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Confinement and asymptotic freedom with
Cooper pairs
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One of the most profound aspects of the standard model of particle physics, the mechanism

of confinement binding quarks into hadrons, is not sufficiently understood. The only known

semiclassical mechanism of confinement, mediated by chromo-electric strings in a con-

densate of magnetic monopoles still lacks experimental evidence. Here we show that the

infinite resistance superinsulating state, which emerges on the insulating side of the

superconductor-insulator transition in superconducting films offers a realization of confine-

ment that allows for a direct experimental access. We find that superinsulators realize a

single-color version of quantum chromodynamics and establish the mapping of quarks onto

Cooper pairs. We reveal that the mechanism of superinsulation is the linear binding of

Cooper pairs into neutral “mesons” by electric strings. Our findings offer a powerful

laboratory for exploring and testing the fundamental implications of confinement, asymptotic

freedom, and related quantum chromodynamics phenomena via desktop experiments on

superconductors.
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The standard model of particle physics is extraordinarily
successful at explaining many facets of the physical realm.
Yet, one of its profound aspects, the mechanism of con-

finement binding quarks into hadrons, is not sufficiently under-
stood. The only known semiclassical mechanism of confinement
is mediated by chromo-electric strings in a condensate of mag-
netic monopoles1–3 but its relevance for quantum chromody-
namics still lacks experimental evidence. This suggests a quest for
systems that could allow for direct experimental tests of the string
confinement mechanism. To identify such a system we follow a
brilliant insight of ‘t Hooft4, who appealed to a solid state physics
analogy in a Gedanken experiment to explain quark confinement.
He demonstrated that it is realized in a phase which is a dual twin
to superconductivity, in a sense that it has zero particle mobility,
and called hence this phase a “superinsulator”. The infinite-
resistance superinsulating state was indeed first predicted to
emerge in Josephson junction arrays (JJA)5 and then in dis-
ordered superconducting films6,7 at the insulating side of the
superconductor-insulator transition (SIT)8–12. Experimentally,
superinsulators were observed in titanium nitride (TiN) films7,13

and, albeit under a different name, InO films14 and have become
ever since a subject of an intense study, see15–17 and references
therein.

Originally, the idea of superinsulation5,7 grew from the sup-
posed 2D logarithmic Coulomb interactions between Cooper
pairs in the critical vicinity of the SIT realized in lateral Josephson
junction arrays5,12. Here we show that, starting with the uncer-
tainty principle for Cooper pairs7 and building solely on the most
general locality and gauge invariance principles, one constructs
the effective action for superinsulators, which is exactly Poly-
akov’s compact quantum electrodynamic (QED) action3,18.
Accordingly, superinsulation emerges as an explicit realization of
the Mandelstam–‘t Hooft S-duality1,2 in materials that harbor
Cooper pairs and constitutes a single-color version of the quan-
tum chromodynamic (QCD) vacuum, in which Cooper pairs play
the role of quarks. We thus find that the Cooper pair binding
mechanism in a superinsulator, leading to the infinite resistance
at finite temperatures, is the linear, rather than logarithmic,
confinement of charges into neutral “mesons” due to Polyakov’s
electric strings3,18, arising in the vortex condensate. The Abelian
character of the compact QED, albeit a strong coupling gauge
theory, allows for an analytical derivation of the linear confine-
ment by electric strings, at variance to the QCD whose com-
plexity requires heavy numerical computations.

Since linear confinement by strings is not restricted to 2D, we
establish that superinsulation is a distinct genuine state of matter
that appears in both 2D or 3D realizations and calculate the
deconfinement temperature that marks the phase transition of
superinsulators into conventional insulators and which, in 2D,
coincides with the Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion temperature. Finally we also unearth a Cooper pair analogue
of the asymptotic freedom effect19, which suggests that systems
smaller than the string scale appear in a quantum metallic
state. Our findings offer thus an easy access tool for testing
fundamental implications of confinement, asymptotic freedom,
and related QCD phenomena via desktop experiments on
superconductors.

Results
Action in two-dimensional systems. We start by showing how
dual superconducting and superinsulating states can be under-
stood from the uncertainty principle, ΔNΔφ⩾ 1 between the
number of charges, N ¼ 2 Ψj j2, and the phase φ of the Cooper
pairs quantum field Ψ = N exp(iφ), bound by the commutation
relation [N, φ] = i15,20. At zero temperature, superconductors

correspond to fixed φ, hence indefinite N. Inversely, fixed N and
indefinite φ characterizes the superinsulating state. As a Cooper
pair is a charge quantum, while a vortex carries the 2π phase
quantum, the SIT is driven by the competition between charge
(Cooper pairs) and vortex degrees of freedom, in accordance with
early ideas11.

We turn now to the construction of the action of the Cooper
pair-vortex system near the SIT, where both degrees of freedom
are to be included on an equal footing. The key contribution is
the infinite-range (i.e. non-decaying with distance) Aharonov-
Bohm-Casher (ABC) Cooper pair-vortex topological interaction,
embodying the quantum phase acquired either by a charge
encircling a vortex or by a vortex encircling a charge. To ensure a
local formulation of the action, we must introduce two emergent
gauge fields, aμ and bμ mediating these ABC interactions. Then
the topological part of the action assumes the form

SCS ¼
Z

d3x i
n
2π

aμϵμαν∂αbν þ i
ffiffiffi
n

p
aμQμ þ i

ffiffiffi
n

p
bμMμ

h i
; ð1Þ

where ϵμαν is the completely antisymmetric tensor, and

Qμ ¼
P
i

R
xðiÞq

dτ
dxðiÞqμðτÞ

dτ δ3 x � xðiÞq ðτÞ
� �

;

Mμ ¼
P
i

R
xðiÞm

dτ
dxðiÞmμðτÞ

dτ δ3 x � xðiÞm ðτÞ
� �

;

ð2Þ

are the world-lines of elementary charges and vortices labeled by

the index i, parametrized by the coordinates xðiÞq and xðiÞm ,
respectively, n is the dimensionless charge, and Greek subscripts
run over the Euclidean three-dimensional space encompassing
the 2D space coordinates and the Wick rotated time coordinate.
Equation (1) defines the mixed Chern-Simons (CS) action21 and
represents the local formulation of the topological interactions
between charges and vortices, where the ABC phases are encoded

in the Gauss linking number of the xðiÞq
n o

and xðiÞm
n o

world-lines.

The CS action is invariant under the gauge transformations aμ →
aμ + ∂μλ and bμ → bμ + ∂μχ, reflecting the conservation of the
charge and vortex numbers, and is the dominant contribution to
the action at long distances, since it contains only one field
derivative. In this representation jμ =

ffiffiffi
n

p
=2πð Þϵμαν∂αbν and ϕμ =ffiffiffi

n
p

=2πð Þϵμαν∂αaν are the continuous charge and vortex number
current fluctuations, while Qμ and Mμ stand for integer point
charges and vortices. We use natural units c = 1, ħ = 1 but
restore physical units when necessary. Also, from now on we set
the charge unit n = 2 for Cooper pairs.

The next-order terms in the effective action of the SIT contain
two field derivatives. Gauge invariance requires that they be
constructed in terms of the “electric” and “magnetic” fields
corresponding to the two gauge fields. Introducing the dual field
strengths fμ ¼ ϵμαν∂αbν and gμ ¼ ϵμαν∂αaν one identifies the
magnetic fields as f0 and g0 and the electric fields as fi and gi,
where “0” denotes the Wick rotated time and Latin indices denote
purely spatial components. We thus arrive at the full action

S2D ¼
R
d3x i 1π aμϵμαν∂αbν þ 1

2e2vμP
f 20

þ εP
2e2v

f 2i þ 1
2e2qμP

g20

þ εP
2e2q

g2i þ i
ffiffiffi
2

p
aμQμ þ i

ffiffiffi
2

p
bμMμ:

ð3Þ

Here μP is the magnetic permeability and εP is the electric
permittivity20, which define the speed of light vc ¼ 1=

ffiffiffiffiffiffiffiffiffi
μPεP

p
in

the material. The two coupling constants, e2q ¼ e2=d and e2v ¼
π2= e2λ?ð Þ are the characteristic energies of a charge and a vortex
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in the film, respectively20. Here d is the thickness of the film,
λ? ¼ λ2L=d is the Pearl length, and λL is the London length of the
bulk. The effective action in this order of the expansion with
respect to derivatives is perfectly dual under the mutual exchange
of charge and vortex degrees of freedom and the corresponding
coupling constants. The charge-vortex duality is expressed by the
action symmetry with respect to the transformation g ≡ ev/eq ↔
1/g. Thus, g is the tuning parameter driving the system across the
SIT, and the SIT itself corresponds to g = gc = 1. The possible
duality breaking is a higher order effect. In field theory, this
duality goes under the name of S-duality (strong-weak coupling
duality). Note that the addition of kinetic terms generates the
topological Chern-Simons mass mT for both gauge fields. In the
relativistic case, μP = εP = 1, and the CS mass becomes mT =
eqev/π21. In the non-relativistic case the CS mass is modified to
mT = μPeqev/π and the dispersion relation becomes E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m4
Tv

4
c þ v2cp

2
p

(see Methods, Lattice Chern-Simons operator).
We stress here that we derived the action (3) describing the
system of interacting Cooper pairs and vortices using solely
symmetry and gauge invariance considerations. Importantly, the
action describing Josephson junction arrays5,12 is a special case of
the same action with εP= 1, μP → ∞, eq → 4EC, ev → 2π2EJ,
where EC and EJ are the charging energy and the Josephson
energy of a single junction, respectively (see Supplementary
Note 1). This provides a crosscheck for our general result.

Superinsulator. We are now equipped to discuss the nature of
the superinsulating state. To that end, we couple the charge
current jμ to the physical electromagnetic gauge field Aμ by
adding to the action the minimal coupling term 2eAμjμ. Setting
Qμ = 0, since charges are dilute, integrating out the gauge fields aμ
and bμ, and summing over the condensed vortices Mμ, we arrive
at the effective action Seff (Aμ) describing the electromagnetic
response of an ensemble of charges in a superinsulator. On a
discretized lattice with spacing ‘ (see Methods, Lattice Chern-
Simons action), the effective action takes a form in which
one immediately recognizes a non-relativistic version of the
Polyakov action for the compact QED model3,18(see Supple-
mentary Note 2):

Seff Aμ

� �
¼ S2Dcompact

¼ γ2

2π2
P
x
vc 1� cos 2e‘2F0ð Þ½ �

�

þ
P
x;i

1
vc

1� cos 2e‘2Fið Þ½ �
)
:

ð4Þ

Here the summation runs over the lattice grid {x}, Fμ = kμνAν is
the dual field strength, kμν is the lattice Chern-Simons operator
ϵμαν∂α (see Methods, Lattice Chern-Simons operator), and γ2 =
Cηg/vc with C being a numerical constant. The quantity η = (1/α)
,κ)ל vc) characterizes the strength of quantum fluctuations (see
Supplementary Note 3). Here κ = λ⊥/ξ is the Ginzburg-Landau
parameter of the film, ξ is the superconducting coherence length,
taking on the role of the ultraviolet cutoff ‘, and, finally, α = e2/
(ħc) ≈ 1/137 is the fine structure constant.

The physics of a superinsulator is governed by the spontaneous
proliferation of instantons18 M = ∂μMμ, corresponding to
magnetic monopoles, so that the vortex number is not
conserved in the vortex condensate. Then, in a mirror analogue
to the formation of Abrikosov vortices in superconductors due to
the Meissner effect mediated by the Cooper pair condensate, the
magnetic monopole condensate constricts electric field lines
connecting the charge-anticharge pair into electric strings3,18

confining Cooper pairs in superinsulators into “mesons” (Fig. 1).
Indeed, as seen from the action (4), at large γ, the dynamical fields
get squeezed into the vicinity of the paths minimizing the action,
to form quantized fluxes ‘2Fμ. The quantized electric flux tubes
are the analogues of the strings mediating linear confinement of
quarks into hadrons. Like Abrikosov vortices, for which the
London penetration depth, the inverse of the Anderson-Higgs
photon mass, sets the spatial scale of the decay of encircling
supercurrents and magnetic field associated with the vortex, the
characteristic lateral scale wstring for the decay of electric fields
around the string is the inverse of the photon mass mγ

22, wstring =
1/(vcmγ). The typical “meson” size instead, is given by the string
tension σ. In the 2D relativistic model these are given by23

mγ ¼
γ2ffiffi
π

p
vc‘

e�γ2=2π;

σ2D ¼ π2mγv
2
c

4‘γ2 ¼ π3=2vc
4‘2 e�γ2=2π:

ð5Þ

Unlike vortices, however, long strings are unstable: it is
energetically favorable to break a string into a sequence of
segments via the creation of charge-anticharge pairs, see Fig. 2.
This process corresponds to the creation of neutral “mesons” with
the typical size dstring ¼

ffiffiffiffiffiffiffiffiffi
vc=σ

p
. From the dependence of mγ

on γ2, one finds, for the non-relativistic case

dstring ’ ‘exp K
gη
v2c

� �
; ð6Þ

where K is a numerical constant. Near the SIT, where g ≈ 1/η and
vc ¼ 1=

ffiffiffiffiffiffiffiffiffi
μPεP

p � c due to the divergence of the electric
permittivity εP7,15, dstring � ‘, and the electric string is a well-
defined object. This establishes superinsulators as a single-color
realization of QCD. Cooper pairs assume the role of quarks that
are bound by electric strings into neutral mesons and this linear
confinement is the origin of the infinite resistance of super-
insulators. As quarks cannot be observed outside hadrons,
Cooper pairs do not exists outside neutral bound states, and
the absence of free charge carriers causes the infinite resistance.

Action and superinsulator in three-dimensional systems. The
string confinement mechanism of superinsulation allows to
generalize the concept of a superinsulator to higher dimensions,
since linear confinement by electric strings is not specific to the
2D realm. Hence, superinsulators can exist in 3D exactly as QCD
exists in 3D. The 3D analogue of the topological action (3)
involves the so called BF term24, combining the standard gauge
field aμ with the Kalb-Ramond antisymmetric gauge field of the
second kind25 bμν,

S3D ¼
R
d4x i 1π aμϵμναβ∂νbαβ þ 1

2e2vμP
f 20 þ εP

2e2v
f 2i

þ 1
2e2qμP

b2i þ
εP
2e2q

e2i þ i
ffiffiffi
2

p
aμQμ þ i

ffiffi
2

p

2 bμνMμν :
ð7Þ

Here ei = ∂0ai − ∂ia0 and bi ¼ ϵijk∂jak are the usual electric and
magnetic fields associated with the gauge field aμ, while fμ ¼
ð1=2Þϵμναβ∂νbαβ is the dual field strength associated with the
antisymmetric gauge field bμν. In addition to the gauge symmetry
under transformations aμ → aμ+ λ, this action is invariant under
gauge symmetries of the second rank, bμν → bμν + ∂μχν − ∂νχμ, in
which the gauge function itself is a vector. In 3D, vortices are one-
dimensional extended objects and their world-surfaces are
described by the two-index antisymmetric tensor Mμν. Cooper
pairs, Qμ, and the related fluctuation number current jμ ¼ffiffiffi

2
p

=2π
� 	

fμ retain their point charge character. In 3D, eq is a
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dimensionless parameter, eq = O(e), while ev has the dimension
of mass, ev = O(1/λ), with λ being the bulk London length of the
material. The topological mass arising from the BF coupling26

maintains the same form as in 2D, mT = μPeqev/π.
The derivation of the effective action for a superinsulator in 3D

follows exactly the same steps as in 2D (Supplementary Note 2,
Effective action for the superinsulator), with the result

SSIeff Aμ

� �
¼ S3Dcompact ¼ γ2

2π2
P
x;i

2vc 1� cos 2e‘2~F0i
� 	
 �(

þ
P
x;i;j

1
vc

1� cos 2e‘2~Fij
� �h i) ð8Þ

where ~Fμν ¼ kμναAα is the 3D dual field strength (kμνα being the
3D lattice BF term- see Methods, Lattice BF term). This is again a
non-relativistic version of Polyakov’s compact QED model, this
time in 3D3,18, with the relativistic string tension given by27

σ3D ¼ vc
64π‘2

K0

ffiffiffi
z

p

4π
γ

� �
; ð9Þ

where K0 is the McDonald function and z is the monopole
fugacity. Equations (4) and (8) are our key results, establishing an

exact mapping between QCD and the physics of superinsulators,
both in 2D and 3D.

Finally, let us mention that, unlike in 2D, in 3D, the minimal
coupling of charges to electromagnetism can be complemented by
a topological coupling

R
d4x iðθ=8π

ffiffiffi
2

p
ÞϕμνFμν of the vortex

current ϕμν =
ffiffiffi
2

p
=2π

� 	
ϵμναβ∂αaβ to the electromagentic field

strength Fμν. This leads to an axion term28 Saxion ¼R
d4x i θ=16π2ð ÞFμν~Fμν in the electromagnetic effective action.

This is a surface term, since the partition function exp(−Saxion) is
invariant under shifts θ → θ + 2π. Time reversal, T , maps θ →
−θ. So the only values of θ compatible with T -invariance are θ =
0 and θ = π, modulo 2π. For θ = π the string becomes
fermionic18, acquiring a topological contribution (−1)ν in the
partition function, where ν is the signed self-intersection number
of the world-sheet in four-dimensional Euclidean space-time. The
string tension changes to27

σ3D ¼ vc
64π‘2

K0

ffiffiffi
z

p

16γ

� �
ð10Þ

Because the factor γ is now in the denominator, the fermionic
Cooper pair mesons are large also in the deep superinsulating
region, where ηg � 1 and v = O(1).

Quark confinement

Superconductor

Solenoid

N S

Solenoid

Superinsulator

‘Anti-Cooper pair Cooper pair

2e –2e

q q

a

b

c

Fig. 1 Dual Mandelstam–‘t Hooft–Polyakov confinement. a Quark confinement by chromo-electric strings. bMagnetic tube (Abrikosov vortex) that forms in
a superconductor between two magnetic monopoles. c Electric string that forms in a superinsulator between the Cooper pair and anti-Cooper pair. The
lines are the force lines for magnetic and electric fields respectively. In all cases the energy of the string (the binding energy) is proportional to the distance
between either the monopoles or the charges

2e –2e

dstring

...2e 2e–2e –2e

Fig. 2 Splitting electric strings into neutral mesons. The formation of a long string is energetically unfavorable, and small size charge-anticharge pairs
emerge, splitting the string into a sequence of segments, each constituting a neutral meson
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Finite temperatures. Now we turn to the finite temperature
behavior and the deconfinement transition at which string con-
finement of Cooper pairs ceases to exist and the superinsulator
transforms to a ‘conventional’ insulator. This happens at the
critical temperature Tdc where the linear tension of the string
turns to zero. While it is known that, in 2D, Tdc ≡ TBKT29, we can
calculate Tdc straightforwardly as the temperature of dis-
appearance of the vortex condensate. This is done in methods
(finite temperature deconfinement transition), with the result that
the superinsulator experiences a direct deconfinement transition
to an insulating state at the critical deconfinement temperature
determined by relation /1/(gη) = S(Tdc) where the function S(T)
is derived by a geometric condition for the two competing con-
densations (see Supplementary Note 3, Quantum Phase transi-
tions) and is shown in Fig. 3. This equation uniquely determines
the deconfinement temperature as a function of material
parameters.

Experimental implications. To explore the far reaching experi-
mental implications of the confining string theory of super-
insulation we note first that the deconfinement criticality depends
on the space dimension30. In 2D it coincides with that of the BKT
transition29, and the resistance R2D / exp b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=TBKT � 1j j

p� 	
. In

3D, instead, the resistance exhibits the so-called Vogel-Fulcher-
Tamman (VFT) criticality, R3D ∝ exp[b′/|T/Tdc − 1|]30. Juxta-
posing the critical behaviors of the NbTiN film, having a super-
conducting coherence length ξ ≳ d17 and that of the InO film,
where ξ � d16, one sees that the NbTiN film shows the BKT-
while the InO film exhibits the VFT divergence, in compliance
with our predictions about 3D superinsulation.

The deconfinement transition can be realized as a quantum
dynamical phase transition driven by an applied electric field E
that would tear the electric strings. The threshold voltage, Vt ∝
σL, corresponding to the pair-breaking critical current in
superconductors, breaks down the neutral meson chains, and a
strip of ‘normal’ insulator forms along the former string path,
carrying the current. This pretty much resembles the conven-
tional dielectric breakdown where the electric field burns a
conducting channel in otherwise insulating environment and
triggers avalanche-like current jumps. The dielectric breakdown is
usually accompanied by current noise. Such a noise has indeed
been recently observed in InO films31. Experiments demonstrat-
ing the linear dependence of the threshold voltage on the sample
size in films are still to come. Yet the evidence for linear
confinement was provided by the analysis of the superinsulating
behavior in the ultrathin TiN films32, which revealed that the
magnetic field dependence of Vt is exactly that of the 1D
Josephson ladder.

In QCD, the flip side of the string confinement mechanism is
asymptotic freedom, i.e. the unconstrained dynamics of quarks at
spatial scales smaller than the string size19. While, strictly
speaking, asymptotic freedom refers to the running of the
dimensionless gauge coupling to zero in the ultraviolet limit, it
can be viewed, from the string point of view, as the “slackening”
of the string so that quarks feel only weak short-range potentials
at small scales. One would thus expect that, in superinsulators,
asymptotic freedom, in this string sense, should map onto the
unconstrained motion of the Cooper pairs at scales smaller than
dstring. The ratio of the string width to the string length is wstring/
dstring ∝ (vc/γ2)exp(Kγ2/vc) with K being a numerical constant.
For systems with small K and large γ2 this ratio is small. At scales
wstring < r < dstring, Cooper pairs do not feel the string tension
anymore but neither do they feel Coulomb interactions screened
by the photon mass. Hence, one can expect a metallic-like low-
temperature behavior of small samples that should have turned

superinsulating had their size exceeded the typical dimension of
the confining string, estimated as dstring ≲ ħvc/kBTBKT. Using the
TiN films parameters7,15 one obtains dstring ≲ 60 μm. Remarkably,
the study of the size dependence of superinsulating properties in
TiN films33 revealed that in films with lateral sizes, of 20 μm and
less, the insulating, thermally activated behavior saturates to the
metallic one upon cooling to ‘superinsulating temperatures’. This
complies with the expected asymptotic freedom behavior.
However, it would be premature to take it as a conclusive
evidence for the asymptotic freedom in superinsulators, and
further experimental research is needed.

Discussion
We conclude by pointing out a close connection of the string
confinement mechanism to concepts of many-body-localization
(MBL)34. It was recently shown that MBL-like behavior may arise
without exogenous disorder, due to strong interactions alone35,
and that, in gauge theories, this is due to the endogenous disorder
embodied by the mixing of superselection sectors36, this process
being identified as a transport-inhibiting mechanism due to
confinement in the Schwinger model in 1D. In our setting, it is
the Polyakov monopole instantons that play the role of endo-
genous spontaneous disorder. Accordingly, our summation over
the instanton gas configurations acts as averaging over endo-
genous disorder3,18. Importantly, the instanton formulation
describes not only 1D, but the 2D and 3D physical dimensions as
well. This spontaneous disordering mechanism has the
same effect, that of mixing, in this case, the flux superselection
sectors, leading to the survival of only the neutral charge sector
as the physical state, while all other, charged states are localized
on the string scale. Hence inhibition of the charge transport and
the infinite resistance. The same confinement mechanism that
prevents the observation of quarks is thus responsible for the
absence of charged states and the infinite resistance in
superinsulators.

Superinsulator Deconfinement
transition

Topological
insulator

–1

–1

0

M

1

1

Q

1.5
1.4
1.3
1.2

S
ca

le
 fa

ct
or

 S
 (

T
)

1.1
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Tl / (h υc)

a

b

Fig. 3 Deconfinement transition. a Finite temperature deconfinement
transition from a superinsulator (magnetic numbers M = ±1 fall into the
interior of the ellipse, while electric numbers Q = ±1 remain outside) to an
insulator (no non-trivial quantum numbers fall within the ellipse). b The
finite-temperature scaling factor that determines the critical temperature
for the superinsulator deconfinement transition, vc is the light velocity in the
material
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Methods
Lattice Chern-Simons operator. The formulation of a gauge-invariant lattice
Chern-Simons term requires particular care. Following5 we introduce first the
forward and backward derivatives and shift operators on a three-dimensional
Euclidean lattice with sites denoted by {x}, directions indicated by Greek letters and
lattice spacing ‘,

dμf ðxÞ ¼
f ðxþ‘μ̂Þ�f ðxÞ

‘ ; Sμf ðxÞ ¼ f x þ ‘μ̂ð Þ;

d̂μf ðxÞ ¼
f ðxÞ�f xþ‘μ̂ð Þ

‘ ; Ŝμf ðxÞ ¼ f x � ‘μ̂ð Þ:
ð11Þ

Summation by parts on the lattice interchanges both the two derivatives (with a
minus sign) and the two shift operators. Gauge transformations are defined by
using the forward lattice derivative. In terms of these operators one can then define
two lattice Chern-Simons terms

kμν ¼ Sμϵμανdα; k̂μν ¼ ϵμαν d̂αŜν ; ð12Þ

where no summation is implied over equal indices. Summation by parts on the
lattice interchanges also these two operators (without any minus sign). Gauge
invariance is then guaranteed by the relations

kμαdν ¼ d̂μkαν ¼ 0; k̂μνdν ¼ d̂μk̂μν ¼ 0: ð13Þ

Note that the product of the two Chern-Simons terms gives the lattice Maxwell
operator

kμαk̂αν ¼ k̂μαkαν ¼ �δμν∇
2 þ dμd̂ν ; ð14Þ

where ∇2 ¼ d̂μdμ is the 3D Laplace operator. The discrete version of the mixed
Chern-Simons gauge theory can thus be formulated as

S¼
P
x
i ‘

3

π aμkμνbν þ ‘3

2e2vμP
f 20 þ ‘3εP

2e2v
f 2i þ ‘3

2e2qμP
g20

þ ‘3εP
2e2q

g2i þ i‘
ffiffiffi
2

p
aμQμ þ i‘

ffiffiffi
2

p
bμMμ;

ð15Þ

where the discrete dual field strengths are given by

fμ ¼ kμνbν ; gμ ¼ kμνaν : ð16Þ

As we show below, this action describes two massive modes with dispersion
relation and mass given

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Tv
4
c þ v2ck

2
q

; mT ¼
μPeqev

π
: ð17Þ

where vc ¼ 1=
ffiffiffiffiffiffiffiffiffi
μPεP

p
is the light velocity in the medium. This is the non-relativistic

version of the celebrated Chern-Simons mass21.

Lattice BF operator. The formulation of a discrete 3D lattice BF model24 can be
achieved along the same lines as in 2D. Following5 we introduce the lattice BF
operators

kμνρ � Sμϵμανρdα k̂μνρ � ϵμναρd̂αŜρ; ð18Þ

where

dμf ðxÞ �
f xþ‘μ̂ð Þ�f ðxÞ

‘ ; Sμf ðxÞ � f x þ ‘μ̂ð Þ;

d̂μf ðxÞ �
f ðxÞ�f x�‘μ̂ð Þ

‘ ; Ŝμf ðxÞ � f x � ‘μ̂ð Þ;
ð19Þ

are the forward and backward lattice derivative and shift operators, respectively.
Summation by parts on the lattice interchanges both the two derivatives (with a
minus sign) and the two shift operators; gauge transformations are defined using
the forward lattice derivative. Also the two lattice BF operators are interchanged
(no minus sign) upon summation. Moreover they are gauge invariant, in the sense
that they obey the following equations:

kμνρdν ¼ kμνρdρ ¼ d̂μkμνρ ¼ 0;

k̂μνρdρ ¼ d̂μk̂μνρ ¼ d̂ν k̂μνρ ¼ 0:
ð20Þ

Finally, they satisfy also the equations

k̂μνρkρλω ¼ � δμλδνω � δμωδνλ

� �
∇2

þ δμλdν d̂ω � δνλdμd̂ω
� �

þ δνωdμd̂λ � δμωdν d̂λ
� �

;

k̂μνρkρνω ¼ kμνρk̂ρνω

¼ 2 δμω∇2 � dμd̂ω
� �

;

ð21Þ

where ∇2 ¼ d̂μdμ is the lattice Laplacian. The Euclidean lattice BF model in 3D is
then given by the action

S¼
P
x
i ‘

4

π aμkμαβbαβ þ ‘4

2e2qμP
b2i þ

‘4εP
2e2q

e2i þ ‘4

2e2v
μPf

2
0

þ ‘4ϵP
2e2v

f 2i þ i‘
ffiffiffi
2

p
aμQμ þ i‘2

ffiffi
2

p

2 bμνMμν ;
ð22Þ

where the dual field strengths are now defined by

fμ ¼
1
2
kμνρbνρ; ~fμν ¼ k̂μνρaρ; ð23Þ

and ei = d0ai − dia0 and bi ¼ ~f0i are the usual electric and magnetic fields asso-
ciated with the gauge field aμ. The dispersion relation and mass remain identical to
the 2D formulas. In this case they are the non-relativistic generalizations of the BF
mass26.

Finite temperature deconfinement transition. In the field theory, the finite
temperature T is introduced by formulating the action on a Euclidean time of finite
length β = 1/T, with periodic boundary conditions (we have reabsorbed the
Boltzmann constant into the temperature). If the original field theory model is
defined on a Euclidean lattice of spacing ‘, then β is quantized in integer multiples
of ‘=vc. This representation of the finite-temperature field theory holds as long as
vcβ � ‘, or, equivalently, if the temperature is much lower than the UV cutoff,
T � vc=‘, as expected. Because of the lattice structure, energies are defined only
within a Brillouin zone of length 2vcπ=‘, due to the periodic boundary condition in
the Euclidean time direction, however the energy k0 must be also quantized in the
integer multiples of 2π/β. This gives

Z 2πvc
‘

0
dk0f k0

� 	
!

Xn¼b

n¼0

2π
β
f

2πvcn
b‘

� �
; ð24Þ

where β ¼ b‘=vc and the factor within the sum represents the density of states. The
integers n in the summation are known as Matsubara frequencies. Typically,
however momenta integral are defined over the fundamental Brillouin zone
½�πvc=‘; πvc=‘�, rather then ½0; 2πvc=‘�. The corresponding finite temperature
expression can be readily obtained from (24) by the shift k0 ! k0 � πvc=‘,Z πvc

‘

�πvc
‘

dk0f k0
� 	

!
Xk¼b

k¼�b

π

β
f

πvck
b‘

� �
; ð25Þ

where k = 2n − b and thus correspondingly, the density of states must be divided
by a factor 2.

The finite temperature T > 0 affects primarily the parameter η (see
Supplementary Note 3, Quantum phase structure) via the coefficient G m‘vcð Þ. At
the zero temperature this is given by

G m‘vcð Þ ¼ 1

ð2πÞ4
Z π

�π
d4k

1

m‘vcð Þ2þ
P3
i¼0

4sin ki
2

� 	2 : ð26Þ

At finite temperatures it has to be modified according to (25),

G m‘vc;Tð Þ ¼ 1

ð2πÞ4
Xk¼þb

k¼�b

π

b

Z π

�π

dk1dk2dk3

m‘vcð Þ2þ4 sin πk
2bð Þ2þ

P3
i¼1

4 sin ki
2ð Þ2

; ð27Þ

where T ¼ vc=b‘. As we have verified over three orders of magnitude (m‘vc ¼
0:001 to m‘vc ¼ 1) the ratio SðTÞ = G m‘vc;Tð Þ=G m‘vcð Þ does not depend on the
parameter m‘vc but is rather a function of the temperature alone. As a
consequence, η and the semiaxes of the ellipse determining the phase structure, see
Supplementary Note 3, Supplementary Eq. (33), scale with the inverse of the
function S(T). This means that with the increasing temperature the whole ellipse
shrinks by the scale factor S(T). Magnetic quantum numbers M = ±1 that are
within the ellipse at T = 0, will exit its interior at some critical temperature defined
by the condition

1
gη

¼ S Tcð Þ; ð28Þ

assuming that the quantity on the left-hand side is larger than one (i.e. there is a
superinsulator at T = 0). Since the magnetic semiaxis is always longer and thus no
electric quantum numbers may appear within the ellipse interior when the magnetic
ones have fallen outside, the superinsulator experiences a direct deconfinement
transition into a topological insulator at T = Tc. Correspondingly, superconductors
undergo a phase transition to topological insulators at ~Tc defined by

g
η
¼ S ~Tc

� 	
: ð29Þ
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