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Invented by Alessandro Volta and Félix Savary in the early 19th century, circuits consisting of

resistor, inductor and capacitor (RLC) components are omnipresent in modern technology.

The behavior of an RLC circuit is governed by its circuit Laplacian, which is analogous to the

Hamiltonian describing the energetics of a physical system. Here we show that topological

insulating and semimetallic states can be realized in a periodic RLC circuit. Topological

boundary resonances (TBRs) appear in the impedance read-out of a topolectrical circuit,

providing a robust signal for the presence of topological admittance bands. For experimental

illustration, we build the Su-Schrieffer–Heeger circuit, where our impedance measurement

detects the TBR midgap state. Topolectrical circuits establish a bridge between electrical

engineering and topological states of matter, where the accessibility, scalability, and oper-

ability of electronics synergizes with the intricate boundary properties of topological phases.
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Topological semimetals1 constitute the latest development of
an evolution dating back more than 30 years, when topo-
logical phases began to cast their shadows before as midgap

states in polyacetylene2 and the quantized edge modes of integer
quantum Hall systems3 were discovered. Driven by the flourish-
ing field of topological insulators4, 5, the viewpoint of topology
has recently branched out to various classes of physical systems,
ranging from electrons in solids to photonic networks in meta-
materials, ultra-cold atoms in optical lattices, microwave reso-
nators, electrical circuits, and phonons in mechanical setups (see
e.g. refs.6–13). Note that such topological states of matter do not
necessarily rely on any quantum mechanical framework. In
mathematical terms, it is not the quantum, i.e., non-commutative,
nature of the Hilbert space, but rather the nontrivial connectivity
of phase space under cyclic evolution of parameters14 that indi-
cates a topological phase.

The fingerprint of a topological insulator motif, independent of
the physical setting in which it is realized, is given by a single edge
mode response protected by topology, along with an unrespon-
sive bulk. Note that whereas time-reversal symmetry T, if pre-
served, may protect the quantum realization of a topological
insulator against elastic backscattering due to T2=−1 for
electrons4, 5, there is no such additional robustness for classical
realizations due to T2= 1 for its constituting degrees of freedom.
While there are various promising approaches to realize a topo-
logical insulator within classical arrays, topological device design
is often limited due to insufficient edge mode density. As opposed
to fermionic systems where the chemical potential is a useful
parameter to access any particular range of the band structure at
low energies, bosonic or classical degrees of freedom for a topo-
logical band structure also pose the problem how to system-
atically address the spectral regime of interest, such as the band
gap domain of a topological insulator. Furthermore, in an era
where classical experimental setups for topological phases still
need to improve in terms of uniformity of array elements, it is
often challenging to resolve single edge mode responses to
identify the onset of a topological insulator phase.

We propose the topological semimetal paradigm in classical
RLC circuits, which predicts highly pronounced resonances in a
generic impedance read-out whenever there are topological
boundary modes that scale extensively, such as the Fermi arcs of
topological semimetals15. Due to their extensive degeneracy, such
topological boundary resonances (TBRs) remain robust even in
the face of significant nonuniformity of circuit elements, pro-
mising high-precision identification in a realistic measurement.
We outline a detailed design of such topolectrical circuits,
including a Weyl circuit network exhibiting TBRs of Fermi arc
type, where the AC driving frequency combined with the
grounding design takes over the role of the chemical potential in a
fermionic system. As an initial proof-of-principle experimental
study, we report impedance and voltage profile measurements of
the Su–Schrieffer–Heeger circuit chain. As a theoretical bypro-
duct in this work, we further introduce the mathematical fra-
mework for characterizing topological properties of electrical
circuit graphs in general. While our semimetal paradigm can be
applied to any classical array setup such as mechanical systems or
optical cavities, the topolectrical circuits we introduce combine all
desired conceptual and experimental preferences to realize
topological semimetal analogs in a classical model, without
demanding specialized equipment.

Results
Laplacian formalism. Any electrical circuit network can be
represented by a graph whose nodes and edges correspond to the
circuit junctions and connecting wires/elements. The circuit

behavior is fundamentally described by Kirchhoff’s law

Ia ¼
X
i

Cai Va � Við Þ þ waVa; ð1Þ

where Ia and Va are the input current and electrical potential at
each node a. By current conservation, Ia equals the total current
flowing out of node a towards all other nodes i linked by nonzero
conductance Cai, plus the current flowing into the ground
through a route with impedance w�1

a . The impedance and con-
ductances are real for resistive circuit elements, but will be
complex when capacitors or inductors are present (Fig. 1). As an
initial step towards identifying circuits with tight-binding lattice
models, we rewrite Eq. (1) in compact matrix form

I ¼ ðLþWÞV ¼ JV; ð2Þ

with vectors V and I formed by the components Va and Ia. The
grounded Laplacian J, as defined in Eq. (2), consists of L, the circuit
Laplacian which depends on the conductance network structure,
and W= diag(w1, w2, …), which depends on how the circuit is
grounded. The Laplacian is defined in terms of the conductances by
L=D−C, where C is the (adjacency) matrix of conductances and
D= diag

P
i C1i;

P
i C2i; ¼

� �
lists the total conductances out of

each node (Fig. 1). To understand the relation of L with the con-
tinuum Laplacian, one writes the spreading of current from a single
node as a divergence of current density I=∇ · j, and invokes
the definition of conductivity j= σE= σ∇V. Hence, for the
current and voltage vectors as in Eq. (2), I=∇ · (σ∇)V= LV.
This establishes L as the continuum Laplacian restricted to
a circuit.

A circuit is most commonly studied through an impedance
measurement, which involves running a current through it and
measuring the voltage response. As capacitive and inductive
resistances explicitly depend on it, the driving voltage frequency
ω is a central tuning parameter of topolectrical circuits.
The simplest measurement is the two-point impedance Zab=
(Va− Vb)/I between nodes a and b, where Va−Vb is their
potential difference and I is the magnitude of the current Ia,b= ±I
that enters at a and leaves at b. To determine Zab, the potentials
have to be expressed in terms of the input current by inverting
Eq. (2). For this purpose, we employ the regularized inverse of J
known as the circuit Green’s function G ¼ P

jn≠0
1
jn
ψnψ

y
n, where jn

and ψn denote the admittance eigenvalues and the N-dimensional
eigenmode vectors of J, respectively. (Regularization in this
context means that jn= 0 modes are omitted when the circuit is
not grounded (W= 0) and hence defined up to an overall
potential offset. If J is not Hermitian, ψy

n and ψn are replaced by
the left and right eigenvectors.) The eigenmodes are potential
distributions proportional to the input current distribution. Note
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Fig. 1 Definition of the principal building blocks for the grounded circuit
Laplacian J= D− C+W (Eq. (2)) of an illustrative RLC circuit with nodes
{a, b, c}. W and D are diagonal matrices containing the total conductances
from each node towards the ground and towards the rest of the circuit,
respectively. C is the adjacency matrix of the circuit graph, with edges
weighted by their conductances
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that G is always symmetric when the circuit elements are
reciprocal (see also ref. 16). The two-point impedance reads17

Zab ¼
P
i¼a;b

GaiIi�GbiIi
I ¼ Gaa þ Gbb � Gab � Gba

¼ P
jn≠0

ψn;a�ψn;bj j2
jn

;
ð3Þ

where ψn,a− ψn,b is the difference between the amplitudes of the
nth admittance eigenmode. As such, the impedance in Eq. (3) for
each mode n depends on the squared magnitude of its potential
difference between a and b, weighted by its eigen-impedance j�1

n .
To make contact with topological band structures, we consider

circuits made up of periodic sublattices. A node a= (x, s) can be
indexed by its unit cell position x and sublattice label s. Due to
translation symmetry, Bloch’s theorem allows us to index the
eigenmodes by momentum k and band index m, i.e. ψ(k,m)(x, s)=
φm(k, s)eik⋅x. Henceforth, we shall call the set of eigenvalues jk,m
the bandstructure of the circuit, and also refer to the nodes as
sites. The impedance between two sites (0, s) and (x, s′) takes the
form

Zss′
x ¼

X
k;m

φmðk; sÞ � φmðk; s′Þeik�x
�� ��2

jk;m
; ð4Þ

which reduces to
P

k;m 4j�1
k;m φmðk; sÞ

�� ��2sin2 k�x
2

� �
for nodes on the

same sublattice s= s′. The impedance in Eq. (4) between two
nodes becomes large if there exists a finite density of nontrivial
eigenmodes with small jk,m. Such divergences correspond to
resonances in RLC circuits, and will be even more pronounced if
the relevant eigenmodes are localized at one region, e.g. a
boundary of the circuit or a domain wall trajectory. This is the
case for TBRs in topolectrical circuits, where there exists a large
density of protected boundary modes with jk,m ≈ 0. A central
result of our work will be the construction of such topolectrical
circuits with “grounded” RLC networks, with the ground
controlling the pinning of the TBR to jk,m ≈ 0.

Su–Schrieffer–Heeger circuit. The most elementary 2-band
topolectrical circuit can be built from a line of capacitors with
alternating capacitances of C1 and C2 (Fig. 2a), which is char-
acterized by t := C1/C2. Note that as will be relevant in the fol-
lowing, changing the initial capacitor to the left from C1→ C2

implies t→ 1/t. Identical inductors L connect the junctions
between each capacitor to a common isolated grounding plate.
For t < 1, a topological boundary mode exists and leads to a
drastic increase in circuit impedance, i.e., a TBR. Consider one
setup of Fig. 2, with the leftmost grounded capacitor of capaci-
tance C1 < C2, and another setup with C1,2 interchanged. To see
that the former arrangement supports a localized “midgap”
eigenmode (configuration of potentials) that decays exponentially
to the right, while the latter does not, notice that a fixed amount
of charge Q between any pair of C1, C2 capacitors leads to
potential differences V1, V2 related by Q= C1V1= C2V2 between
their respective plates. For t < 1, there will be a larger potential
difference between the plates of C1 than that of C2. Indeed, when
driven by an AC supply, V1 and V2 oscillate in anti-phase with
relative amplitude V2/V1= t, corresponding to the potential
configuration ψ0(n)∝ (1, 0, −t, 0, t2, 0, −t3, 0, …, ((−t)n, 0)),
where the index n runs through all 2-node unit cells. ψ0(n) is
exponentially localized at the left end, with a decay length of

ξ ¼ log C2
C1

� ��1
¼ �log t. Since V and the source/sink current I

vanish on the even nodes and are proportional to (−t)n on the
odd nodes, it follows that ψ0≡V∝ I, i.e., ψ0 is an eigenmode of J.

In terms of the grounded circuit Laplacian, the system with
periodic boundary conditions is described by

JSSH kxð Þ ¼ iω C1 þ C2 � 1
ω2L

� �
I

�iω C1 þ C2 coskxð Þσx þ C2 sinkxσy
h i ; ð5Þ

which, up to prefactors, is equivalent to the enigmatic Su-
Schriffer-Heeger (SSH) model developed for midgap states in
polyacetylene2. Here, σx and σy are the Pauli matrices defined in
the basis consisting of a C1 capacitor and an adjacent C2 capacitor
on its right. The boundary mode ψ0(x), where the notation x is
now highlighting the site instead of the node interpretation n, is
the circuit analog of the SSH zero mode consisting of “dimerized”
pairs of capacitors with large amounts of charge oscillating
between them. It is topologically protected by a 1D winding
number (see methods). For t < 1, one finds a nonzero topological
winding which cannot be deformed into a trivial winding unless
the gap, i.e., the spectral gap of the circuit Laplacian, closes.

Since the left end of the circuit by itself always marks the
transition to a trivial regime, for t < 1 we expect a boundary mode
with vanishing spectral value j0 in the semi-infinite limit. Indeed,
as shown in the appendix, j0 ~ (−t)N, where N denotes the total
number of capacitors. This vanishing eigenvalue marks the TBR,
which for open boundary conditions and a hypothetically ideal
circuit without serial resistance is characterized by a divergent

impedance of ZSSH
ab � tda�tdbð Þ2

i~ωC2ð�tÞN (Fig. 2b), where ~ω denotes the

resonant frequency ~ω ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L C1 þ C2ð Þp

, and da, db are the unit
cell distances of nodes a and b from the leftmost capacitor.

The theoretical prediction described above is rather precisely
what we find experimentally. In the setup depicted in Fig. 2a, we
can switch between a capacitor ratio of t and 1/t depending on
whether we fix the switch to node 1 or 2, which affects the
boundary condition where the external voltage source is applied.
No midgap mode at the external voltage frequency ~ω is observed
for t > 1, but for t < 1. For experimental convenience, we have
constrained ourselves to measuring the impedance at the pair of
nodes at the boundary, and further map out the midgap voltage
profile eigenstate ψ0(n) of the circuit by measuring the voltage
difference between neighboring nodes (Fig. 2c, d). ψ0(n) displays
the predicted behavior within negligible error bars. We find the
latter to be a robust measurement, along with the predicted
impedance profile if we allow for non-uniformity of circuit
elements and consider serial circuit resistance in our calculations
(see methods).

Graphene circuit. A more targeted TBR response at the bound-
aries can be achieved in higher-dimensional topolectrical circuits,
where the increased admittance density of states (DOS) from an
additional dimension makes it possible to spatially isolate the
topolectrical resonance. The SSH circuit can be straightforwardly
extended to represent a 2D band structure by adding a spatial
modulation to the capacitances with inverse wavelength ky along
a new direction, such that a phase transition at t= 1 occurs at a
certain range of ky. This can be achieved, for instance, through the
parametrization C1= γ+ 2β cos ky, C2= γ+ 2α cos ky, bringing
the grounded Laplacian to the form

JZZðkÞ ¼ iω 2ðγþ αþ βÞ � 1
ω2L

� �
I

�iω γþ 2βcosky þ γþ 2αcosky
� �

coskx
� �

σx

�iω γþ 2αcosky
� �

sinkxσy:

ð6Þ

In real space, this 2D circuit in Eq. (6) consists of a lattice
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network with two inequivalent nodes per unit cell, where unlike
nodes are connected by capacitors of capacitances α, β, or γ
depending on their relative orientations (Fig. 3a). Each node is
also connected to the ground by an inductor L. The two-site
unit cell, along with the lattice connectivity and edge
termination, provides a circuit analog of the zig-zag (ZZ) edge of
graphene18. This circuit network supports topological boundary
modes inherited from its SSH predecessor. If we ground
the capacitors on one/both of its edges perpendicular to
the x-direction, but leave the circuit periodic along the y-direction
by connecting the last capacitor with the first capacitor, a line
of singly/doubly degenerate edge modes appear for ky satisfying
t < 1, i.e. (α− β)cos ky > 0 (Fig. 3b).

When the AC frequency ω is tuned to the particular resonant
frequency ~ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2LðαþβþγÞ
p , these edge modes correspond to an

extensive line of vanishing eigenvalues j0 that dramatically
enhance the circuit impedance at the edge. This can be physically
explained in terms of edge resonances involving isolated triplets
of simultaneously “dimerized” capacitors sharing oscillating
charges, reminiscent of those in the SSH topolectrical circuit.

When α > β and ky

��� ���<π=2, the capacitors in horizontally adjacent

unit cells collectively “dimerize” by harboring strongly oscillating
charges. Reversing the former condition to α < β makes the
dimerization incompatible with the edge grounding, while

breaking the condition ky

��� ���<π=2 also inhibits these oscillations

by reversing the relative polarity of adjacent capacitors. Since this
dimerization ultimately relies on sublattice symmetry, the TBR
only appears when the edges respect sublattice symmetry, such as
in the zig-zag case. A realistic implementation is illustrated in
Fig. 3, where a serial resistance is attached to each grounding

wire. Zss′
x1;x2

denotes the impedance between the sth node of unit
cell x1= (x1, y1) and the s’th node of unit cell x2= (x2, y2), s, s′∈
{A, B}, the left edge being located at x= 0 (see methods).
Topologically, the circuit is a cylinder periodic in y-direction,
with a circumference of Ly rows. As plotted in Fig. 3c, d for A-
type nodes, the impedances in both x and y directions (ZAA

ðx1;0Þ;ðx2;0Þ
and ZAA

ðx;0Þ;ðx;yÞ) are greatly enhanced only near the edge, in
contrast to the SSH circuit. This enhancement is apparent even
for short intervals, as reflected by the rapid rise of impedance
ZAA
ðx;0Þ;ðx;yÞ at small y. For circuits representing higher dimensional

band structures, a deeper consequence of Eq. (4) is that the TBR
depends on the scale set by the maximal imaginary gap19, even if
the boundary modes themselves are gapless and algebraically
decaying.

Weyl circuit. The zig-zag topolectrical circuit, which contains a
line of zero eigenvalues when driven at resonant frequency, can
be obtained as a slice of a parent 3D lattice of RLC elements with
“Fermi arcs” in its bandstructure. One example is the Weyl circuit
given, at resonance (see methods), by

JWeylðkÞ
���
ω¼~ω

¼ �i~ω γþ 2βcosky þ γþ 2αcosky
� �

coskx
� �

σx

�i~ω γþ 2αcosky
� �

sinkx σy

þ2i~ωγz 1� coskz � λð Þσz;
ð7Þ

with capacitances, inductances, and resonant frequency satisfying
~ω�2 = 2L(α+ β+ γ)= Lzγz. This circuit consists of layers of the
zig-zag topolectrical circuit connected by capacitors (inductors)
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Fig. 2 Topolectrical Su-Schrieffer–Heeger (SSH) circuit. a circuit diagram blueprint. Each unit cell consists of a pair of capacitors C1 and C2, with identical
inductors L between every two capacitors. An alternate current (AC) source provides a driving voltage with amplitude V0. For t= C1/C2 < 1, an SSH midgap
mode is found. In the experimental implementation we set C1= 0.1 μF, C2= 0.22 μF and L= 10 μH. Green lines indicate wiring for measuring the t−1-
configuration on the same circuit. b Ideal impedance magnitude across the nodal ends a= 1 and b= N of an N= 10 SSH topolectrical circuit as a function of
AC frequency ω for various values of t. The dashed curves highlight topologically trivial cases for t > 1, showing that the impedance increases enormously
only for t < 1, the topologically nontrivial regime. The topolectrical boundary resonance (TBR) at ω ¼ ~ω is most pronounced for the smallest t, and
decreases exponentially as t is increased. Secondary resonances are observed at larger deviations from ~ω, and are associated with other eigenvalues of the
grounded circuit Laplacian J. c Measurement of midgap voltage eigenmode ψ0(n), which accurately fits the shape predicted by theory, i.e., ψ0(n)= ((−t)
nV0, 0) for the nth two-site unit cell from the left, see also a for node numbering. Associated errors are calculated from standard deviation and according
linear regression analysis, but are smaller than the symbols. d Impedance measurement of the t= 0.22 and t−1= 4.5 configuration. Despite non-negligible
serial resistance and element non-uniformities, the SSH midgap peak is observed in the impedance measurement but absent for the t−1= 4.5 configuration
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of strengths γz(Lz) above A (B) sublattice sites (Fig. 4a). The A (B)
site is additionally grounded by an inductor (capacitor) of
strength 1

2 λ
�1Lz (2λγz). This circuit gives rise to TBRs that bear

close similarity to Fermi arcs at zero Fermi energy as found in

Weyl semimetals (Fig. 4b). JWeylðkÞ
���
ω¼~ω

exhibits four Weyl points

at k ¼ π; ± π=2; cos�1ð1� λÞð Þ, which are connected by “Fermi

arcs” along both branches of π; ky; cos
�1ð1� λÞ

� �
, ky

��� ���<π=2
(Fig. 4b). Along these Fermi arcs, we recover the line nodes of the
zig-zag topolectrical circuit, where the massive degeneracy is
protected by sublattice symmetry.

Discussion
Topolectrical circuits can be realized using basic laboratory
equipment. For a realistic implementation, however, as we have

also seen for our experimental implementation of the SSH
circuit, one has to take into account the non-uniformity of RLC
components, as well as capacitive and resistive losses. We find
that disordered topolectrical circuits, which are analogous to
topological semimetals, are markly superior to e.g. topological
insulator circuits in this respect, as shown in Fig. 5. There, we
compare the impedance read-out of our topolectrical circuits
containing extensive mode degeneracy (Eqs. (6) and (7)) with
that of a topological insulator circuit9, 20, which we adjusted by
grounding it with inductors such that both systems can be
accurately tuned for possible TBRs through the AC frequency
(see methods). Due to the extensively large boundary DOS
which is broadened but not destroyed by disorder (Fig. 6),
sharply defined TBRs exist e.g. in the Weyl or zig-zag circuit,
even with 10% error tolerance in each circuit element. Fur-
thermore, due to extensivity, the resonances remain pro-
nounced even when disorder shifts them slightly away from ~ω,
i.e., the resonant frequency at zero disorder. By contrast, the
impedance resonance peaks of the topological insulator circuit
are neither as pronounced nor immune to disorder, since they
are mostly due to the bulk modes. Although their boundary
modes are likewise topologically protected, they exist at isolated
momenta at any given frequency, and thus have limited con-
tribution to the impedance read-out. We find, however, that the
voltage eigenstate profile ψ0(n), as we have measured it for the
SSH midgap mode, is still accessible, which we thus propose to
be one of the most sensible quantities to measure for topolo-
gical insulator circuits.

From a broader point of view on 3D topolectrical circuits, the
requisite Fermi arcs for TBRs can occur in the presence of more
exotic symmetries, e.g., certain non-symmorphic symmetries
appearing in known Weyl semimetals or photonic crystals21.
Many of these symmetries, and hence their accompanying
topological phases, can be conveniently realized and designed
in electrical circuits, whose network structure is free from
physical limitations imposed by the shape of ionic orbitals.
Topolectrical circuits are likewise not restricted by intrinsic
lengths scales from quantum mechanics, and can be con-
structed at macroscopic sizes with connections across
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features resonant bands of modes analogous to Weyl semimetals, as
depicted in b for parameters β= 0, γ= 1, α= γz= λ= 1/2. The Weyl circuit
is grounded along the plane normal to the x-axis, just as in Fig. 3. Its surface
states (blue) separate from the bulk states (yellow), and intersect the
jWeyl(ky, kz)= 0 plane (brown) along two straight Fermi arcs from (ky, kz)=
(−π/2, ±π/3) to (π/2, ±π/3)
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arbitrarily distant nodes. In particular, topolectrical circuits can
be used to simulate higher-dimensional topological phases
without involving synthetic dimensions, since each node can be
connected to other nodes along more than three axes (Fig. 6).
Note, however, that this still poses challenges in terms of multi-
layer circuitry design, where the wiring of a multi-layer circuit
board, similar to that of highly integrated circuits in general,
has to be carefully matched with the given lattice connectivity.
The ability to go beyond a regular periodic structure also allows
for an accessible study of topological phases on aperiodic net-
works22 (Fig. 6) or hyperbolic lattices of arbitrary
complexity23, 24. Circuit elements such as capacitors can also be
mechanically manipulated to break time-reversal symmetry,
and induce novel non-equilibrium (Floquet) Chern phases25. In
general, the TBR can also be designed to appear not at the
physical boundary of the circuit, but at domain walls along an
arbitrary trajectory through the circuit (Fig. 6). For the zig-zag
circuit, such a formulation would bear strong similarity to flux
lattice domain walls26. This domain wall design would certainly
be of interest not just for topolectrical circuits, but also for
mechanical systems and beyond.

Methods
Impedance formulae for 2-sublattice periodic circuits. It is instructive to
explicitly evaluate Eq. (4) for general 2-node unit cell circuits for periodic boundary
conditions (i.e. without grounded terminations). We start from

Zs;s′
x ¼

X
k;m

φmðk; sÞ � φmðk; s′Þeik�x
�� ��2

jk;m
; ð8Þ

where k denotes momentum, and φm are the eigenvectors of J(k)= d0(k)+ d(k) · σ,
with σ being the vector of Pauli matrices. In closed form, the impedances between

nodes of sublattices A, B separated by x unit cells are given by (with bd ¼ d= dj j)

ZAA
x ¼

X
k; ±

1 ± d̂3
d0 ± dj j 1� cosk � xð Þ; ð9Þ

ZBB
x ¼

X
k;±

1� d̂3
d0 ± dj j 1� cosk � xð Þ; ð10Þ

ZAB
x ¼

X
k;±

1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d̂23

q
cos k � x þ tan�1 d2

d1

� �
d0 ± dj j ; ð11Þ

ZBA
x ¼

X
k;±

1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d̂23

q
cos k � x � tan�1 d2

d1

� �
d0 ± dj j : ð12Þ

Circuit Green’s function. A physical interpretation of G= J−1 as the inverse of a
graph Laplacian is readily obtained. Write J=D+W− C, where ½D�ab ¼
δab

P
c Cac is the diagonal matrix of the conductances emanating from each node

towards other nodes, [W]ab= δabwa the conductance of each node towards the
ground, and C the adjacency matrix of the conductances. Then

G ¼ 1
DþW � C

¼ ðDþWÞ�1
X1
n¼0

ðDþWÞ�1C
� �n ð13Þ

i.e., Gab is the number of paths of any length from node a to b, each weighted by
the conductance ratio (i.e. transition probability) [(D+W)−1C]kl=
Ckl= wk þ

P
l′ Ckl′

� �
between each pair of nodes k, l along the path. In other words,

G keeps track of the fraction of the current that will flow between two nodes,
assuming that it spreads out at each node it passes by.

SSH circuit. The simplest topolectrical circuit can be written out in explicit but
still compact detail. From Kirchhoff’s law, we can write the grounded Laplacian
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Fig. 5 Disordered topolectrical circuits. a Comparison of the DOS of our semimetal topolectrical Weyl circuit with the grounded topological insulator (TI)
circuit (see methods), both with component nonuniformity tolerances of 1%. There are extensively more degenerate boundary modes contributing to the
TBRs in the semimetal circuit, as compared to the dispersive TI edge modes traversing its three bands. b Impedance read-outs of a random ensemble of ten
circuits of each type. Each capacitor C/inductor L is further ascribed a resistive loss of 0:1 ´Δ ði~ωCÞ�1

��� ��� and 0:1 ´Δ i~ωLj j, where ΔC/C (ΔL/L) are 1 or 10%.
The semimetal exhibits TBRs that are reasonably robust against disorder. This does not hold for the topological insulator circuit, whose resonances are
mainly due to non-universal bulk modes
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as

JSSH ¼
iωðC1 þ C2Þ þ 1

iωL �iωC1 0 0 0 :::

�iωC1 iωðC1 þ C2Þ þ 1
iωL �iωC2 0 0 :::

0 �iωC2 iωðC1 þ C2Þ þ 1
iωL �iωC1 0 :::

0 0 �iωC1 iωðC1 þ C2Þ þ 1
iωL �iωC2 :::

0 0 0 �iωC2 iωðC1 þ C2Þ þ 1
iωL :::

..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ iωC2

ð1þ tÞ 1� ~ω2

ω2

� � �t 0 0 0 :::

�t ð1þ tÞ 1� ~ω2

ω2

� � �1 0 0 :::

0 �1 ð1þ tÞ 1� ~ω2

ω2

� � �t 0 :::

0 0 �t ð1þ tÞ 1� ~ω2

ω2

� � �1 :::

0 0 0 �1 ð1þ tÞ 1� ~ω2

ω2

� �
:::

..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð14Þ

with the last diagonal entry containing C1, C2 or both depending on which type
of capacitor (or both) is connected to the rightmost node. When ω is set to the
resonant frequency ~ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L C1þC2ð Þ
p , the diagonal terms proportional to the

identity disappear, and J possesses an exact expression for its inverse which is

given by

G ¼ 1
iωð�tÞnC2

1 ð�tÞn�1 �t ð�tÞn�2 ð�tÞ2 ð�tÞn�3 :::

ð�tÞn�1 0 0 0 0 0 :::

�t 0 ð�tÞ2 ð�tÞn�1 ð�tÞ3 ð�tÞn�2 :::

ð�tÞn�2 0 ð�tÞn�1 0 0 0 :::

ð�tÞ2 0 ð�tÞ3 0 ð�tÞ4 ð�tÞn�1 :::

ð�tÞn�3 0 ð�tÞn�2 0 ð�tÞn�1 0 :::

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

ð15Þ

For C1/C2= t < 1, there exists a boundary mode near ð1þ tÞ 1� ~ω2

ω2

� �
, the middle of the

bulk spectral gap of JSSH. Its eigenvalue j0 can be obtained from the characteristic
polynomial of JSSH. At resonant frequency ω ¼ ~ω, j0 is very close to zero, and we can
neglect all but the linear term of the characteristic polynomial to obtain

j0 � i~ω
ð�tÞN 1� t2ð Þ
1� t2 N=2b c ; ð16Þ

which exponentially decays with N, the number of capacitors in the SSH circuit. From
Eq. (3) and ψ0∝ (1, 0, −t, 0, t2, …), the impedance between nodes 1 and 2x− 1 (or 2x) is
thus given by

ZSSH
1;2x�1 ¼

ψ0ð1Þ � ψ0ð2x � 1Þ�� ��2
j0

¼ 1
i~ωC2

1� ð�tÞx�1� �2
ð�tÞN ; ð17Þ

ZSSH
1;2x ¼ ψ0ð1Þ � ψ0ð2xÞ

�� ��2
j0

¼ 1
i~ωC2

ð�tÞ�N � 2ð�tÞ�x� �
; ð18Þ

both of which are plotted in Fig. 2. Note that had C2 been instead greater than C1, ψ0(x)
will not be have been able to exist as an eigenmode due to incompatible boundary
conditions. However, if the right end of the circuit is also connected to a grounded
capacitor C2, there can be another mirror-reflected, but otherwise identical, boundary
mode localized on the right end.

To find the momentum space representation of the grounded Laplacian, we
impose periodic boundary conditions and Fourier transform Eq. (14) to obtain Eq.
(5).

From Eq. (5), it can be shown that for t < 1, J possesses gapped translation-
invariant eigenmodes with eigenvalues jkx ; ± = C1 þ C2 � 1

ω2L ±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2 þ 2C1C2 coskx
p

. As follows from Eq. (16), there is also a midgap
boundary mode with the eigenvalue

j0 � C1 þ C2 �
1

ω2L
þ ð�tÞN ; ð19Þ

which is not small when away from resonance. The SSH circuit has the special
property that the decay length ξ ¼ log C2

C1
of its boundary mode coincides exactly

with the imaginary gap19, 27, which is the imaginary part of kx necessary for closing
the gap: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 þ C2

2 þ 2C1C2 coskx

q
¼ 0 ) eikx ¼ tor t�1: ð20Þ

In hindsight, the TBR of the SSH circuit has an elementary interpretation: Due
to the special potential profile of the boundary mode (Fig. 2), a driving input
voltage V0 and current I0 is connected to two capacitors and one inductor, all of
which are at zero potential (grounded) at the other end. From the special decaying
potential profile, the potential towards the far right (call it node b) must have
vanishing potential. By Kirchhoff’s law, I0 ¼ i~ω C1 þ C2ð Þ � 1

i~ωL

� �
V0 ! 0. Hence

follows the impedance Z1b ¼ V0�Vb
I0

� V0
I0
! 1.

Equation (5) is a map from S1 to S1, and is characterized by an integer winding
number

N1D ¼ 1
2π

H
A � dk

¼ � i
2π

H
φy∇φdkx

¼ R kx¼2π
kx¼0 d tan�1 sin kx

C1=C2þcoskx

� �h i
¼ θ C2 � C1ð Þ:

ð21Þ

The second step of Eq. (21) relies on the absence of a σz term in JSSH(kx), which is
enforced by the sublattice symmetry of the circuit (every node looks the same up to
a left-right reflection). This winding would not be well-defined if, for instance,

Fig. 6 Generalized topolectrical circuits. To only illustrate a few,
topolectrical circuits beyond low-dimensional homogeneous lattice
realizations include domain wall states (highlighted by the dashed red
rectangle), circuits with aperiodically modulated elements simulating
topological quasicrystals (shown in varying tones of red), and circuits on
hyperlattices (shown here in blue with 6 × 4 × 4 × 3 unit cells) hosting
higher-dimensional states
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different inductors were connected to different nodes. This winding number N1D is
related to the Chern number in the following sense. Consider a 2D extension to
JSSH (Eq. (5)). The contribution to N2D from a reciprocal space region R is given by

N2D ¼ 1
2π

R
R∇ ´Ad2k

¼ 1
2π

H
∂RA � dk

¼ 1
4π

R
R d � ∂xd ´ ∂yd

� �
d2k;

ð22Þ

where ∇ ×A is the Berry flux. Now suppose there is sublattice symmetry, i.e. that
there is no σ3 term so that d?ê3. Then the second line reduces to a line integral
along the equator of the Bloch sphere, which is mathematically known as S1.
Consequently, we can define a one-dimensional topological invariant of the
winding of the mapping from the 1D torus ∂R to the equator S1→ S1, as we did
above. This invariant needs the protection of sublattice symmetry; upon breaking it
by adding a small σ3 term, the d vector will not be confined to the equator, and a
second homotopy invariant instead of a first homotopy invariant is required.

With series resistance R on the inductor, which is the most relevant serial
resistance to consider, we have the impedance of each inductor replaced by iωL→
iωL+ R. The grounded Laplacian is hence replaced by

J ′SSH ¼ iω C1 þ C2 � 1
ω2ðLþR=ðiωÞÞ

� �
I

h

� C1 þ C2 coskxð Þσx � C2 sinkxσy
i ð23Þ

The TBR resonance peak occurs when the magnitude of the identity matrix term is
as small as possible, i.e at the minimal value of

Z�1
Res ¼ iω C1 þ C2ð Þ þ 1

iωLþR

�� ��
¼ 1�ω2L C1þC2ð Þð ÞþiωR C1þC2ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffi

R2þω2L2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2L C1þC2ð Þð Þ2þω2R2 C1þC2ð Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þω2L2

p ;

which occurs at ω2 = ~ω2 = 1
L C1þC2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðC1þC2ÞR2

L

q
− R2

L2 =
1

L C1þC2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

p � α
� �

≈ 1
L C1þC2ð Þ 1� 1

8 α
2

� �
for small α ¼ R2 C1þC2ð Þ

L , as can be

checked via finding the extremum of the above. For a resonance to occur at a
nonzero real frequency, we will need α<1þ ffiffiffi

2
p � 2:41, while an accessible

resonance realistically requires α < 10−3 judging from our simulations. For R= 28
mOhm, L= 10−5H and C1+ C2= 1.22 × 10−7F as given in our experimental
setup, we have α ≈ 10−5, which is sufficiently small for a clean and visible
resonance. Circuit element non-uniformities hardly have any detrimental effect on
the SSH signal, as we checked up to 20% tolerance.

For the experimental implementation of the SSH circuit, a printed circuit board
hosting ten unit cells was designed and fit with low serial resistance (<26mΩ)
inductors (Coilcraft MA5172-AE) and surface mount multi-layer ceramic chip
capacitors (Kemet 0805/1206), respectively. The circuit was fed by an arbitrary
waveform generator (Agilent 33220A), the signals were picked up by lock-in
amplifier (Zurich Instruments MFLI series).

Zig-zag graphene circuit. The analysis of the zig-zag topolectrical circuit is
understood from the viewpoint of employing individual SSH circuits as building
blocks (Fig. 3). In real space, the edge mode consists of a superposition of various

momenta ky, each having the decay length of ξ= (−log t)−1, where t ¼ γþ2β cos ky
γþ2α cos ky

.

The profile of the real space mode is dominated by the slowest decaying ky mode,
and decays algebraically whenever t= 1 for some ky. In our case, this occurs at cos
ky= 0, or everywhere if α= β. It now may appear that the capacitors of type γ do
not affect the qualitative decay of the edge modes. They, however, certainly affect
the decay rate of the subdominant contributions, where cos ky ≠ 0. Furthermore,
they also affect the Laplacian bulk spectral gap which is given by
4iωmin α� βj j; α� γþ βj jð Þ, and hence affect the signal to noise ratio of the TBR.

The strength of the TBR depends on the length scale set by the "largest"
imaginary gap, which here coincides with –log t, even when the edge modes decay
algebraically. To understand why, note that the TBR depends on the divergence of
the impedance contributions from all eigenmodes (Eq. (3)), especially the modes
with "smallest" min(t, t−1). By contrast, the decay rate depends on the nature of the
mode with the "largest" min(t, t−1); if the latter is unity, we have algebraic decay
even though the TBR stems from the most strongly gapped momentum.

Weyl circuit. The Weyl circuit consists of layers of the zig-zag topolectrical circuits
(Fig. 3) connected by capacitors (inductors) of strengths cz (Lz) at A (B) sublattice
sites (Fig. 4a). Each A (B) site is additionally grounded by an inductor (capacitor)

of strength 1
2 λ

�1Lz (2λγz). Its grounded Laplacian is hence given by

JWeylðkÞ ¼
iω 2ðγþ αþ βÞ � 1

ω2L þ γz � 1
ω2Lz

� �
1� coskz � λð Þ

� �
I

�iω γþ 2βcosky þ γþ 2αcosky
� �

coskx
� �

σx

�iω γþ 2αcosky
� �

sinkxσy

þiω γz þ 1
ω2Lz

� �
1� coskz � λð Þσz

ð24Þ

with the resonant frequency ~ω given by 2L(α+ β+ γ)= Lzcz= ~ω�2. Equation (24)
reduces to Eq. (7) at resonance.

Disordered topolectrical circuits. To illustrate the significance of the semimetal
paradigm in the light of the few existing works on electrical circuit realizations of
topological phases, we present a detailed comparative analysis of the impedance
read-out of our Weyl and zig-zag circuits with those of refs.9, 20, which realize a
topological insulator phase through arrangements of circuit elements possessing
appropriate internal symmetry. For a meaningful comparison, we slightly modified
their topological insulator circuit by adding grounded capacitors C to every node,
so that the AC driving frequency indeed takes the role of the chemical potential in
the topological insulator circuit as well.

In the construction of ref. 20, which generalizes that of ref. 9 to arbitrarily large
unit cells, the key idea is to realize a topologically nontrivial Z2 phase protected by a
geometric analog of the electronic antiunitary time-reversal operator. Although any
RLC circuit must be time-reversal symmetric, it is possible to achieve a nontrivial
Z2 invariant by stacking together two copies of Hofstadter models with opposite
magnetic fluxes, entangled in such a way that there is no need of realizing two
spatially separated Chern circuits. By connecting unit cells with internal cyclic
permutation symmetry with inductors that implement cyclic permutation
operations, the electronic time-reversal operator is mapped to a combination of
ordinary, i.e. non-projective, time-reversal operations and cyclic permutations.

In our notation, the simplest topological insulator circuit, which contains 3
capacitors per magnetic unit cell (Eq. (3) of ref. 20), possesses the effective
grounded Laplacian consisting of two copies (±) of

JTIðkÞ ¼ iω L1

0 �1 �eikx

�1 0 �1

�e�ikx �1 0

0
B@

1
CA

2
64

þL2

�2cosky 0 0

0 �2cos ky ± 2π=3
� �

0

0 0 �2cos ky � 2π=3
� �

0
BBB@

1
CCCA

2 L1 þ L2ð Þ 1� ~ω2
TI
ω2

� �
I3´ 3

i
;

ð25Þ

where ~ω2
TI ¼ 1

2C L1þL2ð Þ. Note that, opposite to our semimetal circuits, but in

accordance to the convention in ref. 20, the ungrounded elements are the inductors,
not capacitors. This duplicity yields no extra complication, as the simple relation
ω ! ~ω2

ω holds when the capacitors and inductors are interchanged. Equation (25) is
a variant of (2 opposite copies of) the 3-band Hofstadter Hamiltonian, with each
copy possessing 3 bulk bands connected by topological edge modes. The crux is
that although these are bona fide topologically protected modes, they do not
necessarily contribute significantly to the RLC resonances because they cross a
given eigenvalue only at isolated points in momentum space. According to our
semimetal paradigm, TBRs are characterized by boundary modes that are (i)
extensively degenerate and (ii) spatially localized, with the former not being
satisfied by the TI circuit edge mode(s).

To study the precise implications of the absence of extensive degeneracy in a
topolectrical circuit, we consider ensembles of disordered circuits, i.e., circuits
consisting of elements with nonuniform capacitances C or inductances L. The non-
uniformities are charactized by standard errors with tolerances (standard
deviations) of 1 or 10%. Additionally, we have included resistive losses proportional
to 10% of the non-uniformities of impedances due to disorder. The results are
depicted in Fig. 5a, b. It becomes evident that the extensive, semimetal-like
degeneracy of our Weyl circuit protects the RLC resonances much better than the
protection from the single mode Kramer’s degeneracy in the TI circuit. This
observation identically holds for both the Weyl and zig-zag topolectrical circuits.

Laplacian formalism. RLC circuits obey a linear 2nd order ordinary differential
equation (ODE), just like a mechanical system with springs, dampers and masses,
and hence brings up the natural question what the mechanical system analogs of
topolectrical circuits are. Topological mechanical systems have already been
intensely studied in recent years, although their responses are not typically char-
acterized by an impedance measurement. In a mechanical system with a single
polarization direction (e.g., mechanical graphene28), the equation of motion
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likewise involves the Laplacian: Lx ¼ M€x ¼ �ω2Mx, i.e.

Jx ¼ L� ω2M
� �

x: ð26Þ

Since the mass matrix is diagonal, it is almost trivial to turn the above into an
eigenvalue equation of LM−1, with eigenvalues being ω2. Nonzero density of states
at certain frequencies ω, which are associated with resonances, are by definition
also zero eigenstates of J. Usually, these are the only eigenstates of J studied in
mechanical systems, since the resonant modes can be directly probed. In electric
circuits, the important difference is that direct measurements via the impedance do
not only involve these resonant states. From the definition Zab= (Va− Vb)/I, the
impedance measurement can be thought of as a transport problem with an
arbitrarily large external driver/probe. This additional complication requires extra
information from J, namely, the contributions from all eigenvalues of J, and not just
the zero eigenvalue (Eq. (3)). Due to the different orders of time derivatives
(powers of ω) entering the equation of motion of an RLC circuit, there is no direct
relation between ω and the eigenvalues of J. This is in contrast to mechanical
systems, where the mass is local (M is diagonal) and ω2 can easily be made the
eigenvalue. Still, mechanical and electrical resonances are similar in spirit despite
being characterized in seemingly opposite ways. In mechanical systems, resonances
are associated with minimal dissipation, where small driving perturbations can
sustain large oscillations. The same is true for electrical circuits, despite having
ostensibly divergent impedance: one then has large voltage oscillations
corresponding to small input/output current. Note that, barring specially
constructed examples, mechanic systems generally have the restriction that the
polarization directions have to be related to the relative spatial displacement of the
sites; in electric circuits at laboratory scales, there is no such constraint. Our zig-zag
topolectrical circuits can be conveniently carried over to mechanical systems, i.e. in
ref. 29 where its Floquet dynamics was also explored. In particular, the
generalization from boundary modes to domain wall modes26 certainly establishes
a direction worth considering in mechanical systems as well. This is less obvious for
e.g. the Weyl circuit, as higher dimensional networks cannot be realized easily in a
mechanical arrangement of springs.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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