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Structural annotation of small molecules in tandem mass spectrometry has always been a central
challenge in mass spectrometry analysis, especially using a miniaturized mass spectrometer for on-
site testing. Here, we propose the Transformer enabled Fragment Tree (TeFT) method, which
combines various types of fragmentation tree models and a deep learning Transformer module. It is
aimed to generate the specific structure ofmolecules de novo solely frommass spectrometry spectra.
The evaluation results on different open-source databases indicated that the proposed model
achieved remarkable results in that the majority of molecular structures of compounds in the test can
be successfully recognized. Also, the TeFT has been validated on a miniaturized mass spectrometer
with low-resolution spectra for 16 flavonoid alcohols, achieving complete structure prediction for 8
substances. Finally, TeFT confirmed the structure of the compound contained in a Chinese medicine
substance called the Anweiyang capsule. These results indicate that the TeFT method is suitable for
annotating fragmentation peaks with clear fragmentation rules, particularly when applied to on-site
mass spectrometry with lower mass resolution.

The analysis of smallmolecular compounds’ structure inmass spectrometry
and predicting the molecule’s structure to be measured from tandem mass
spectrometry spectra are primary research targets in analytical chemistry.
This objective is especially relevant to discovering new homologous deri-
vatives, natural product research, non-targeted metabolomics, drug
research, food safety, pharmaceutical ingredient analysis, and drug
detection1–5. Especially in on-site testing, the timely identification of new
drugs and psychoactive substances via miniaturized mass spectrometers is
increasingly needed. Usually, new psychoactive substances have similar
chemical structures to existing drugs, and a series of derivatives are pro-
duced through some chemical modifications6–8. The rapid use of on-site
mass spectrometers for the detection of such substances’ structures is crucial
in preventing them from entering widespread circulation in the market
without permission. Meanwhile, within the field of traditional Chinese
medicine9–12, the rapid comprehension of the chemical composition and
actionmechanisms of herbalmedicines through on-sitemass spectrometers

can contribute significantly to expanding the acceptance and utilization of
these medicines by a broader population. Due to the chemical diversity of
these compounds’ structures and the limited mass resolution of miniatur-
ized mass spectrometers, on-site determination of the structures of unfa-
miliar substances faces significant challenges. It is necessary to establish a
model using low-resolution mass spectrometry spectra to predict the
molecule’s structure.

One common approach to automatically interpret MSn spectra is to
search in a mass spectrometry database13–16. This methodology involves
comparing themass spectra of compounds under specific conditions with a
database containing a large number of reference mass spectra. Through an
algorithmic calculation of similarity, the molecule corresponding to the
most similar spectrum is identified in the database. McLafferty et al. pro-
posed a probability-based matching system that utilizes peak occurrence
probability and empirical correction to accurately sort candidate molecule
lists17. Similarly, RomanMylonas et al. introduced the X-Rank algorithm to
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rank peak intensities of mass spectra, establish correlations between dif-
ferent mass spectra, determine the probability of matching with mass
spectra from a reference library, and enable cross-mass spectrometry plat-
form recognition and search18. In 2016, Christoph Ruttkies proposed the
MetFrag model, combining database search algorithms and fragment pre-
diction algorithms for identifying the structure of small molecules from
tandem mass spectrometry data. This method aids in the identification of
compounds not yet included in mass spectrometry databases. It involves
filtering and scoring candidate structures based onmatched peaks’mass-to-
charge ratio, intensity, and bond dissociation energy, thereby enhancing the
ability to recognize unknown compounds19,20. The SIRIUS series
methods21–23, proposed by Sebastian Böcker et al., are considered to be a
more effective mass spectrometry database search algorithm. This method
combines high-resolution isotope pattern analysis, fragment tree (FT), and
CSI: FingerID21 to assist in searching molecular structure databases. One
significant limitation ofmass spectrometry library search techniques is their
inability to identify unknown natural products and drug metabolites.
Meanwhile, in the case of low-resolution spectra acquired from a minia-
turized mass spectrometer used for on-site testing, it is difficult to provide
corresponding databases for searching.

In addition, machine learning and the deep learning model have been
applied to analytical chemistry anddrug structure design for a long time24–30.
Oneof the great advantages ofdeep learningmodels is that they cangenerate
molecular structures from mass spectrometry spectra without being given
explicit rules. The deep learning model encodes and decodes chemical
substances through methods such as SMILES (simplified molecular-input
line-entry system)31 strings andmolecular graph construction32,33,whichcan
then transform the annotationofmass spectrometry structure into language
translation or graph neural network problems. Böcker’s research team
proposed a model called CANOPUS that combines SVM and deep neural
networks34. DNN predicted compound categories from fingerprints and
completed compound classification. Aditya et al. proposed MassGenie, a
Transformer-Based deep learning method35. This method transforms the
molecular recognition problem into a language translation problem, where
the source language is a list of high-resolution mass spectra peaks, and the
translation language is the SMILES strings of the molecule. Meanwhile, the
DarkNPS model is based on the LSTM model for automatic structural
analysis of newpsychoactive substances8. In 2022,Michael et al. constructed
themodelMSNovelist using an encoder-decoder neural network to achieve
de novo prediction of the structure of unknown compounds from tandem

mass spectrometry36. This model combines fingerprint prediction with
neural networks for the annotation of molecular structures. The deep
learningmodel is limited by the computing resources of hardware platforms
and the limitedavailability ofMS2 spectra, and its testing performance varies
across different network architectures. MassGenie utilizes a network with
over 400 million nodes, completing training on the DGX A100 8-GPU
system. However, considering the on-site applications with a miniaturized
Mass Spectrometerplatformposes challenges in achieving large-scalemodel
training similar to MassGenie.

This paper proposed a so-called “Transformer enabled Fragment Tree
(TeFT)” framework to identify the unknown molecular structures for tan-
demmass spectrometry; it was composed of a simulated semantic fragment
treemodel (SMILES tree) generated through the deep learningTransformer
module37 and the FT38–41 directly generated through the original MSn

spectral data. By aligning and comparing the similarity of the two trees, the
molecular structure of the tested chemical substance with the highest pos-
sibility can be predicted. This method can be embedded into any tandem
mass spectrometry systems with fragmentation function; however, it is
particularly suitable for miniaturized mass spectrometry for on-site appli-
cations where the spectral resolution is limited. Furthermore, a relatively
lightweight Transformer module with 65 million nodes was adopted in the
current work, thus, the computational complexity is also suitable for on-site
applications.

Figure 1 illustrates the conceptual workflow of the proposed method.
All the experiments were applied on a miniaturized ion trap mass spec-
trometry with a self-aspiration capillary electrospray ionization source
(SACESI) thatwehave previously developed42–45.MSn spectrawere obtained
using high-resolution isolation and collision-induced dissociation (CID)
sequences by carefully controlling the frequency and amplitude of the
auxiliary AC signal applied to the ion trap46. Experimental details can be
found in the method section.

The originalMSn spectral data are sorted according to peak intensities,
and several fragmentswith the highest intensity are selected as inputs for the
deep learning Transformer module. The Transformer module consists of
several encoder and decoder layers, utilizing a large number of open-source
libraries to learn the potential relationship between molecular SMILES
strings and tandemmass spectrometry data with the assistance of attention
mechanisms. Inputting an MSn spectral data into the Transformer, the
module will output a list of SMILES strings for themolecule, corresponding
to the possible chemical structure of the unknown substance. It’s worth
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Fig. 1 | A conceptual overview of TeFT. In the on-site application, miniaturized
mass spectrometry is used to get MSn spectra. Using the Transformer and Fragment
tree generation approach, a range of potential SMILES strings and the fragment tree
were predicted. Through the simulation of fragmentation, several SMILES frag-
mentation trees are generated and then subjected to a comparative analysis and

scoring process against the fragmentation tree. The SMILES tree with the highest
score provides possible annotations for each peak in the spectrum. a Electrospray
ionization. bMiniaturized ion trap. cMSn spectrum. d Candidate annotation of
fragmentation peaks.
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noting that due to the low resolution of the original spectra, the reduction in
model parameters, and the adoption of a more lightweight model archi-
tecture, the outputs of the model are not unique across multiple runs,
necessitating the sorting of results. Next, the candidate substances in the list
undergo the simulated fragmentation to generate a series of SMILES trees.
During the process of simulated fragmentation, we adopted the general
fragmentation rules that often occur in chemical bonds in mass spectro-
meters (as listed in Supplementary Table S1); we also provide an interface
for adding specific new rules into the fragmentation process by SMART
(SMILES Arbitrary Target Specification). The resulting SMILES trees are
composed of tree nodes with the SMILES strings of molecules or fragments
and the loss of each fragmentation formula as edges. The SMILES tree
represents the most possible dissociation scenarios of the specific molecule
in tandem mass spectrometry.

Also, the traditional FT algorithm generates the corresponding FTs
from the original MSn spectral data directly. After guessing the formula of
each fragment, we calculate a reasonable loss for each fragmentation peak in
theMSn spectrumand add correspondingweights. By comparing eachnode
and corresponding losses between the SMILES tree andFT,we can score the
similarity of the two trees. Our results indicated that the SMILES tree can
determine themost comparable outcomes to the tested substance, including
the structural annotations of individual molecules. It can be postulated that
the SMILES tree with the highest evaluation score is highly probable to be
the tested substance. Meanwhile, the possible dissociation pathways of the
substance contained in the SMILES tree with the highest score also provide
possible annotations for each fragmentation peak in the spectrum.

Compared to library searching methods such as the SIRIUS4 and
MetFrag, the proposed model achieved better results in that the majority of
molecular structures of compounds in the test can be successfully recog-
nized. Additionally, 23 molecule experiments were conducted via minia-
turized linear ion trap mass spectrometers, and the complete structures of
ten flavonoids and two stilbenes were successfully predicted by the model.
Finally, to demonstrate TeFT on real-drug data, the model identified one of
the main components of traditional Chinese medicine Anweiyang capsule.

Results
Model validation
We tested the Transformer model’s accuracy by utilizing two separate
databases.We randomly extracted 660 non-repetitiveMS2 spectra from the
mass spectrometry library and used them as the test set. For every MS2

spectrum, we ran the model 100 times to predict various candidate sub-
stances. After eliminating invalid SMILES strings, we then assessed the
similarity between the predicted results and the molecular fingerprints of
actual structures, using the Tanimoto similarity methods in RDKit47.
Molecular fingerprinting is a technique for representing molecules as

mathematical constructs. This method enables the mapping of molecules
into a vector space by considering their distinctive features, including
functional groups, atomic sequences, and various topological structures.
Molecular fingerprinting is widely employed to facilitate similarity com-
parisons among molecules48. In this study, we employed MACCS and
Morgan fingerprints to create molecular fingerprints. The performance of
the two datasets is depicted in Fig. 2, illustrating the distribution of mole-
cular fingerprint similarity between the model’s best candidate output and
the actual substance. The predictedmolecular fingerprint similarity data for
all substances is available in Supplementary Data 1. In the test set, the
Tanimoto similaritymethod revealed that the Transformermodel correctly
identified 30% (195/660) of the actual structures, all with a Tanimoto
similarity value of 1. The percentage of Tanimoto similarity greater than 0.9
was 47% (311/660), while the percentage greater than 0.8 was 67%
(439/660). In comparison, we used SIRIUS4 and MetFrag to search 660
mass spectra and select the substance with the highest ranking as the pre-
diction result. The results showed that SIRIUS4 correctly predicted the
entire structure of 27.6% of the substance, while 39% had fingerprint
similarity greater than 0.9. The predicted results of the MetFrag model are
relatively close to those of SIRIUS4. This suggests that the Transformer
model efficiently employs the spectrum’s structural data.

The second benchmark comprised 93 positive-modeMS2 spectra from
the CASMI 2017 contest (http://www.casmi-contest.org/2017/index.
shtml), a typical method for evaluating model performance. The same
process as in theprevious test setwas used toevaluate theMS2 spectra.Of the
93 substances, 12% predicted all structures correctly and 22% accurately
predicted most structures. Notably, different molecular fingerprint simi-
larity computationmethods (Dice similarity) can increase the percentage of
structures with a fingerprint similarity greater than 0.8 to 78%, and a
similarity greater than 0.9 to 39%. Similarly, SIRIUS4 prediction results
show that 43%accurately predictedmost structures andTheMetFragmodel
predicted the majority of structures for 17.2% of the substances.

By comparing with the SIRIUS4 and MetFrag, we can find that the
Transformer model can generate de novo chemical structures solely from
tandem mass spectrometry and generate candidate lists of substances that
are more similar to authentic compounds. The Wilcoxon signed-rank test
was employed for non-parametric statistical analysis, and the final p values
are reported in Table 1. These results indicate a significant difference in the
testing performance of the TeFT model compared to the SIRIUS4 model
and the MetFrag. Additionally, in Supplementary Fig. S4, we provided the
top-5 accuracy results for two benchmark methods and the TeFT model.
The test results indicate that, compared to the other two models, the TeFT
model demonstrates superior predictive capabilities on the test set. The top-
k rankings also show that the TeFT model’s predicted results consistently
rank at the forefront, affirming the rationality of the model’s ranking

Fig. 2 | The Tanimoto similarity of the best incorrect candidate to correct structure for TeFT, SIRIUS4, and MetFrag in different datasets. a Test set. b CASMI 2017
challenge.
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algorithm. On the CASMI 2017 dataset, the predictive ability of the TeFT
model is slightly below SIRIUS4, comparable to MetFrag, but the overall
predictive accuracy of TeFT is much higher than the other two methods.
The majority of results’ similarities predicted by TeFT are above 0.8.
Therefore, the model exhibits robust predictive capabilities across different
datasets. For some mass spectrometry databases that lack annotations, the
TeFT model can provide references for possible molecular structures.

To validate the effectiveness of the fragment tree scoring mechanism,
we use the SIRIUS4 and MetFrag methods as replacements for the Trans-
former component of TeFT. We evaluated their similarity with the pre-
dictions of SIRIUS4 and MetFrag. The results are provided in the
Supplementary Table S6. Among the substances ranked first in the original
SIRIUS4 scoring, 56% were also ranked first in the fragment tree scoring,
while MetFrag had a proportion of 16%. Additionally, SIRIUS4 retrieved

27.9% of substances in the fragment tree scoring list, while MetFrag had
26.7% (ranked top 1). The Transformer model demonstrated higher
flexibility in generating substances and produced more similar molecules.
Fragment tree similarity scores also indicated a certain level of reliability. It is
essential to note that only the TeFT model is feasible for low-quality reso-
lution spectra.

Model performance in miniaturized linear ion trap mass
spectrometer
To evaluate the model’s predictive ability for various drug types, we pur-
chased 23 substances, including flavanols, stilbenes, flavones, and Rotun-
dine. Fig. 3 provides an illustration of the prediction process of the entire
model using Galangin as an example. All information regarding the tested
substances and the detailed test results are presented in Supplementary
Data 2. The Transformer model generated a series of candidate substances.
By simulating their decomposition into SMILES trees and generating FT,
themodel scored the similarity between these trees and identified the closest
substance structure from the results and it provides potential structural
annotations for the fragmentation peak. The experimental results are pre-
sented in Table 2. Out of the 16 flavanol drugs, eight achieved precise
structural prediction, with a molecular fingerprint similarity of 1 (three
ranked first). Thus, by employing the FT similarity algorithm, we can reli-
ably predict and determine all the genuine structures of the substance,

Table 1 | The p values resulting from theWilcoxon signed-rank
non-parametric statistical test on the similarity results
between TeFT and SIRIUS4, MetFrag

P values SIRIUS4 MetFrag

TeFT Test 3.8 × 10−13 8.2 × 10−9

CASMI 2017 4.4 × 10−6 2.7 × 10−11
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Fig. 3 | Mass spectrometry data prediction process (taking Galangin as an
example). Four fragment peaks in the MS2 spectra along with the parent ion peaks
m/z = 271 of Galangin, were fed into two distinct models: the Transformer model
and the fragmentation tree generation model. The Transformer model, in its pre-
dictive role, generates a list of potential molecules. For each molecule in this list, it
then conducts simulating fragmentation based on the potential cleavage patterns of

flavonoids in mass spectrometry, resulting in the creation of a SMILES tree. Sub-
sequently, a similarity score is assigned by comparing the SMILES tree to the frag-
mentation tree. The highest score achieved designates the most probable substance,
along with its potential SMILES expression corresponding to the
fragmentation peak.
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alongside possible structural annotations of each fragment, with the correct
answer being ranked first among candidate substances. The remaining
substances, including flavanones and stilbenes, have similarly obtained an
accurate prediction. The structure of one flavanone and two stilbenes has
been completely identified. It isworthmentioning that concerning the other
substances tested, theirmolecularfingerprint similarity ismainlydistributed
around 0.97 (0.93 being the worst outcome). The distribution of ranking
scores based on the fragment tree scoring mechanism of TeFT for four
classes of drugs is illustrated in Fig. 4. Figure 4 indicates that this scoring
approach guaranteed that the most similar substances consistently occupy
the top three positions among the candidate substances.

The experimental study indicated that, basedon the predicted outcome
of theTransformermodel, the top three substances thatweremost similar to
the tested substance were identified by SMILES tree generation and sub-
sequent similarity scoring with the FT. This methodology enables the
selection of the most similar candidate substance to the original mass
spectrum, while also providing a potential structural interpretation for the
fragmentation spectrum. Specifically, Simulated fragmentation can break
up the redundant parts of the measured molecular results to make them
closer to the original molecule. Moreover, this approach provides an
alternative means of comparing substance similarity, eschewing the use of
molecular fingerprints and possessing a certain level of credibility.

Furthermore, the experimental results demonstrate the applicability of
the TeFT model on a low-resolution mass spectrometry platform. Despite
the low mass resolution of the mass spectrometry, the model’s reliability in
making structural predictions and small molecule annotations remains
unchanged. Accordingly, these findings significantly ease the processing of
mass spectrometry spectra acquired by miniaturized mass spectrometers
and broaden their application scope in on-site detection.

Determination of unknown drug ingredients
TheTeFTmodel employed in this study can identify unknown components
in drugs. Anweiyang Capsule, widely used for the treatment of gastric and
duodenal ulcers, is primarily composed of flavonoids extracted from
liquorice. Following several preprocessing steps in the experimental pro-
cedure (details provided in the Methods), the flavonoids contained within
the capsules can be successfully extracted and subsequently subjected to
analysis using a miniaturized ion trap mass spectrometry.

Uponobtaining the full spectrumof the substance, as Fig. 5a shows, the
next step involved the isolation and fragmentation of the marker peak with
an m/z value of 269. Fig. 5b illustrates that the MS2 spectrogram of the
substance contains a total of three fragmentation peaks: 213, 237, and 254.
This spectrogram was then fed into the TeFT model, which processed it to
generate a series of SMILES trees, each accompanied by a similarity score of
two trees. The possible structural annotations for the three fragmentation
peaks and the parent ion peak are depicted in Fig. 5c. These scored SMILES
trees provided valuable insights into the structural characteristics of the
substance. The highest-scoring SMILES tree supplied complete annotations
for three peaks in the fragmentation spectrum (i.e., the predicted molecular
formula of the fragmentation tree is identical to the actual molecular for-
mula), and incomplete annotations for the remaining peak (albeit with the
same type and number of elements, except for H). The best-scoring

substance in the candidate list was formononetin. Consequently, we
hypothesize that Anweiyang capsules contain flavonoids that comprise
formononetin. Relevant literature has proved that formononetin is indeed
one of the main components of the Anweiyang Capsule49. For other com-
ponents, the TeFT model can provide a series of predicted molecular
structures. However, due to the lack of clear evidence in other literature and
existing resources to confirm the substances corresponding to the remaining
peaks, the predicted structures for m/z = 262 and 249, as Fig. 5a shows are
provided for reference purposes only. We compared the TeFT model pre-
dictions based on the miniaturized MS method with the test results from
commercial high-resolution MS (Thermo Fisher Q-Extractive Orbitrap)
using the same extracted solution. High-resolution mass spectra have been
provided in the Supplementary Fig. S5. We observed that the molecular
formulas of the top two structures predicted by the model were consistent
with the measured molecular formulas from the commercial high-
resolution MS results. Our predictive results exhibit molecular formulas
that match the measurements obtained from high-resolution mass spec-
trometrywith veryhighmass accuracy (the errors are less than0.01). For the
peak at m/z = 262, our predictive model calculated a theoretical molecular
mass of 262.191 (C15H24N3O

+), which aligns precisely with the high-
resolutionmeasurement result of 262.191. The peak at m/z = 249 exhibits a
comparable predictive accuracy, with the predicted molecular formula
being C16H13N2O

+ and the theoretical molecular weight being 249.102,
which aligns closely with the high-resolution measurement result of
249.111. Because even small variations of m/z value can indicate different
molecular formulas, high-resolutionMS peaks can be used to determine the
molecular formulas of the analytes in practical applications. This, to some
extent, corroborates the accuracy of our model predictions based on low-
resolution MS data. However, fully structural accuracies of the predicted
molecules should be further verified using multiple analytical methods in
the future.

The experiment illustrated that the model can generate detailed
structures of flavonoids found in unknown drugs and provide dependable
structural annotations for drug fragmentation peaks, using tandem mass
spectrometry data alone.

Discussion
Wepropose a novel predictionmodel, TeFT, designed for de novo structure
generation from low-resolution tandem mass spectrometry (MSn) spectra
and partial structural annotation of mass spectrometry peaks. TeFT com-
bines the deep learning Transformer model with a modified fragmentation
tree generation algorithm, incorporating an extensible fragmentation rule
library to ensure versatility for various substances. By simulating molecular

Table 2 | Test results for four types of substances

Amount Minimum
similarity

Quantity of completely
similar substances

Flavanols 16 0.96 8

Stilbenes 4 0.93 2

Flavones 2 0.98 1

Others 1 1 1

The minimum similarity refers to the molecular fingerprint similarity between the worst-predicted
result and the real molecule among all predicted results in that category. The number of completely
similar substances refers to thequantity of substances in that category forwhich thepredicted result
is identical to the real molecule.
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Fig. 4 | The distribution of ranking scores based on the predictive scoring of MS2

spectra for four classes of substances tested on-site using the TeFT model. By
employing a fragment tree scoring mechanism, the results were ranked, showcasing
the distribution of ranking positions for the most similar substances. This scoring
method ensures that the most similar substances consistently occupy the top three
positions among the candidate substance.
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fragmentation based on deep learning predictions and scoring the similarity
with fragmentation trees, TeFT can identify the most probable structures
from the multiple results predicted by the Transformer model. We found
that the similarity scores between the two fragmentation trees can serve as a
novel metric for assessingmolecular similarity andmaintaining a high level
of confidence.

Specifically, we adopted a rule-embedded Transformer model.
Experimental results from on-site mass spectrometry indicate that due to
the limitations of spectral resolution, mass accuracy, and model archi-
tecture, the Transformer model does not yield unique output for the same
input. During several different inference processes, we may obtain several
similar but not entirely identical molecular representations. These mole-
cules have very close molecular weights and highly similar structures.
Therefore, further filtering is required to eliminate this “ambiguity.” To
enable similarity ranking of candidate substances, this study established a
similarity scoring mechanism using both molecular fragment tree and
SMILES fragment tree models.

Firstly, a molecular fragment tree model was constructed based on
tandem mass spectrometry spectra. In the molecular fragment tree, each
node corresponds to a molecular formula of a fragment peak in the spec-
trum,with edges connectingpairsofnodes indicating lost functional groups.
The molecular fragment tree generates the maximum weighted fragment
tree using a combination of chemical and probabilisticmodels, representing
the most likely fragmentation pathways and outcomes for the parent ion.

Subsequently, basedon themolecular fragment treemodel,wedesigneda
SMILES fragment treemodel using the Recapmethod. The SMILES fragment
tree model simulates the fragmentation of molecules according to possible
fragmentation rules in the mass spectrometer, incorporating structural
information of substance fragments. The SMILES fragment tree integrates
molecule representation and fragmentation rules, with nodes labeled with
SMILES strings of fragments and edges indicating potential fragmentation
patterns in the mass spectrum, labeled with molecular formulas of the lost
structures. The SMILES fragment tree represents possible dissociation sce-
narios of the molecule in the mass spectrum.

Finally, simulated fragmentation was performed on all candidate
substances in the Transformer prediction list, generating a series of SMILES
fragment trees. By comparing the similarity between the SMILES fragment
trees of each predictedmolecule and themolecular fragment trees generated
from tandem mass spectrometry, substance similarity was ranked. The
SMILES fragment treewith thehighest similarity score is considered tomost
likely contain the substance under test. The closest subtree to the molecular
fragment tree can be found in the highest-scoring SMILES fragment tree,
containing structures with the highest similarity to the substance under test.
Additionally, the possible dissociation pathways of each fragment peak in
the mass spectrum are provided by the highest-scoring SMILES tree,
facilitating structural annotation.

Experimental results demonstrate that the multi-type fragment tree
similarity scoring mechanism ensures confident ranking of generated
results, where higher fragment tree similarity indicates a higher likelihoodof
the molecule being the substance under test or a part of it, offering a novel
method for comparing molecular similarity. For complex or poorly pre-
dicted molecules, the model’s prediction effectiveness can be enhanced by
repeating predictions, thereby improving the model’s ability to recognize
spectra.

We validate the model’s performance on different datasets, especially
for predicting the structures of various drugs using miniaturized linear ion
trap mass spectrometers. It’s worth noting that compared to other mass
spectrometry predictionmodels, for instance, SIRIUS4, which includes CSI:
FingerID, demands a higher level of mass resolution (The mass deviation
should be within 20 ppm, which can be challenging for miniaturized mass
spectrometers), TeFT is the first model designed for miniaturized mass
spectrometers. The tolerance of the Transformermodel formass resolution
allows us to achieve structure prediction. While this might result in more
candidate substances, the inclusion of domain-specific fragmentation rules
can effectively aid in simulating the fragmentation of these substances, and
then rank them according to the similarity score of two trees. When con-
structing the training dataset, we retained some highly similar molecules,
which did not lead to data leakage. For deep learning models, the input

Fig. 5 | Experimental determination of unknown
drug components. a The detection spectrum of
substances in the Anweiyang capsule. b Its frag-
mentation spectrum. c The possible structural
annotations corresponding to each spectral peak
inferred by the TeFT model.
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consists of the spectra of molecules, and structural similarity between
molecules does not necessarily implyhigh similarity in their tandemspectra.
For instance, benzoic acid and para-benzoic acid exhibit highly similar
molecular structures, but their spectra differ significantly. Similarly, for
luteolin andkaempferol, experimental evidence shows that luteolin contains
fragmentation peaks at m/z = 153,161,199,213,223, while kaempferol peaks
at m/z = 153,165,213,241,258, with only m/z = 153 being identical. Even
slight structural differences can lead to significant variations in the tandem
spectra of substances. Typically, secondary fragmentation spectra of sub-
stances, after excludingmiscellaneous peaks, consist of 3–5 fragment peaks.
The differences between the two peaks represent considerable variations
between spectra. Therefore, to enable the model to better understand the
relationship between spectra and molecular structures, we retained similar
molecules for training purposes.

While ourmodelmay not exhibit exceptional performance advantages
in predicting high-quality resolution spectra compared to other deep
models, its focus lies in predicting tandem spectra with low resolution and
accuracy. This capability enables effective on-site mass spectrum recogni-
tion. Models like MSNovelist rely on predicting molecular fingerprints for
structure prediction, which imposes high requirements on mass accuracy.
Similarly, the MassGenie model is geared towards recognizing spectra with
high resolution and accuracy. Therefore, we devised a recognition model
tailored for low-resolution spectra, effectively meeting the needs of on-site
mass spectrometry and expanding its application scope.

However, this work has limitations, aswe only trainedTeFTon spectra
recorded in positive ion mode (H+), restricting its applicability. Addi-
tionally, using low-resolutionmass spectrometry to generate fragmentation
tree models often results in a higher number of candidate results. We
addressed this by limiting the types andnumbers of elements, but challenges
in finding the correct fragmentation tree still exist.

In other studies, the application of Transformer models in various
molecular structure generation tasks, such as reaction prediction50, has been
explored. Reaction prediction is treated as a machine translation problem
between SMILES strings representing reactants, reagents, and products. In
such cases, using independent multi-head attention molecular transformer
models has shown promising results. However, in our study, the Trans-
former model applied is specifically designed for generating the complete
structure of the target substance based on MS2 spectra. The input infor-
mation for the Transformer consists solely of MS2 spectra, without addi-
tional contextual information. Experimental results indicate that the
model’s predictions for molecular structures are not always unique. To
address this, a subsequent fragment tree model and simulated fragment
similarity scoring are employed after the Transformer model, enabling the
identification of the most similar substances. This approach achieves de
novo generation of the structure of the target substance.

Additionally, pre-trained models like ChemBERTa51 have found
extensive applications in tasks such as molecular property prediction,
classification, and medicinal chemistry. Through fine-tuning, these models
can effectively predict specific downstream tasks, including drug property
prediction. However, research on establishing large-scale self-supervised
pre-training models for mass spectrometry prediction is limited. Some
studies have employedpre-trainedmodels for extractingmolecular features,
which are subsequently combinedwithMS/MSdatasets to accomplishmass
spectrum prediction across multiple datasets52. In contrast to those
approaches, this study is specifically tailored for predicting mass spectrum
data with low-quality resolution in a miniaturized mass spectrometer,
building upon dataset predictions. In this study, we adopted a lightweight
Transformer architecture tomeet the requirements of on-site detection and
achieved promising results on a miniaturized mass spectrometer with low
resolution. The application scenario of our model demands lightweight
requirements, making existing models more suitable for on-site detection
compared to pre-trainedmodels. Thesemodelsmeet the practical demands
of real-world applications. Additionally, existing models have already
demonstrated excellent performance in spectrum prediction tasks. There-
fore, it is challenging to ascertain whether pre-trained models offer better

performance in this application scenario. Although the use of pre-training
models and fine-tuning techniques is not the primary focus of this research,
future studies could further explore the application of molecular pre-
training models in the field of mass spectrometry prediction.

Methods
Dataset
The training set utilized for theTransformermodelwas createdbycompiling
open-source spectrometry databases GNPS, HMDB (5.0), and MoNA53–55.
The training set underwentfiltration following predefined criteria, including
the imposition of constraints such as limiting the molecular weight to less
than500Daandpermittingonly thepresence of the ten elementsC,H,O,N,
P, S, Cl, Br, I, and F, whichwere suitable for applications of ourminiaturized
ion trapmass spectrometry. Given that a singlemolecule can be represented
by multiple SMILES strings, the training set standardized the SMILES
representations for all molecules and removed duplicate entries. Conse-
quently, the finalized training set encompassed 220,638 distinct molecules,
each paired with its corresponding mass spectra in positive ion mode.

Instrumentation
The drug fragmentation experiment was conducted on a custom-made
small linear ion trap mass spectrometer with a continuous atmospheric
pressure interface. Sample ions are introduced from the sampling tube into
the first vacuum chamber, where they undergo assistance via an ion funnel
for transmission. Subsequently, they proceed into the second vacuum
chamber through a sampling cone, and they undergo quality analysis within
the ion trap. To achieve resonant excitation of ions, a pair of AC voltages
with equalmagnitude but opposite phases is applied to the electrodeswithin
the ion trap. This voltage is commonly referred to as the auxiliary AC
excitation signal. The experimental instrument utilized in this study is a
hyperbolic linear ion trap, characterized by hyperbolic size parameters with
a radius of x = 4mm and y = 4.25mm. The RF voltage and auxiliary AC
excitation signal are applied to two pairs of hyperbolic electrodes. For a
detailed description of the instrumentation, our previous work provided a
more detailed description of it42–46. TheMS2 spectrumof each substancewas
measured experimentally, and the top five to six fragmentation peaks and
their five nearby peak points were selected as experimental data and input
into the prediction model.

Chemical samples and preprocessing
The chemical samples used in this study included flavanols, stilbenes, fla-
vones, and Rotundine. All the samples were purchased from Aladdin Bio-
chemical Technology Co., Shanghai, China and Macklin Biochemical
Technology Co., Shanghai, China. All drugs were diluted in methanol to
final concentrations ranging from 1 to 100mg/L.

In thedrug ingredient identificationexperiment, theAnweiyang capsules
used in the experiment were purchased fromHuizhou Jiuhui Pharmaceutical
Co., Ltd. We employ ultrasound-assisted extraction (UAE) as a crucial tech-
nique to extract flavonoids from the drugs56. Flavonoids are extracted using a
methanol aqueous solution.Theprocess involves grinding the capsule powder
and 70% methanol solution is used to perform sonication. An ultrasound
process is operating at 180W for 45min. Upon completion of the ultrasound
process, the solution is filtered through a nylon membrane, which was found
thatdrug residuewould remainorbeadsorbedon thePolyether sulfoneNylon
syringe membrane filter (Φ25mm, pore size: 0.45 µm, Shanghai ANPEL
LaboratoryTechnologies Inc.) and subsequently subjected to experimentation
using miniaturized mass spectrometry.

The training stage of the transformer model
As illustrated in Fig. 6, our study adopted the Transformer model, dis-
tinguished by its encoder-decoder architecture exclusively reliant on atten-
tionmechanisms,which captured the overarching interdependence between
inputMSn spectral data andoutput SMILES string. Themodel comprised six
encoder layers and six decoder layers. In the encoder layers, two sub-layers
were integrated: one housing the multi-head self-attentionmechanismwith
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eight parallel attention heads, and the other hosting the feed-forward layer.
Meanwhile, the decoder layers incorporated three sub-layers. All sub-layers
and embedding layers generated output dimensions of d = 512.

The input data comprises a peak list, limited to a maximum of 100
peaks selected based on their ion intensities. To transformMSn spectral data
into suitable inputs for the Transformer, initially, we retain solely the mass-
to-charge ratio (m/z) data while omitting the abundance data. This step is
taken because abundance data is influencedbynumerous factors that donot
facilitate model learning. Then, the m/z data, preserved in floating-point
format, is truncated to two decimal places. Following this, it is multiplied by
a factor of 100, transforming it into integer values. This process serves the
purpose of upholding the model’s training accuracy at 0.01 Da. Abundance
data is not directly input into theTransformermodel, but that doesn’t imply
that abundance data is disregarded. Before removing the abundance data,
we select several peaks with relatively high abundances from the MS2

spectrum as inputs to themodel. Typically, noise does not exhibit such high
intensity, and we consider these peaks to be themost likely fragments of the
substance. Subsequently, the abundance data is removed. For the encoding

of m/z values, we use truncated values to construct a one-hot matrix. This
encoding method effectively preserves the ordering and relationships
between numerical values. Supplementary experiments for other numerical
encoding methods are provided in Supplementary Note 3. During the
model’s training stage, it is essential to split the SMILES strings of the
molecules. Canonical SMILES strings were divided into a list of distinct
atomic types (e.g., C, N, O, P, etc.) and associated connectors (such as “[”,
“(”, “=”, etc.). Tokenize individual atoms and connectors to form token
sequences, which were standardized to commence with the start token
(“<SOS>”) and terminate with the end token (“<EOS>”). Additionally, they
were paddedwith the padding token (“<PAD>”) to achieve a fixed length of
100.Compose atomic types, connectors, and special tokens into a dictionary
comprising 44 distinct elements and identify the corresponding indices of
the segmented elements within the dictionary to construct the SMILES
vector. Additionally, we compared the impact of two molecular repre-
sentationmethods, SMILES and SELFIES, on the model performance, with
results provided in Supplementary Note 2. Finally, both “m/z” vectors and
“SMILES” vectors were transformed into one-hot encoded matrices.
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Fig. 6 | Procedure for data processing and generating SMILES trees following the
input of MSn spectrum into a transformer model. a Detailed architecture of the
Transformer and SMILES tree model in TeFT. b Convert MSn spectrum into vectors.

c The SMILES string is segmented into tokens and subsequently transformed into vec-
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The trainingwas executedusing theSGDoptimizer,with abatch sizeof
150 and a learning rate of 0.001. Our model was trained on a machine
equipped with an RTX3090 GPU, and the entire training process was
completed in 19 h, utilizing 7289MB of RAM. During the testing phase, we
compared various decoding methods and ultimately selected greedy
decoding to generate the final results. Further details can be found in the
Supplementary Note 4.

The inference stage
During the inference stage, following the same preprocessing and peak
selection procedures of the input mass spectrometry data for an unknown
substance, the model generates the candidate SMILES strings. The TeFT
model, based on the Transformer architecture, generates a series of candi-
date molecules after making multiple predictions on the same mass spec-
trum. Unlike the MassGenie model, our model does not produce a unique
answer. We speculate that this phenomenon occurs due to limitations
imposed by the quality resolution of the input spectrum and constraints on
the parameters of theTransformermodel. Throughout the testing phase, we
conducted 100 iterations of the model, which ultimately resulted in several
potential SMILES results. These representations collectively form a SMILES
list, which is subsequently sent to the SMILES tree generation model. This
model entails an inference process applied to the SMILES list to discern the
most plausible molecular structure.

The creation of the SMILES tree model involves implementing the
RECAP57 method in the RDKit toolkit. The RECAP method breaks down
molecules into fragments by simulating the process of chemical reactions. In
comparison to the traditional RECAPmethod, the Recap approach used in
this study is a customized version. Within the framework of the RECAP
method, we specify reaction rules for molecules based on common frag-
mentation patterns observed in mass spectrometry. By simulating the
decomposition of molecules according to these rules, we make informed
conjectures about the way molecules undergo fragmentation in the mass
spectrometer. Mass spectrometry frequently involves chemical bond dis-
sociation and rearrangement in tandem setups, with the dissociation taking
various forms, including homolytic, heterolytic, or hemi-heterolytic, while
rearrangement encompasses both breakdown and the re-formation of
chemical bonds. This simulationwas executedutilizing SMARTS, a reaction
representation based on SMILES. SMARTS enables molecular structure
transformation by specifying the reaction template, making it applicable for
substructure matching and chemical reactions.

The above procedures can generate “Node Tree” data, representing the
SMILES tree. In this tree, each node signifies a potential fragment, and the
directed edges linking pairs of nodes denote potential mass spectrometry
fragmentation losses, annotated with the molecular formulas of the struc-
tures lost after fragmentation. Currently, we have achieved partial dis-
sociation and rearrangement for specific chemical bonds commonly found
in various substances, such as C-C, C-O, and C-N bonds. Additionally, we
have integrated well-documented chemical bond rearrangement reactions
like the McLafferty rearrangement58 and RDA rearrangement59, which are
observed in tandemmass spectrometry. Furthermore,wehave expanded the
dissociation method database by incorporating specific dissociation rules
tailored for flavanols60 and stilbene61 substances, facilitating their structural
identification in analyses. A full list of dissociation and rearrangement rules
adopted in our experiments can be found in Supplementary Table S1. Our
method offers the flexibility to incorporate fragmentation rules for various
types of substances, rendering the database highly extensible. In the process
of fragmentation, the substance searches for matching fragmentation rules
within the rule database until no further matching chemical structures are
identified. To prevent unlimited program execution times, we have imposed
a limitation of 1500 nodes for the total count of SMILES tree nodes.

Generate fragment tree
Software applications such as SIRIUS utilize high-resolution mass spec-
trometry to produce FT. The FT generation algorithm encompasses several
processes, including molecular formula recognition, molecular formula

filtering, and weight calculation. Molecular formula recognition entails
computing all potential element combinations within a specific mass
deviation range. Subsequently, candidate molecular formulas are subjected
to specific filtering rules. It is noteworthy that decreasing the resolution of
the mass spectrometry spectrum upsurges the number of potential mole-
cular formulas. To cater tominiaturized linear ion trapmass spectrometers’
data processing needs, we have devised an algorithm that builds upon the
original method to generate FT from low-resolution mass spectrometry
data. This algorithm retains the fundamental FT calculation procedure, and
it involves narrowing down potential molecular formulas by restricting the
kinds and quantities of elements during molecular formula identification.
To address any system errors or measurement inaccuracies encountered in
small mass spectrometers, we implement error correction by employing
multiplemeasurement averaginganddeconvolution integration techniques
on the spectrogram data. The details of the deconvolution method can be
found in Supplementary Note 1. The processed spectrogram typically
satisfies the criteria for generating more precise FTs.

Similarity score
This study introduces an extension to the alignment scoring mechanism of
traditional FTs that allows for calculating the similarity between SMILES
trees and traditional FTs. This method enables the identification of the
fragmentationpattern that is closest to themolecular FT in the SMILES tree,
thus identifying structures with high similarity to the tested molecule, and
achieving substance recognition and spectral structure annotation.

When aligning FTs, the final score of the tree is mainly determined by
thematching scores of losses and fragments. During this process, scores are
assigned by comparing the similarities and differences in the types and
numbers of loss elements between each node’s molecular elements and two
nodes. The scoring rules are shown in Table 3. In the scoring rules, we have
appropriately reduced the score of loss matching to avoid the impact of
possible long-chain losses on the overall score.

We standardize the scores obtained by using perfect matching as the
denominator. The higher the score, the greater the similarity. We use the
similarity score of the FT as a new indicator to evaluate the degree of
molecular similarity while maintaining high credibility.

Molecular re-prediction
The SMILES tree with the highest similarity score often provides crucial
structural information, and when representing molecules using SMILES
strings, it is possible to arbitrarily specify the starting atom. This feature
allows us to make supplementary predictions based on the SMILES strings
of fragmentswhen themodel’s overall structure prediction for the substance
is less accurate, thereby substantially improving the model’s molecular
recognition capabilities. During the iterative prediction phase, we utilize
SMILES fragment strings. Themodel canpredict and extend the structure at
the end of the sequence while preserving the integrity of the fragment
structure. Details of the repeated predictions have been added to Supple-
mentary Note 5.

Table 3 | Similarity scoring rules for SMILES tree and
fragment tree

Object Event Score

Parent All-atom matching +6

Nonhydrogen atom matching +3

Mismatching 0

Fragment All-atom matching +5

Nonhydrogen atom matching +2

Mismatching 0

Loss All-atom matching +4

Nonhydrogen atom matching +1.5

Mismatching 0
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Data availability
The experimental data from the public database used in this study can be
downloaded from the following website. GNPS dataset: https://gnps-
external.ucsd.edu/gnpslibrary/ALL_GNPS.json, HMDB 5.0: https://hmdb.
ca/downloads, MoNA: https://mona.fiehnlab.ucdavis.edu/downloads. Fil-
tered public data used for training and evaluating the TeFT model can be
downloaded alongside our code included at https://github.com/thumingo/
TeFT.git. In the article, the original data for Fig. 2 is provided in Supple-
mentary Data 1. The detailed data for Fig. 3 and Table 2 in the main text is
provided in Supplementary Data 2. In Supplementary Information, the
detailed data for Supplementary Fig. S1 and Supplementary Fig. S4 is
available in Supplementary Data 3 and Supplementary Data 4. Supple-
mentary Data 1–4 are located in the file “Supplementary Data.xlsx”.

Code availability
TeFT is available on GitHub (https://github.com/thumingo/TeFT.git). The
model, evaluation code and train code are implemented in Pytorch, version
1.12.0 on Python 3.7.13. The version of RDKit is 2020.09.1.0.
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