 in Eq. (9).
Eventually, the velocity stabilizes to V+ since, in turn, it dampens
the rotating wave as expressed by the terms ∝w in Eqs. (10) and
(11). In the full computational model, the dashed curves, the cell
has a transient elongated elliptical shape when it polarizes,
accompanied by an increasing velocity, and the cell eventually
settles in the steady moving state. We can also consider the case
of two counter-rotating waves such that ω1=−ω2= ω, as shown
in Fig. 5b. Qualitatively, the counter-rotating case is similar to the
single wave case: as before, the rotating waves disturb the cell
causing oscillations in the velocity. The two waves compete until
only one survives and the other is damped, with the initial
conditions determining which one of the waves survives.
Eventually, the cell polarizes and its velocity dampens the last
remaining rotating wave (blue curve). Figure 5a, b directly
compare the dynamics of the reduced amplitude equations to the

10

�r
0 

(µ
m

)

0

0 1 2 3
�

4 5 6
–10

a
10

b

�r
0 

(µ
m

)

0

0 1 2 3
�

4 5 6
–10

10

�r
0 

(µ
m

)

0

0 1 2 3
�

4 5 6
–10

0 1 2 3
�

4 5 6

10

�r
0 

(µ
m

)

0

–10

10

�r
0 

(µ
m

)

0

0 1 2 3
�

4 5 6
–10

0 1 2 3
�

4 5 6

10

�r
0 

(µ
m

)

0

–10

10

�r
0 

(µ
m

)

0

0 1 2 3
�

4 5 6
–10

0 1 2 3
�

4 5 6

10

�r
0 

(µ
m

)

0

–10

Fig. 4 Propagation of a pair of shape waves. a Time evolution of the perturbation of the cell radius δr0(ϕ) vs. ϕ using the asymptotic reduced description,
Eq. (3). b Time evolution obtained from the full phase field model. The initial condition for a was a narrow symmetric perturbation on an otherwise circular
cell. Both pictures clearly show the emergence of a pair of waves moving in opposite directions

ARTICLE COMMUNICATIONS PHYSICS | DOI: 10.1038/s42005-018-0075-7

6 COMMUNICATIONS PHYSICS |            (2018) 1:73 | DOI: 10.1038/s42005-018-0075-7 | www.nature.com/commsphys

www.nature.com/commsphys


2
a

1.5

W
av

e/
ve

lo
ci

ty
 m

ag
ni

tu
de

1

0.5

0

–0.5

–1
0 20 40 60

Time (s)
80 100

b

W
av

e/
ve

lo
ci

ty
 m

ag
ni

tu
de

2.5

2

1.5

1

0.5

0

–0.5

–1
0 20 40 60

Time (s)

80 100

c

W
av

e/
ve

lo
ci

ty
 m

ag
ni

tu
de

0.6

0.4

0.2

0

–0.2

–0.4
0 50 100

Time (s)
150 200

Fig. 5 Coupling of rotating waves and center of mass motion. a–c Shown are the real components of rotating waves, R1 (in blue) and R2 (in green, if
applicable), and the center of mass velocity of the cell (in red) for different scenarios: a a single rotating wave, b two waves rotating in opposite directions
with the same angular frequency, c a single wave that is less driven by the actin-related processes (i.e., with smaller ϵ). In a–c, continuous curves have been
obtained using the reduced amplitude Eqs. (9)–(11), the dashed curves using the full phase field model (with insets corresponding to the respective
shapes). The velocity from the full phase model has been rescaled for viewing purposes and the reduced amplitude equations are non-dimensionalized. The
black horizontal dashed line indicates the unstable velocity V−. The timescale for the full model was normalized to the timescale of the reduced model. For
c, the R1 values from the full model were taken to be the second moment of ρ and the amplitude was normalized for comparison. Parameters for the
reduced model: ω= 0.25, γ= 2.0, ζ= 1.0, w= 0.18, a= 0.12, b= 0.23, c= 0.1, q1= 0.3, q2= 0.7; ϵ ¼ 0:2 for a, b and ϵ ¼ 0:1 for c
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one obtained in the full phase field model (solid vs. dashed
curves). Although the oscillations differ in amplitude and are
more complex in the full model—due to the neglect of higher
modes in the reduced model—the general behavior is well
captured.

Finally, we can consider the case of a single rotating wave with
ω1= ω and using a smaller ϵ value. This case provides insight into
the ameboid-like motility as found in Fig. 2b. Note that this
motility state is common for low values of α (one has ϵ / α2 as
we used β∝ α, see Methods and Supplementary Table 1). Often
the oscillations for this state are not distinct rotating waves about
a roughly circular cell but instead cause shape deformations of the
whole cell. It is then instructive to measure the strength of the
oscillation by tracing the second moment of ρ with respect to
the center of mass:

R
r� rc:o:m:ð Þ2ρðx; yÞdxdy. In this case, the

rotational oscillation is not capable to drive the cell’s velocity
beyond the unstable node (V−). Instead, eventually both the
center of mass velocity and the shape wave coexist and oscillate
out of phase with respect to each other, as seen in Fig. 5c.
Therefore, a possible explanation for the ameboid-like motion is
that weak rotational oscillations continue to exist, forcing the cell
to periodically change speed and direction, similar to the
meandering core of a spiral wave41.

Discussion
We used a whole-cell model that incorporates all relevant phy-
sical processes—the dynamics of the actin-myosin network, the
formation of adhesive bonds to the substrate, and the substrate
deformation via cellular traction forces—to study shape waves of
spreading and polarizing cells. Although we neglected the specific
biochemistry and regulation pathways present within the cell,
rotating lamellipodium waves similar to those seen experimen-
tally have been found and we could investigate in depth their
occurrence, their competition, and their triggering of directed
motion.

Our study suggests that the rotating states occur only within a
limited range of the parameters—as exemplified by the actin
propulsion rate and the substrate stiffness—and that the emer-
gence of these waves enlarges the parameter range wherein cells
are able to polarize. It also shows that the emergence of these
waves only requires protrusion, adhesion, and feedback via
traction-mediated breaking of adhesive bonds. One can antici-
pate a roughly linear increase in the number of protrusions with
an increase in cell size. However, owing to nonlinear interaction
between the protrusion waves, the cell size dependence is more
complex and requires an in-depth computational study, which is
beyond the scope of this work.

Our analysis is presently limited to a 2D description. This
approximation is justified by the fact that the lamellipodium
thickness is much smaller than the spatial scale of the protrusions
and that the cell body is typically not participating in the front
dynamics. One may hence expect that a three-dimensional con-
sideration of the phenomenon will not change the qualitative
conclusions on the physical mechanisms associated with rotating
lamellipodia waves. A delicate point, however, is to what extent
the spreaded area is conserved or changed by material flow from
the third dimension. Hence, a 3D analysis may bring additional
insights into the spatial and temporal organization of lamellipo-
dium waves but at this point is still computationally prohibitive
and left for future study.

Another important question is to what extent external stimuli
and/or internal regulation processes lead to similar shape waves
and rotating states or whether they only orchestrate the ones
induced by the described physical mechanism. To answer this
question, as demonstrated in ref. 42, the approach can be

generalized to account for the currently discussed regulation
pathways, like Rho/Rac guanosine triphosphate (GTP)-ases43 or
Ena/VASP proteins16.

The developed analytical reduced description for how perturba-
tions in the cell’s periphery lead to the formation of rotating waves
will stimulate further analysis. Not only is its agreement with the
full numerics very reasonable but, importantly, such equations of
Burgers- or Fisher–Kolmogorov–Petrovsky–Piskunov-type, respec-
tively, put the cellular shape waves in the mathematically well-
studied framework44 of waves in reaction–diffusion systems or
excitable media and allow future analytical in-depth studies.

Finally, the proposed amplitude equations allowed us to
rationalize competition of cellular shape waves and on a phe-
nomenological level also how these waves can trigger—via generic
symmetry-imposed couplings—the onset of the cell’s center of
mass velocity. This framework is again capable of reproducing the
dynamics seen in the full cell model semi-quantitatively. It may
also provide insight into the onset of rotating states in related
systems like active droplets45 and the so-called “circus
movements”46,47 found in blebbing blastomere cells from, e.g.,
fish embryos, where single blebs travel around the cell’s periphery
for long times.

While the present work focused on the dendritic actin near the
membrane, future work could also incorporate actin waves
experimentally seen in the bulk of the cell21,23 and study how they
induce and/or affect rotational states. Furthermore, similar con-
cepts and ideas can be used for the description of active poro-
elastic droplets modeling Physarum polycephalum dynamics48,49.
Another intriguing aspect is the possibility of synchronization of
shape waves of different, close-by cells due to mechanical and
chemical interactions, calling for dedicated experiments.

Methods
Model. As developed in refs. 27,29,31, we use the following fields to describe
effectively the 2D cell: first, an Allen–Cahn phase field, with ρ(r, t)= 1 inside the
cell and ρ= 0 outside, augmented by a (2D) volume conservation to model the cell
shape; second, a vector field p(r, t) describing the actin orientation and degree of
ordering. And third the density of engaged adhesive bonds A(r, t) that is coupled to
the deformable substrate.

The phase field equation reads

∂tρ ¼ DρΔρ� ð1� ρÞ δðρÞ � σ pj j2�ρ
� �

ρ� αAðp � ∇ρÞ ð12Þ

with the phase field parameter given by

δðρÞ ¼ 1
2
þ μ

Z
ρdxdy � πR2

0

� 

: ð13Þ

Here δ ¼ 1
2 is the stationary point and the second term introduces 2D contact

area conservation with target area V0 ¼ πR2
0 for some fixed radius R0, with the

stiffness of the constraint given by μ. As explained in more detail before27, the term
∝σ models actin network contraction by myosin molecular motors with constant
rate σ and the last term models the motion (“advection”) of the membrane due to
the ratcheting of actin filament polymerization, with velocity α. Only adhering
filaments can transfer the force to the substrate, hence the proportionality to A.

The equation modeling actin dynamics reads

∂tp ¼ DpΔp� βe�T1cδS∇ρ� τ�1
1 p� τ�1

2 1� ρ2
� �

p� γ ∇ρ � pð Þp: ð14Þ

The first term accounts for diffusion of actin filaments/elasticity in the ordered
state. The second term is a source and models that actin is generated at the
membrane with (polymerization) rate β. It includes the effect of membrane tension
feedback on polymerization as developed in ref. 31: The constant T1 sets the
strength of the membrane tension, c ¼ �∇ � ∇ρ

∇ρj j is the local curvature of the

cell membrane and δS ¼ SðρÞ�S0
S0

is (proportional to) the excess surface area, where

SðρÞ= R ∇ρj jdxdy and S0 = 2πR0 þ 4π
ffiffiffiffiffiffiffiffi
2Dρ

p
log2 are, respectively, the

instantaneous and the reference surface area, the latter being defined as S(ρs) with
ρs from Eq. (19) below. The next two terms in Eq. (14) are sinks and model the
degradation/depolymerization of actin filaments inside the cell with the typical
timescale τ1 and suppress actin outside the cell, respectively. The final term coarsely
models the myosin motors’ ability to form antiparallel actin bundles reducing the
actin polarization and breaks the symmetry between the front and rear of the cell27.
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The engaged adhesion bonds are modeled by an equation of reaction–diffusion
type as

∂tA ¼ DAΔAþ ρ a0 pj j2þanlA
2

� �� dðuÞ þ sA2
� �

A: ð15Þ

The first term is diffusion and the second term models attachment, a linear
contribution in the presence of actin, and a nonlinear one modeling collective
effects. The third term restricts the amount of adhesions by excluded volume, ∝s,
and substrate-dependent detachment. The detachment rate

dðuÞ ¼ d0
2

1þ tanh b uz¼Hj j2�u2c
� �� �� � ð16Þ

accounts for the fact that the substrate is soft and deformed by the cell via
the traction forces it exerts on it. In Eq. (16), we made the assumption that
adhesions will break where the local substrate deformation directly underneath the
cell, |uz=H|= |u(x, y, z=H)|, exceeds a critical value uc. The substrate is modeled
as a 3D isotropic homogeneous visco-elastic solid of Kelvin–Voigt type,
introducing the shear modulus G, a viscosity η (modeling viscous losses due to
adhesion rupture), and the effective height of the substrate, H. This treatment has
been thoroughly discussed in refs. 29,36, yielding the displacement at the top of the
substrate, uz=H, due to the traction force distribution exerted by the cell, defined as

T ¼ �Aρ pþ cT1δSn̂�
R
A pþ cT1δSn̂ð ÞρdxdyR

Aρdxdy

	 

: ð17Þ

Here the first two terms in the bracket are the counter forces related to actin
polymerization and membrane tension preserving the membrane surface area. The
final term is of frictional origin and ensures that the net force on the substrate is
zero, as it should, the cell being an isolated self-propelled object.

Numerical method. The system of equations Eqs. (12), (14), and (15), including
the displacement field uz=H, were solved numerically using a highly parallelized
algorithm implemented on a graphics processing unit, using Compute Unified
Device Architecture (CUDA). As the phase field takes care of the deformable and/
or moving boundaries, the problem can be solved on a double periodic square
domain using classical operator splitting50, pseudo-spectral method, and FFT. For
a more comprehensive review of the numerical scheme, see ref. 36. The phase field
curvature was computed (using finite differences) only in a tube around the cell
membrane31. Typical parameter values are listed in Supplementary Table 1. Field
distributions for a stationary cell are shown Supplementary Fig. 1.

The qualitative motility behavior was tested to be consistent when refining the
spatial mesh or the time step. Simulations were started with a small amount of
random noise added within the circular region modeling the cell, where the initial
value of the phase field is ρ(x, y, t= 0)= 1. The polarization of the cell and/or the
formation of rotating waves was consistent irregardless of the initial noise; the
noise realization, however, affects the direction of polarization or, in the case of
multiple waves, which wave dominates and survives.

Derivation of reduced descriptions of wave formation. Consider first the
homogenous 1D case of the phase field equation. Rewriting it as ∂tρ ¼ Lρ½ρ� using
the self-adjoint differential operator Lρ

Lρ½ρ� ¼ Dρδ
2
r ρ� ð1� ρÞð1=2� ρÞρ; ð18Þ

it is easy to show that

ρsðrÞ ¼
1
2

1� tanh
r � R0

2
ffiffiffiffiffiffiffiffi
2Dρ

p !" #
ð19Þ

is the solution of Lρ ρs
� � ¼ 0, i.e., ρs solves the stationary 1D phase field equation

[for ease of notation, one defines ~r= r � R0ð Þ=ð2 ffiffiffiffiffiffiffiffi
2Dρ

p Þ]. If we assume a large cell
(R0=

ffiffiffiffiffiffi
Dρ

p � 1), it can be also shown that Eq. (19) is the leading order approx-
imation for the stationary solution of the 2D homogeneous phase field equation.

Now consider the full system of equations. For simplicity, we will ignore the
diffusion terms of p and A, take δS= 0, and define δV ¼ R ρdxdy � πR2

0:

∂tρ ¼ DρΔρ� 1� ρð Þ 1
2
� μδV � σ pj j2�ρ

	 

ρ� αAðp � ∇ρÞ ð20Þ

∂tp ¼ �β∇ρ� τ�1
1 p� τ�1

2 1� ρ2
� �

p� γð∇ρ � pÞp ð21Þ

∂tA ¼ a0ρ pj j2þanlρA
2 � sA3 � dðuÞA ð22Þ

We assume that the terms involving d(u) and a0 in the adhesion equation are
negligible for the stationary case; we will include and discuss them later. Therefore,
we can approximate the stationary solution as As � anl

s ρ. For the region inside the
cell (ρ= 1), the stationary values then are ps= 0 and As ≈ anl/s, while outside the
cell (ρ= 0) one trivially has ps= 0 and As= 0.

The actual region of interest is the one near the cell membrane ( ~rj j � 1).
Expanding Eq. (19), one gets the stationary values in this region as ρs ≈ 1/2 and
hence As � anl

2s . Furthermore, we can approximate ps by setting ∂tps= 0 and taking
the scalar product of Eq. (21) with ∇ρ to obtain

0 ¼ �β ∇ρj j2� τ�1
1 þ ð3=4Þτ�1

2

� �
ps � ∇ρð Þ � γ ps � ∇ρð Þ2; ð23Þ

which can be solved to get approximately

ps �
�β

τ�1
1 þ ð3=4Þτ�1

2
∇ρ ¼ �~β∇ρ; ð24Þ

defining ~β as the effective polymerization vs. degradation rate of the actin filaments.
These approximations for the stationary values of ρ, A, and p are compared to the
numerically obtained values in the full model in Supplementary Fig. 2.

We now generalize Eq. (19) to non-circular cells with radius r0(ϕ, t), as already
given in Eq. (2). Assuming small perturbations of the stationary state, we can use
A ≈ As and p ≈ ps and write Eq. (20) as Lρ½ρ� ¼ 0 with

Lρ½ρ� ¼ ∂tρ� Dρ

r ∂rρ�
Dρ

r2 ∂
2
ϕρþ μδVð1� ρÞρ

�σ~β2ρð1� ρÞ ∇ρj j2� αanl~β
s ρ ∇ρj j2:

ð25Þ

Now, in order for a nontrivial solution of Eq. (25) to exist, its solvability
condition h∂rρ;Lρ½ρ�i ¼ 0 must be satisfied, where the inner product is defined by

A;Bh i ¼ R 2π0 R10 ABrdrdϕ and ∂rρ is the solution to the linearized Eq. (20). In the
large cell limit and using Eq. (2), a straightforward calculation shows that the
solvability condition is satisfied given the following equation is fulfilled

∂t r0 ¼
Dρ

r20
∂2ϕr0 � μ

ffiffiffiffiffiffiffiffi
2Dρ

q
ðδVÞ � ~α

� �
� Dρ

r0
þ ~α

∂ϕr0
r0

	 
2

; ð26Þ

with the effective actin propulsion parameter

~α ¼
~β

10
ffiffiffiffiffiffiffiffi
2Dρ

p αanl
s

þ 3σ~β
7

 !
: ð27Þ

Note that this parameter contains all main non-equilibrium effects of the
cytoskeleton: polymerization vs. degradation (~β), actin ratcheting, and force
generation against the membrane (α) provided actin adheres (anl), as well as acto-
myosin contraction (σ). Finally, introducing δr0(ϕ)= r0(ϕ)− R0 as the radial
perturbation from R0, Eq. (26) can be rewritten in the form given by Eq. (3).

This Burgers-like equation can be transformed into the Kolmogorov-type
Eq. (4) as indicated in the main text.

Studying traveling waves, by assuming W(ϕ, t)= Z(ϕ− ωt)= Z(ξ), this
equation further simplifies into a second-order differential equation (ODE),

and finally, introducing Y= ∂ξZ, into a system of first-ODEs

∂ξZ ¼ Y; ∂ξY ¼ �ω
R2
0

Dρ

Y þ ~α

R0
Z 1þ fδV � Dρ

~αR0
logðZÞ

	 

: ð28Þ

Using linear stability analysis and assuming fδV � 0, the system has a saddle point
at (Z, Y)= (0, 0) and a stable node at ðZ;YÞ ¼ ðexpð~αR0=DρÞ; 0Þ, corresponding to
large shape deformations (δr0≃ R0). The phase plane flow of Eq. (28) is shown
in Supplementary Fig. 2.

Derivation of equations describing wave competition. Having demonstrated
that rotating waves can form from a perturbed circular cell, we now assume their
existence and deduce equations for how the amplitudes of several waves as well as
the cell’s center of mass velocity couple. In order to do so, we include the terms of
the adhesion Eq. (15) that were previously neglected (but still neglect diffusion).
Similar to the previous section, we define

LA½A� ¼ �anlρA
2 þ sA3 ð29Þ

and accordingly write Eq. (22) as

LA½A� ¼ ∂tA� a0ρ pj j2þdðuÞA: ð30Þ

Taking the previously obtained result, As ¼ anl
s ρ, we know that it fulfills LA½As� ¼ 0.

Now we consider a cell with two harmonic rotating waves, with small non-
dimensional amplitude Ri and angular frequency ωi. We can hence write the cell’s
radius r0 as

r0ðϕ; tÞ ¼ R0 1þ R1ðϕ; tÞe�iω1 t þ R2ðϕ; tÞe�iω2 t
� �þ c:c:; ð31Þ

with R1j j; R2j j � 1. Furthermore, we will assume Aðr; ϕ; tÞ � anl
s ρðr; ϕ; tÞ and

pðr;ϕ; tÞ � �~β∇ρðr; ϕ; tÞ, with ρ given by Eq. (2).
The step-like detachment of adhesive bonds, d(u), as defined in Eq. (16) and

entering Eq. (30) is triggered by an increase of substrate deformation, |uz=H|2,
caused in turn by the traction force exerted by the cell. As evident from Fig. 1a,
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the traction distribution is significant primarily at the front of the traveling
waves. This can also be seen by explicitly evaluating |T|2 ≈ |−ρAp|2 using the
approximations listed above,

Tj j2� anl~β
4s

ffiffiffiffiffiffiffiffi
2Dρ

p !2

sech4
r � r0
2
ffiffiffiffiffiffiffiffi
2Dρ

p !
1þ ∂ϕr0

r

	 
2
" #

ð32Þ

showing that the traction is high, due the perturbations of the cell’s radius r0,
only near the front where actin polarization is high. We can therefore
approximate Eq. (16) by d(u) ≈ d0|∂ϕr0|2|∇ρ|, which, as we assume harmonic
traveling waves and extract only slowly-varying contribution, further simplifies
to

dðuÞ � d0 R1e
�iω1 t þ R2e

�iω2 tj j2 ∇ρj j
d0 R1j j2þ R2j j2þR1R

�
2e

iðω2�ω1Þt þ R�
1R2e

iðω1�ω2Þt
� �

∇ρj j ð33Þ

where R�
i denotes the complex conjugate of Ri.

Using all the approximations motivated above, Eq. (30) reads

0 ¼ LA
anl
s
ρ

h i
¼ anl

s
∂tρ� a0~β

2 ∇ρj j2ρþ dðuÞ anl
s
ρ ð34Þ

and integration yields the condition

0 ¼
Z 2π

0

Z 1

0

anl
s
∂tρ� a0~β

2 ∇ρj j2ρþ dðuÞ anl
s
ρ

h i
rdrdϕ: ð35Þ

It is then straightforward to show, using Eqs. (2), (31), and (33), that Eq. (35) is
satisfied if the amplitudes R1 and R2 follow the coupled amplitude equations given

by Eqs. (5) and (6) with supercriticality parameter ϵ ¼
ffiffi
2

p
a0 s~β

2

27anl
ffiffiffiffi
Dρ

p and nonlinear

couplings ζ ¼ do
2 and γ= 2.

Code availability. Code used to generate the data shown here are available upon
reasonable request from the corresponding author.

Data availability
Data that supports the findings of this study are available upon reasonable request
from the corresponding author.
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