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The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics
has increasingly become a public health threat. Data-driven models identifying molecular properties
that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could
guide thediscoveryof novel classes of antibiotics. Hereweevaluate 174molecular descriptors in 1260
antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative
Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the
compounds’ intrinsic physicochemical properties, together with, bacterium-specific from ensemble
docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics
simulations in different subregions of the OM model. Using these descriptors and the measured
inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/
inhibition. We find consistent rules across most of our data highlighting the role of the interaction
between the compounds and theOM.An implementation of the rules uncovered in our study is shown,
and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our
analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P.
aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.

The emerging antibiotic resistance crises are driven by the indiscriminate
useof existingantibiotics and the laggingdiscoveryofnewantibiotics1,2. This
has fueled rise of bacterial resistance at unprecedented rates. According to
theWorldHealth Organization priority list, all three pathogens classified as
critical (its most urgent category) are Gram-negative3–13. Yet no new major
class of antibiotics has been approved to treat infections causedby this group
of organisms since 196210,14. Therefore, there is a critical need to find
effective ways to bypass the biological and chemical challenges that hamper
the discovery of new and effective antibacterial treatments.

The major determinants of resistance in Gram-negative bacteria are
(1) the lowpermeability barrier of the outermembrane (OM) that hinders
diffusion of drug molecules across the membrane, and (2) the action of
multidrug efflux pumps that expel drugs and other noxious compounds

from the cytoplasm and periplasm back into the extracellular
environment4–8,15. The synergistic relationship between slow permeation
and efflux effectively prevents intracellular accumulation of antibiotics to
reach critical concentration levels that inhibit bacteria growth. Mathe-
matical modeling efforts have been able to quantify critical aspects of
single-cell in/out flux dynamics16–18 and their implications at the colony
level19,20. However, the large complexity and diversity of the interactions
occurring between the drugs and the determinants of antibiotic resistance
at molecular scale makes it harder to develop predictive models for drug
permeation, efflux avoidance and antibacterial activity. Therefore, there is
a need to incorporate detailed molecular determinants from computa-
tional approaches that probe the bacterium-specific molecular-level
interaction profiles.
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Molecular dynamics (MD) simulation has emerged as a useful tool to
providemechanistic understandingof the structure-function relationshipof
complexmacromolecules and how they behave and interact with particular
environments at themolecular scale. In addition,MD is able to offer spatio-
temporal information that can fill the gap between experimental resolution
and modeling limitations. MD has been successfully applied in the field of
drugdiscovery21–24, and inparticular at providingdetailed informationof the
molecular structures responsible for the low permeability of Gram negative
OM25–29 and on the drug trafficking through efflux pumps30. Furthermore, it
allows us to explore the complexity of the chemical environment by
quantifying the interactions between a wide spectrum of compounds with
specificproteins and compartments of a bacterial cell such as theOMandan
efflux pump. The output of these MD simulations are often long multi-
variate time series describing the position of every atomover time,which are
generally challenging to analyze. Traditional statistical techniques31–34, net-
work theory35,36, and artificial intelligence37 are among the most imple-
mented and promising quantitative tools to help unravel complex patterns
in these large multidimensional datasets.

InP. aeruginosa, the lowpermeability of theOM ismostly attributed to
its particular composition. A combination of highly anionic Lipopoly-
saccharide (LPS) molecules, tightly complexed with divalent cations makes
this membrane an almost impenetrable shield7,25,38. A single LPS molecule
provides distinctive chemical environments across the OM of the Gram-
negative bacteria: 1) long carbohydrate-enriched regions massively shield
the exposure of the membrane towards the extracellular space; 2) phos-
phates and ionizable chemical groups are highly repellent to hydrophobic
molecules and 3) a sheet of divalent cations provides strong coordination
among the LPS of the outer layer in the OM. Thus, extracting themolecular
determinants of the process governing the passive diffusion of molecules

across this layerwould be of tremendous aid in the design of newantibiotics.
In order to achieve this, we have carried out massive MD calculations at
atomic level, extracting specific properties during the assisted translocation
of hundreds of compounds across the OM of P. aeruginosa. For each
compound we have computed 35 permeability descriptors, which are
extracted by instantiating MD trajectories from seven distinctive regions of
the OM [Fig. 1a]37. These regions were selected in order to have a full
representation of all the chemical environments which directly affects the
diffusion process. The approach is iteratively repeated until the entire set of
compounds is fully covered. The permeability descriptors encompass a set
of physical parameters which can directly impact the efficiency ofmolecular
translocation: molecular interaction energy with the surrounding environ-
ment (Δh), number of hydrogen bonds with surrounding environment
(HB), molecular lateral mean squared displacement (Δxy) and molecular
entropy (Δs).

The major efflux pump of P. aeruginosa that contributes to clinical
antibiotic resistance is MexAB-OprM, which extends across the inner and
outer membrane aiding the organism to expel toxins from the intracellular
and periplasmic region, directly into the extracellular space [Fig. 1b]39–41. In
this complex, MexB is a homotrimeric protein embedded into the inner
membrane andbelonging to theResistanceNodulation cell Division (RND)
superfamily. It is in charge of recognition, binding, and transport of diverse
substrates41–43, and it constitutes themain barrier that any compound in the
intracellular region needs to overcome. Eachmonomer of the MexB trimer
adopts three different conformations enabling access (A), binding (B), and
extrusion (C) of substrates44,45.We quantify the interactions between each of
the studied compounds andMexB via ensemble docking calculations, from
which we collected all docking poses (600 per compound), average affinity
binding, and identified the contactsmade by eachcompound to everyMexB
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Fig. 1 | Our library of compounds, experimental data, andmolecular descriptors.
a Computational representation of the outer membrane environment (OM) of P.
aeruginosa detailing the seven sub-regions where MD simulations where the 35
descriptors listed in Ewere computed for eachmolecule. b Experimental structure of
the tripartite efflux system MexAB-OprM (PDB ID: 6TA6 [10.1038/s41467-020-
18770-5]). On the right: focus on the twoMexB major binding pockets, AP and DP.
c Assembled library of 1260 antimicrobial molecules classified into 16 distinct
structural chemotypes as listed (top left), and some examples are shown in the

bottom panel. d Each compound is characterized by its antimicrobial activity in
three strains of P. aeruginosa by means of the 50% inhibitory concentration (IC50).
e Molecules in c are further characterized by 174 computationally-derived
mechanistic descriptors classified as either docking (D), permeation (P), or physi-
cochemical (PC). These are computed using QSAR methods, density functional
calculations, ensemble docking and MD simulations in water and in the OM of P.
aeruginosa. f Principal components third degree decomposition of the molecules
following the color code shown in c.
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residue. From the list of contacts, we selected a subset of residues of the
access of the Loose monomer (AP) and deep (DP) of the Tight monomer
substrate binding pockets based on known crystallographic data for AcrB
fromE. coli, homologous toMexB fromP. aeruginosa44,46. These residues are
generally considered to line/define the two pockets and are relevant for
recognition/binding of compounds45,47. Someof them, in particular thePHE
residues of the hydrophobic trap inside theDP, were found to be key for the
interaction of the transporter with inhibitors48,49. Our computational ana-
lysis of MexB yielded 66 docking descriptors for each compound37.

In this paper, we analyze the growth inhibitory activities of a unique
library of 1260 antimicrobial molecules belonging to several structural
classes of compounds including known antibiotics and efflux pump inhi-
bitors [Fig. 1c] (data provided in the Supplementary Data 1). The anti-
bacterial activities are measured in strategically designed strains of P.
aeruginosa [Fig. 1d] that can isolate the effects of permeation and efflux
avoidance50. We then use the antibacterial activity data to identify correla-
tions with a large set of computationally-derived mechanistic descriptors
described above [Fig. 1e]. These properties are subsequently characterized
by means of their ranked correlations along with a hierarchical clustering
algorithm to establish similarity relationships (linear and non-linear)
among them. The resultant clusters are used as input parameters of a sta-
tistical model that, using the experimental 50% inhibition concentration
(IC50) data, identifies non-trivial relationships between different sets of
descriptors and their ability to predict bacterial permeation. Unlike our
previous study37, which focused on efflux avoidance on a smaller set of
molecules (290 Rempex compounds), our current analysis targets per-
meation/inhibition in a much broader and diverse library of compounds,
considers non-linear relationships among the different types of descriptors,
and provides explicit parameter ranges associated with permeation/inhi-
bition of the pathogen. Our analysis identifies an optimal subset of nine
relevant clusters containing the mechanistic markers yielding prediction
accuracy scores ofup to96%.This is in contrastwithother studies that, using
chemical features, traditional physicochemical descriptors, or mass spec-
trometric measurements of accumulation, reach performance scores that
are below 90%51–53. Our results highlight the role of the permeation
descriptors quantifying the interactions between the compounds and the
OM surface, the LPS lipid-A and oligosaccharide core 2 sub-regions of the
OM. These features, combined with intrinsic properties of the compound
like the hydrophobic surface area and the Randic index, show high corre-
lations with permeation and growth inhibition information for a specified
range of descriptor values. Our findings shed a new light into which specific
molecular interactions are responsible forOMpenetration and hindering of
bacterial growth. Our approach and conclusions can impact the design of a
new generation of antimicrobials.

Results
Following the protocol outlined in ref. 37, mechanistic descriptors are
computed using variety of approaches for a much broader spectrum of
molecules. We use traditional chemical/physical property evaluations,
density functional theory calculations, and all-atom MD simulations of
compounds inwater.We refer to these 73 physicochemical (PC) descriptors
that depend entirely on the compounds as QSAR, QM, and MD, respec-
tively. In addition, we calculate an additional set of 101 descriptors that are
generated based on the interaction of compounds with the bacterium-
specific efflux pump and the OMandwe call themmechanistic descriptors.
Here, to account for influx, we consider descriptors calculated from the all-
atom MD simulations of compounds interacting with the OM model
[Fig. 1a], and, to account for efflux, we consider ensemble docking of
compounds targeting specific binding pockets of MexB, the major efflux
transporter of P. aeruginosa. We refer to them as permeation and docking
descriptors, respectively. Our experimental data is obtained by analyzing
inhibitory activity of an assembled library of 1260 compounds with anti-
bacterial properties in twomutant derivatives of the wild-type P. aeruginosa
(PAO1): the PΔ6 strain, which lacks six major efflux pumps (ΔMexAB-
oprM, ΔMexCD-oprJ, ΔMexXY, ΔMexJKL, ΔMexEF-oprN, and

ΔTriABC), and PΔ6-Pore, which is the hyperporinated version of the
PΔ6 strain.

Assembly and properties of the compound library for analyses
For this study, we assembled a unique library of 1260 compounds with
antibacterial and efflux inhibitory activities from several different sources
[Fig. 1c]. The library included the two separate compound series developed
by Basilea Pharmaceutica54 (8 compounds) and Rempex Phamaceuticals55

(255) which were culled from their respective efflux-pump inhibitor (EPI)
projects. There were also 92 known antibiotics belonging to various struc-
tural classes, includingFluoroquinolone (19) andBeta-lactam (56),were also
acquired to be included in this library. Several compound series in the
collection were synthesized at Saint Louis University (SLU) as part of on-
goingEPI andantibacterial projects. The largest source of compoundswere a
series of EPIs designed to inhibit the AcrAB-TolC pump in E. coli including
dihydroimidazoline56 (174), a related series of benzoylimidazolines57 (14)
and a chemical series of 2,7-diaminoquinoline58 (68). The two sets of anti-
bacterial compounds included a series of 2-aminobenzothiazoles (79) with
an unknown antibacterial target and a series of quaternary amine com-
pounds (108) that target a bacterial condensin enzyme59. A series of cinna-
moyl derivatives58 (73) which showed both antibacterial and EPI activity
were also included in this set.

Several additional series identified in previous screening efforts were
also obtained from commercial sources. These included a series of diamino
substituted pyrimidines (50)60, small series of thienylpiperidines and Oxa-
diazoles (8 compounds each), and a large set of diverse compounds (160)
purchased from Enamine. Finally, a set of miscellaneous compounds (161)
comprised synthetic intermediates, related analogs that did not belong to
one of the aforementioned chemical series and various screening com-
pounds from theNCI collection61.Weuse the 16 chemotype designations to
broadly classify the compounds. An alternate classification of the com-
pounds’ 2D structures, using a complete Tanimoto similarity analysis62,
further subdivides the chemotypes shown in Fig. 1c yielding a total of
233 subgroups. This high-resolution classification of the chemical structures
will become relevant to further analyze permeation predictability of a few
key subgroups (see Section “Relationship betweenpermeationpredictability
and chemical structure ofcompounds” and “Implementation of our statis-
tical model and the permeation rules”).

The analyzed 1260 compounds vary in molecular weight (MW)
between 156 and 1260 Da, in the total charge between−2 and+5 and have
cLogD7.4 values between 11 and −11.3. To evaluate the physicochemical
space occupied by the library, we carried out the principal component
analysis of nine physicochemical properties of the compounds, which
included the molecular weight, the number of hydrogen bond donors and
acceptors, the total polar surface area (ASA_P), clogD7.4, the topological
surface area, the fraction of sp3 hybridized carbon atoms (Fsp3), the total
charge, and thenumberof rotatable bonds for the analyzedcompounds.The
first three principal components (PC) [Fig. 1f] covered 82.3% of the
explained variance. All nine properties almost equally contributed to
the compound distribution in the PC1 coordinate, whereas the total charge,
the number of hydrogen bond acceptors and the number of rotatable bonds
were major contributors in the PC2 (see Supplementary Fig. S1 in
the Supplementary Methods). Thus, the assembled library is unbiased in
respect to one or more features and covers a broad physicochemical space.
Additional details are provided in the Methods section and the Supple-
mentary Methods.

Nonlinear relationships among descriptors
The diversity of the chemical space is reflected by the wide range of phy-
sicochemical properties of individual compounds, as well as, in their
interactions with specific bacterial components such as the OM and the
efflux pump. Finding the relevant properties that reliably correlate with a
particularly desired behavior or process is challenging: among various
descriptors of the compound and molecular descriptors of compound’s
interactions with bacterial components, some carry redundant information
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while others are uninformative. Therefore, reducing the number of
descriptors is helpful in developing a robust predictive model. We achieve
this by clustering the descriptors and grouping them into subsets that have
similar co-variation across the 1260 compounds. Each cluster can be
interpreted as a collection of nearly equally informative features, fromwhich
one can select a representative covariate to be used to predict an outcome.
Such a reduction not only helps manage the complexity of predictive
models, but also alleviate the experimental and computational efforts
required to characterize each compound.

Traditional correlation coefficients (e.g., Pearson coefficient,Cij), often
implemented by clustering algorithms, quantify the strength of the linear
relationships among random variables. Highly correlated variables are
expected to belong to the same cluster, while variables with smaller corre-
lation coefficients are placed on different clusters. It is well known that
nonlinear transformations of a given variable, while containing the same
information, can have a small correlation coefficient. Thus, clustering
variables based on the correlation coefficient can have the undesirable
property of separating into different clusters, variables that are non-linear
transformations from one another. In our evaluation, we observe nonlinear
relationships between features, and find that focusing only on linear rela-
tionships (e.g., using the standard correlation coefficient to cluster the
variables) leads to poor predictive models. To address this problem, we
consider rank correlations (Rij), a generalization of the standard correlation,
that captures both linear and (monotone) nonlinear relationships.

Figure 2 depicts key examples of the relationships that are found in the
molecular descriptors computed on the studied compounds. Panel a shows
the values of the compounds’ cumulative entropy calculated in two different
sub-regions of the OM, the lipid surface heads (y-axis) and the glycerol
region (x-axis). They show a strong linear correlation captured by a Pearson
coefficient and rank correlation values close to unity. In contrast, panel b
shows that the relationship between the physicochemical descriptors asso-
ciated to the rotational constant in the z coordinate (y-axis) and the isotropic
polarization (x-axis), is monotonically decreasing. This pair of variables is
characterized by a Pearson coefficient of−0.4787, which does not quantify
the strong non-linear dependency shown. On the other hand, the rank
correlation captures better the decreasingmonotonic relationship shown by
these two physicochemical descriptors with a coefficient value of −0.8851.
These key changes in the correlation coefficients have greater effects when
computing a hierarchical clustering algorithm of the full set of descriptors
leading to the identification of 29 clusters using standard correlations, while
the rank correlations identify 37 clusters [Supplementary Fig. S2]. In this

case, the latter is able to better capture thewide diversity among the different
families of descriptors, which has an ultimate key implication when iden-
tifying the optimal combination of descriptors (or clusters) that better
correlate with the compounds’ desired behavior. Finally, Fig. 2c shows the
compounds’ molecular weight against their resonantcount, resulting on
values close to zero for both measures pointing to uncorrelated variables,
which is in agreement with the shown dependency in the plot.

Non-trivial relationships among the different classes of
descriptors
A hierarchical clustering characterization of the individual families of
descriptors reveals two ways in which the grouping of these quantities
occurs: first andmost simple, descriptors that quantify properties associated
with a single attribute gather together, and second, descriptors that are
computed inneighboring locations of a specificmolecular environment also
tend to cluster together. An example of the former is the clustering of size-
related intrinsic physicochemical quantities such as the molecular weight
and the number of heavy atoms [Supplementary Figs. S3 and S4]. As for the
latter, we find that the number of contacts a given compoundmakes with a
specific residue inMexB (docking descriptor) is correlated to that of another
residue, if the residues are close to each other within the same MexB
monomer [Supplementary Fig. S5]. Combinations of these two cases are
also found. For example, the cumulative entropy associated with amolecule
when computed in neighboring sub-regions of the OM (permeation
descriptors) are highly correlated among them [Supplementary Fig. S4]. A
detailed quantitative analysis using hierarchical clustering algorithm on
these individual families of descriptors is presented in the Supplementary
Methods. The natural question that arises is how descriptors, belonging to
different families, are correlatedwith each other, andwhat is themeaning of
these relationshipswithin the context of predicting bacteria permeation and
growth inhibition.

Figure 3 shows a visual representation of the individual relationships
among all 174 descriptors (definitions are provided in the Supplementary
Data 2) together with the clusters that are identified by a hierarchical
algorithm using the ranked correlation coefficients. The relationship
between pairs of descriptors is quantified bymeans of a dissimilarity matrix
(heatmap),which is definedas the square-root of theunityminus the square
of the (ranked) correlation coefficient associated with the pair, and ordered
according to the clustering algorithm (see dendrogram). The colored
regions in the dendrogram define the clusters, which are determined by the
L-method63 using the percentage of the variance explained as the critical
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parameter (see Supplementary Methods). The procedure identifies 37
clusters in total (blue groups in the dendrogram and white squares in the
dissimilarity matrix), 32 of which are comprised by descriptors of a single
type, while only 5 clusters are comprised by two or more types. The cate-
gorization of the descriptors is illustrated by the following color code: per-
meation descriptors are magenta, docking descriptors are orange, and for
the physicochemical descriptors we further separate them into QSAR in
light blue, QM in green, and MD in water in gray.

Among the single-type clusters found in the full set, there are similar
grouping patterns than when performing hierarchical clustering on a single
family of descriptors only [Supplementary Figs. S3–S5], which is expected
given the wide spectrum of properties analyzed. However, we also find
interesting differences. For example, a single-descriptor cluster in the single-
family analysis (e.g., number of donors) becomes part of a larger clusterwith
descriptors belonging to a different type (e.g., number of hydrogen bonds in
OMsub-regions). This provideshelpful information to identify redundancy
in the information carried by the data, which is desired in order to improve
the performance of prediction models. Another interesting finding is that
some large clusters formed when grouping single-family descriptors (e.g.,
permeation only), breakwhen the full set of descriptors is considered.This is
also helpful in order to identify outliers with a predictability power difficult
to identify when they belong to a larger cluster. This is the case of cluster c8,
which contains one permeation descriptor (HB-MEM-INTER) that is later
found to have a great predictability potential. This descriptor, when the
clustering is carried outwithin the single family of permeationdescriptors, is
part of a larger cluster of other hydrogen bonds-related properties, that
together hold a weaker predictability potential. Clusters c33 and c34, both of
them quantifying the lateral diffusion in sub-regions of the OM, is another
example of this type of advantage of using the full set of molecular prop-
erties. They comprise a single cluster in the single-family analysis.According
to our prediction analysis (presented in the next section), c34 has a higher
potential of becoming a predictor than c33, and hence, the resultant
separation of these clusters in the full set analysis is critical.

When analyzing the full set of descriptors, the largest cluster (c1)
comprises 52 molecular quantities of all types except for permeation. The
features grouped in this cluster are mostly related to intrinsic

physicochemical properties of the molecules such as size (e.g., volume),
graph topology (e.g., Szeged index), polarization (e.g., refractivity), and
energy (e.g., thermal energy) of the molecules, together with docking
information quantifying the binding energy at both of the studied binding
sites of MexB (AP and DP). Interestingly, some additional docking
descriptors quantifying the number of contacts between the molecule and
residues in DP also comprise c1. This is explained by a found statistical
proximity between these docking descriptors in the DP with the binding
energy in both AP and DP [Supplementary Fig. S5]. Indeed, the VINA
scoring function64 is additive and tends to favor larger compounds. Con-
sistently, we found in cluster 1 both descriptors capturing molecular
dimensions (e.g. Molecular weight, Atom Count, Heavy atoms, volume)
and all the average docking scores (Aff APA 20%, Aff APA 30%, Aff
DPB 20%).

Among the clusters with more than one type of descriptors, c2 is the
only one that gathers properties from all types. These include the highly
correlated entropy values found in the different sub-regions of the OM,
descriptors quantifying flexibility (rotatable bonds), topology (chain and
aliphatic atoms/bonds, rotational constant), and dynamical properties (MD
fluctuations andminimal projection area) of themolecule. These properties
are found to be correlated also with the number of contacts the molecule
makes with residue Thr130 (Threonine) in the deep pocket of MexB. The
knowledge of these non-trivial correlations is helpful when determining the
predictability power of the cluster, and opens the gate to examine the extent
of these relationships in larger families of compounds and the implication
when analyzing particular interactions.

Identification of descriptors that predict permeation
The nonlinear relationships found among descriptors, together with the
inability of traditional principal component analysismethods to distinguish
between weak and strong permeators, lead us to design a framework that,
accounting for these nonlinearities, determines the likelihood that a com-
pound can be classified as be a good or a bad permeator. We aim at iden-
tifying a minimal set of molecular descriptors that better correlate with the
ability of the compound to permeate/inhibit the pathogen.Asmany of these
properties have strong linear and non-linear correlations among each other,

Fig. 3 | Data characterization of the 174molecular
descriptors by means of a hierarchical clustering
algorithm using their associated rank correla-
tions. The computation yields 37 dissimilar clusters
of sizes ranging from single descriptor clusters (e.g.,
cluster 37) up to a large cluster of 52 descriptors
(cluster 1). The dendrogram in the left-hand side
depicts the individual as well as cluster level rela-
tionships among the descriptors (single line) and
clusters (blue groups), respectively. It also permits
the visualization of the cut defining the number of
clusters, which was determined by the L-method
(see SupplementaryMethods). The heatmap further
highlights the different clusters as well as the rela-
tionships between themselves and between indivi-
dual descriptors via a dissimilarity computation of
their associated rank correlations. The type of
descriptor is defined in the right-hand side by the
color code shown in the legend.
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our hierarchical clustering analysis that implements the ranked correlations
serves to identify similarities in the descriptor space and hence becomes a
good starting point to search for the minimal set of predictors. While
descriptors that belong to different clusters are weakly correlated with each
other, the information that they carry about the molecule is not redundant
and it could point (from different angles) to its ability to permeate and
inhibit the bacteria’s growth. Similarly, descriptors within the same cluster
carry correlated information about the molecule and not all of these values
may be needed.

The target class (i.e., themeasure of classification) in these calculations
is determined by ratios of the IC50 values associated with each compound
and extracted from inhibitory activity in two mutant derivatives of P. aer-
uginosaPAO1 (see Fig. 1d). For permeationwe use the IC50 ratio PΔ6-Pore/
PΔ6, which highlights the role of the OM. If the ratio tends to 1, the
concentration of drug needed to inhibit 50%of the bacterial growth for both
derivatives is very similar. Thismeans that theOMbarriermakes little to no
difference in the action of such drug. Hence, a molecule with such ratio is
classified as a strong permeator. Conversely, if the ratio tends to 0, the
concentration of drug needed to inhibit 50% of the growth of the PΔ6
derivative is much greater than that needed to inhibit the hyperporinated
PΔ6-Pore derivative. Hence, compounds with such ratios are classified as
weakpermeators.Our calculations show thatusing a threshold ratioof 0.5 to
distinguish between the permeation classes optimizes the classification

when compared to other threshold choices (see Supplementary Fig. S11 in
the Supplementary Note 3), turning this analysis into a binary classification
problem. In short, the target classes are defined as: strong permeators (i.e.,
class 1) having an IC50 ratio greater or equal to 0.5, and weak permeators
(i.e., class 0) with an IC50 ratio smaller than 0.5. The total number of
molecules with measurable inhibitory activity in these mutant patho-
gens is 600.

Figure 4a describes the algorithm designed to reduce the number of
descriptors in order to identify an optimal set that are best associated with
the molecule’s ability to permeate the bacterial OM. Full details of the
algorithmareprovided in theMethods section.Hereweprovide a simplified
description. The criteria for reduction is based on cluster performance. We
randomly select x descriptors (one per cluster) to train and validate a ran-
dom forest classifier65 using 480 compounds and their respective IC50 ratios.
For each random selection, we carry out 50 training/validation calculations
(95:5 data proportion) where the data is scrambled at each iteration. The
trained models are tested on the remaining 120 compounds, where we
compute themodel performance score and the Shannon entropy associated
to each descriptor. The latter indicates by howmuch the descriptor reduces
the uncertainty in the classification66 and hence it becomes a measure of its
importance. The average performance over the 50 iterations is shown in
Fig. 4b (single orange circle) and the process is repeated for 200 random
selections of x descriptors. By adding the importance score for each
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Fig. 4 | Our data-driven model of predictors identification. a Hierarchical clus-
tering algorithm is used to select different combinations of x descriptors. A random
forest classifier is trained on the x descriptors alongside with IC50 ratios, and the
descriptors performance are scored accordingly. Over the course of several random
selections of x descriptors, the aggregated x scores are used to rank the clusters
according to predictability. The lowest ranked cluster is eliminated and the value of x
is reduced. In parallel, for each classification run, the fitted model is tested in a
separate set of compounds and the evaluation metrics are stored. b Model perfor-
mance accuracy for each cycle of the model. Individual circles represent the average

accuracy score of a single random combination of x descriptors using a random
forest classifier over 50 random training/validation splits. The dashed green line
represents the average accuracy score for a random forest classifier using the full set
of 174 descriptors. c Top-9 clusters ranked according to their testing performance.
The table in the left panel distinguishes the cluster number, its size (number of
descriptors comprising the cluster), and type of descriptors they contain. The central
panel is the aggregated cluster score where all values add to 104, which is the total
number of runs for a particular value of x. The right panel lists the top-9 optimal
descriptors that produce a testing accuracy of 96.2%.
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descriptor at each iteration, we construct the respective cluster importance
score. The cluster with the lowest score is eliminated and the process is
repeated using x-1 clusters until only one cluster is present. An example of
the testing portion of the algorithm is illustrated in Fig. 4b for the evaluation
metric of prediction accuracy (see Supplementary Fig. S6 in the Supple-
mentaryNote 1 for additional evaluationmetrics). For a given value of x, it is
shown how the random combination of descriptors coming from different
clusters perform (orange circles), andhow thismetric is affected by reducing
the number of clusters. It is also shown how the model performance
compares with that of a baseline model consisting of simply running the
classification algorithm in the full set of 174 descriptors. As illustrated, we
find that many combinations of descriptors outperform the baseline model
for values of x greater than 3. The maximum in the prediction accuracy is
found for x = 9 clusters for some combinations of descriptors as noted in
Fig. 4c, where the optimal combination of descriptors found is listed
(additional details of this calculation are given in Supplementary Fig. S7 in
the Supplementary Note 1). The full ranking of clusters is shown in Sup-
plementary Table S1 in the Supplementary Note 1, where we also show
additional details of the model performance for alternative selection of
descriptors of these nine clusters [Supplementary Figs. S8 and S9]. Indeed, if
we start with a different arrangement of compounds in the large and the
small groups, we find changes in the combination of descriptors that
maximize the accuracy. Interestingly, the top-9 clusters remain unchanged.
The relevance of these nine clusters is preserved even when the large and
small groups are randomly scrambled after each iteration (see Supple-
mentary Table S2 in the Supplementary Note 1). Hence, the information
provided by these clusters is crucial at determining the ability of a molecule
to permeate and inhibit the pathogen.

Figure 4c also shows the ranking of these 9 clusters by their cumulative
scores (the sum of all values is 104), and the optimal combination of
descriptors that yields a maximum prediction accuracy evaluated in the
testing set equal to 96.2%. As shown, within the top predictors, the per-
meation descriptors associated with the interaction between the compound
and theOMofP. aeruginosa in the external environment, in the lipidA, and
the LPS core 2 sub-regions of the OM, along with the cumulative entropy
and number of hydrogen bonds in the water-membrane interface at the
inner leaflet of the OM, score the highest. Also, the physicochemical
descriptors quantifying the hydrophobic surface area, the ratio between the
solvent accessible surface area of all atoms with positive partial charge and
the total water accessible surface area (ASAplus/ASA), and the number of
docking poses in the DP of MexB complete the list of nine predictors. As
mentioned above, the optimal combination of descriptors tends to change
with the testing sample [Supplementary Table S3]. However, we note that
this particular combination performs, on average, within 2.3% of the
maximum score found for different random testing samples (see Supple-
mentary Figs. S9 and S10 in the SupplementaryNote 2). This is encouraging
since this particular combination can be generalized across different ran-
dom testing samples with a modest cost in the performance. Hence, the
identification of thesemarkers opens the gate for a deeper study of these key
properties, which could guide the design of novel antimicrobials.

Relationship between permeation predictability and chemical
structure of compounds
We analyze the robustness of our statistical model and classify the different
active compounds in terms of their predictability. We carry out 5000
additional calculations on 100 random testing samples of 120 compounds
(50 computations per sample where the training/validation group is
scrambled at each computation) employing the classification algorithmover
the identified molecular predictors (Fig. 4c). The aggregated results of the
prediction for each batch of compounds were analyzed and used to classify
themolecules in oneout of three sets, as depicted inFig. 5a.Compounds that
were predicted correctly every time, are colored green (set G) and the bar is
above the x-axis. This is regardless of the compound being a strong or weak
permeator, here we are only examining the truthfulness of the prediction.
Compounds that are always predicted incorrectly, are colored red (set R)

and the bar is below the x-axis. Finally, compounds that for some simula-
tions runs were predicted correctly and for some other were predicted
incorrectly, are colored blue (set B) and portions of the bar are both above
and below the x-axis. Interestingly, the largest fraction of the compounds
(83.5% or 501 compounds) is predicted correctly every time pointing to a
consistent relationship between the predictors’ values and the permeation
classes. This regularity is encouraging and talks about the existence of clear
trends in the computational data that are strongly linked to the experiments
and their consistency across a wide diversity of compounds. We devote the
next section to unfold these trends for the most predictive descriptors. On
the other hand, sets R and B, though much smaller in size, point to the
limitations that a one-rule-fits-all approach have. We find that 9.9% of the
compounds (60) were predicted incorrectly every time, pointing to a strong
but incorrect signal from the computational data, while the remaining 39
compounds (6.4%) are found to give amixprediction,whichhints to anoisy
and hence weak signal. Here we analyze these different sets via our model
detailed output and examining the chemical structure of the compounds.
Detailed metrics are listed in Supplementary Table S4.

To understand the nature of these results, we first analyze the prob-
ability densities associated with the identified sets of compounds.We define
y as the dominant classification probability associated with each compound
using the contributions of every estimator for all model realizations. For
example, if for a given compound, out of the Ne estimators, n0 of them
choose class 0 while the remaining n1 =Ne− n0 class 1, we can define the
probabilities for each class as p0 = n0/Ne and p1 = n1/Ne. The dominant
probability y of the compound is therefore defined as y ¼ maxfp0; p1g. The
probability density associated with each predictability set, q(y), is illustrated
in Fig. 5b. Compounds of the set B are characterized by having weak
probability valueswith an average of�y ¼ 0:56. This result is very close to the
maximumuncertainty limit of 0.5 (i.e., a coin-flip classification)making the
prediction highly unreliable, which is consistent with the mix signal shown
in Fig. 5a. Compounds of the set R have greater values of y, but with a wider
distribution and an average of 0.82. Finally, compounds of the set G hold a
consistently higher average probability of �y ¼ 0:89 with a median above
0.91. Therefore, having consistently high probability values help rule out
compounds from the set B and most of those of the set R.

To explore further these differences, we look at the compounds’ che-
mical structure andbreakdown thedifferent sets according to the 16distinct
structural chemotypes defined in Fig. 1c. As shown in Fig. 5c, five chemo-
types have members in all three predictability sets, five chemotypes have
members in two sets, and four chemotypes havemembers in only the set G.
Hence, at this level of analysis, there is not a clear relationship between the
structural chemotypes and the predictability sets. A sharper picture can be
drawn when we examine the subdivisions of the distict chemotypes by
means of a complete Tanimoto similarity analysis. Asmentioned in Section
"Assembly and properties of the compound library for analyses", this ana-
lysis finds a total of 233 subgroups. Interestingly, nearly 90% of the com-
pounds in sets R and B are concentrated in just 10 Tanimoto subgroups,
namely SB71, SB112, SB117, SB118, SB167-SB170, SB201, and SB223. Each
of these subgroups is characterized by unique structural features as listed in
Supplementary Table S2 in the supplementary section.We examine each of
these subgroups individually using our model described in Fig. 4a but
adjusting for the number compounds of each subgroup. In four of these
subgroups (SB112, SB170, SB201 and SB223) there is a clear separation
between the permeation classes using alternative descriptors to those
identified for the full set of active compounds. An example of this finding is
illustrated in the left panel of Fig. 5d for the subgroup SB201, which belongs
to the structural chemotype 3 (i.e., 2-aminobenothiazoles). A combination
of the docking descriptor quantifying the number of contacts between the
molecule in question and the residue ASN135 in the access monomer in
MexB, and the asymmetric atoms allow for a good separation of the per-
meation classes determined by our experiments in P. aeruginosa. This pair
of descriptors did not show a wide relevance for the full set of active com-
pounds, but they are found to be key for this specific subgroup ofmolecules.
Our fine-tune analysis of this subgroup correctly classifies the eight
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compounds of sets R and B that belong to chemotype 3. Similar results are
found for subgroups SB112, SB170, and SB223with different descriptors, as
shown in the Supplementary Note 3 [Supplementary Fig. S15]. For sub-
groups SB71 and SB118, the alternative descriptors identified by the model
separate better the permeation classes than those of the full set, but some
overlap between the classes remains. This is shown in the central panel of
Fig. 5d for the subgroup SB71 (see SB118 in Supplementary Fig. S15 in the
supplementary Note 3). For the remaining four subgroups (SB117, SB167,
SB168, and SB169), which belong to chemotype 14 (i.e., Rempex), a greater
overlap between the classes persists pointing to complex nonlinearities
between the permeation classes and their descriptors’ values and hence the
limitations of using descriptors to find clear trends able to distinguish the
molecules according to their permeation class.

Focusing on the set G, which comprises the large majority of active
compounds (501 molecules), we find clear trends in the values of the key
descriptors that define parameter regions mostly associated to one of the two
permation classes (Supplementary Figs. S12 and S13 in the Supplementary
Note 3). For example, strong permeators are found at strong HB interaction
values at the surface of the OM (HB-MEM-INTER) together with a strong
negative enthalpy in the Lipid-A sub region of the OM. On the other hand,
weakpermeators fall into theopposite categorywithweakOMinteractionand
weakenthalpy[SupplementaryFig. S13]. In thenext sectionweexplore further
these general trends and their mechanistic implications in OM permeation.

Descriptor values associated with strong and weak OM
permeation
The consistency found in the predictability of the permeation class of the
compounds in the set G, makes them a good batch to extract helpful rules
that associate specific ranges of descriptor values with a particular target
class, i.e., strong or weak OM permeator. To determine the approximate
class boundaries and ranges for each individual descriptor, we train a tra-
ditional support vector machine (SVM) algorithm67 for each descriptor of
the top-9 clusters (112 descriptors) for the set G of active compounds (501
compounds). Density distribution of descriptor values across the range of
selected individual descriptors associated with each permeation class given
by their IC50 ratio, i.e., strong (red) orweak (blue) permeator, are depicted in
Fig. 6. The vertical gray line indicates the binary class boundary identified by
SVM. Strong permeators category highly correlates with parameters indi-
cating stronger interactionswith differentOMsubregions, as exemplified in
Fig. 6a. They are able to stabilize a larger number of hydrogen bonds (HB)
with different parts of the membrane (e.g. Core-2), while retaining a close
water shell during the translocation process in the most hydrophobic
regions (e.g. aliphatic tails). Consequently, this contributes with a more
favorable enthalpy of interaction in specific parts of themembrane [Fig. 6b].
Interestingly, permeation highly correlates with the presence of more
rotatable bonds as well as higher entropy, indicative of a more flexible
molecular scaffold able to accommodate to the different spatial restrictions
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and p1 are the probabilities of being a weak or a strong permeator, respectively.
Vertical lines indicate the average probability �y for each case. c Number of com-
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chemotype following color scheme and ordering as a. d Analysis of three selected
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along the diffusion pathway. Counterintuitively, larger hydrophobic area
does not favor the passage of molecules across the OM, a feature that
correlates with the need for localized charges (+2e and higher) and stronger
dipole moment. Graph-based molecular structure indicators such as Ran-
dić, Harary, Wiener, and Platt indexes are generally higher for strong per-
meators [Fig. 6e]. Finally, for docking descriptors, it is found that strong
permeators hold higher number of poses inside the DP in contact with at
least z% (z = 20, 30, 40) of the residues lining the pocket. This yields higher
free energy bindings for strong permeators, and a consistently higher
number of contacts to key residues inside the DP in MexB, than weak
permeators [Fig. 6f].

The resultant cutoff values are then tested in the entire set of active
compounds (600 compounds) and their associated evaluation metrics are
computed for two sets, i.e., set G and the set of all active compounds. These
implementations identify simple rules of permeation with very good
accuracy in the entire set of active compounds. The circled number in each
panel of Fig. 6 refers to the ranking of the descriptor in question according to
accuracy for the entire set of active compounds. Supplementary
Tables S4 and S5 list the complete ranking results of the individual

descriptors. The resultant one-dimensional ranking is dominated by per-
meation descriptors. Among those of the top-10, 8 are permeation
descriptors. Specifically, the hydrogen bonds and enthalpies computed
across different sub-regions of the OM are, overall, the best individual
descriptors at determining permeation. Accordingly, and in agreementwith
our findings at the cluster level, the persistence of hydrogen bonds (time-
averaged over 20 ns) between the compound and inner leaflet of the OM at
the membrane-water interface (HB-MEM-INTER) is the best single
descriptor overall (i.e., best accuracy ora0), and also the best one at detecting
strong permeators (i.e., best positive predictive value or PPV). More than
four fifths (0.836) of the active compounds analyzed, including 95.5% of the
compounds in set G, that make (time-averaged) 1.36 or more HB with the
surface of the outer membrane, are strong permeators.

Among the enthalpy descriptors, and again in agreement with the
cluster-level analysis, the enthalpy calculated in the LIPID-A sub-region of
theOMranks the highest in accuracyand in determining strong permeators
(i.e., high PPV). More than four fifths of the active compounds (0.815),
including 93.7% of the set G, with an enthalpy value in the LIPID-A sub-
region smaller than−988.85 kJ/mol, are strong permeators. Combining this
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Fig. 6 | Single descriptor ranges according to class. Density distribution values
across the range of selected individual descriptors associated with a particular target
class given by their IC50 ratio, i.e., strong (red) or weak (blue) permeator, for the 501
compounds comprising the predictive group (Fig. 5). The vertical gray line indicates
the class threshold estimated by an SVM algorithm. We considered all descriptors
from the top 9 clusters from our predictive model (Fig. 4) The descriptors shown
hold high predictability scores across general categories (see full list in Supple-
mentary Tables S4 and S5) described as follows: a. Hydrogen bonds in the OM. Top

panel uses two vertical scales and an horizontal logarithmic scale. The red vertical
scale corresponds to strong permeators (red). All other panels use a single scale for
both categories of compounds. b Enthalpy and entropy in the OM, cMolecular
structure, d Electric properties and electronic structure, e Graph-based molecular
structure indexes, and fDP docking in MexB. The circled number in each panel list
the ranking according to their single-descriptor predictability scores (Supplemen-
tary Tables S4 and S5).
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information with knowledge of the entropy in the water neighboring the
OM (Δs-SOL), increases the fraction of strong permeators correctly iden-
tified up to 0.854. Enthalpies associatedwith otherOM sub-regions are next
in the ranking of descriptors going from top-3 down to top-6, while the HB
in the OM core 2 and heads, are top-7 and 9, respectively. 79.6% and 77.9%
of the compounds making 3.34 (time-averaged) HB with the core 2 and
heads subregion of the OM, respectively, are strong permeators. The QSAR
descriptor quantifying the number of rotational bonds ranks eight and it is
the best individual QSAR descriptor overall able to identify 89.2% and
78.06% of theweak and strong permeators, respectively. The best individual
docking descriptor is the number of contacts between a compound and the
residue THR130 in the DP of MexB. 88.9% of the compounds making less
than 26 contacts with this residue are weak permeators. Ranking the
compounds according to their negative predictive value (NPV), highlights
descriptors that are good at detecting weak permeators. According to this
ranking, the molecular orbitals and the number of donors, are the best
descriptors at identifying this property. Between 90% and 91% of the active
compounds with HOMO (LUMO) levels greater than −0.3045 (−0.2006)
Hartree and/or less than four (3.88 on average) donors, are weak
permeators.

Next, extending beyond the individual consideration of top-9 clusters
(i.e. 1D),weanalyze thedescriptors for their joint behavior asduets (2D) and
triplets of descriptors (3D) (see examples in Supplementary Figs. S16
and S17 in the SupplementaryNote 4). Indeed, by carrying out higher order
analyzes (i.e., two and more descriptors) it is possible to improve the clas-
sification metrics obtained with only one descriptor. For example, com-
bining the permeation descriptor HB-MEM-INTER with the total polar
surface area (i.e., QSAR: ASA_P(Å2)), the classification accuracy increases
up to 87.27% while the PPV to 86.68% when tested in the group of all
compounds. Focusingon the setG, a combinationof the total charge and the
total polar surface area yield an accuracy of 99%, which is in agreement with
recent studies via the whole-cell accumulation of 345 diverse compounds
finding a strong correlation between these physicochemical properties with,
P. aeruginosa accumulation68. Further, in a three-descriptor analysis, the

highest accuracy score found is 88.4% when combining the enthalpy in the
LPS sub-region core 2 (P:Δh-CORE-2), the hydrophobic surface ratio of the
compound (QSAR: ASA_H/ASA), and the number of contacts that the
compound makes with residue PHE615 in the DP of MexB. The PPV and
NPV scores are 86.1% and 90.0%, respectively. Certainly, there are many
more combinations that produce slightly lower but competitive scores
[Supplementary Fig. S13]. We have listed the most important in the two-
and three-descriptor analysis in the Supplementary Tables S7 and S8,
respectively, in the Supplementary Note 4. According to the analysis in
Section “Relationship between permeation predictability and chemical
structure ofcompounds”, the metric values found for the three-descriptors
case lie at the ceiling of the evaluation metric given the behavior of the
compounds in the sets R and B. Hence, we do not expect further
improvements when going to higher dimensions without breaking down
the groups of compounds as we did in the previous section. This is in
agreement with the reduction algorithm of the Section “Non-trivial rela-
tionships among the different classes of descriptors”, where the random
forest determined that nine clusters (x = 9) optimizes the classification
performance of the entire set, where each classification tree is constructed
with the information of three descriptors (i.e., x1/2). The information
extracted by this analysis recovers the performance of the nonlinearmethod
(i.e., random forest) and it therefore exhaust the possibilities of better per-
formances with the totality of our data.

Implementation of our statisticalmodel and the permeation rules
As an example of howour analysis can be applied on additional compounds
to predict their OMpermation, we carry out a testing evaluation on ten new
compounds not seen before at any stage of this study. Figure 7a, b details the
structures of these molecules, and shows the classification results according
to permeation, respectively. The structures and origin of these compounds
canbe bounded to someof themain16 chemotypes outlined inFig. 1a in the
following way: five compounds of chemotype 14 (C2-C6), three of che-
motype 1 (C0, C7,C8), one of chemotype 7 (C1), and one of chemotype 9
(C9). Using the most consistent descriptors across several random splits of
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Fig. 7 | Model testing on additional compounds. a Ten compounds labeled C0-C9
structurally classified using the color code defined Fig. 1a. bModel prediction
associated with the ten compounds (solid black line) against the target class (gray
bars) assigned from the IC50 ratio measured experimentally in Pseudomonas aeru-
ginosa. The prediction quantifies the probability that a given testing compound is a
strong permeator, p1. Error bars are the standard deviation of 100 model runs.

Orange line is the maximum uncertainty (i.e., random) classification value of 0.5.
The value of p1 of compound C6 lies very close to this high uncertainty value.
c Ranges of high-ranked descriptors as singles (top), duets (center), and triplets
(bottom) for the testing compounds and classification given by the model. Each
panel shows how these compounds' properties compare to the classification
boundary of the training set (dark line or plane).
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the training data, the algorithm calculates the probabilities that each com-
pound is either a strong (class 1) or a weak (class 0) OM permeator i.e., p1
and p0, respectively. Themodel calculates consistent predictionprobabilities
for nine out of the ten compounds.Accordingly, it predicts that four of them
are strong permeators (C2-C5) with an average probability of p1 = 0.94, and
five of them are classified as weak permeators (C0,C1,C7-C9) with an
average probability of p0 = 0.84. Experimental results of the IC50 ratios on
these compounds in P. aeruginosa validates the prediction results for these
nine testing compounds. This is illustrated in Fig. 7b where we plot the
values of p1 for each compound (black dots) against the target class found
experimentally (gray bars). The probabilities calculated for the remaining
compound (C6) are p1 = 0.56 and p0 = 0.44. These values are very close to
those of a random classification (orange line), akin to the values found for
compounds of the set B (see Fig. 5b). In addition, a structural analysis of this
compound indicates that it is akin to subgroup SB167, where the trends
between the descriptors and the molecule’s permeation class are not con-
clusive. The subgroup SB167, which is characterized by having compounds
containing an amide derived from 3-aminoquinoline (Supplementary
Fig. S14 in the Supplementary Note 3), gathers a large fraction of com-
pounds of the set B. Therefore, we determine that the classification of
compoundC6 is inconclusive.Our experiments indicate that the compound
C6 is a weak permeator.

Figure 7c illustrates the values of some key descriptors of the testing
compounds as singles (toppanel), duets (central panel), and triplets (bottom
panel), and how they compare with the permeation boundaries determined
in the previous section with the compounds of the training batch. For the
high-rankeddescriptors (i.e.,HB-MEM-INTERand enthalpy in the LipidA
subregion of the OM), most of the testing compounds are in very good
agreement with the respective classification boundaries. This further sup-
ports our analysis and grants confidence in the applicability to other batches
of compounds. Lower-rankeddescriptors as singles, such as theLUMOlevel
and polar surface area (ASA_P), have an excellent performance as a duet
and also as triplets, highlighting an existing complementary relationship
among thedescriptors.CompoundC6 shows an interesting behaviorwhere,
for some combination of descriptors, it sides with the strong permeators,
while for other, it sides with the weak permeators. This inconclusive out-
come with respect to descriptors sheds light on the limitations of an
approach based only on these properties to classify some types of com-
pounds. However, having characterized these specific subgroups by their
distinguishable structural markers has prevented a possible error in its
classification.

Discussion
Molecular diffusion across bacterial membranes is a very complex process
which is largely dependent on the composition of the OM. In particular,
Gram-negative organisms have capitalized on very sophisticated mechan-
isms to “screen” the passage of molecules from extracellular to intracellular
regions. As a consequence, it is extremely difficult to develop new com-
pounds to fight bacterial infections without a proper knowledge of the
physical rules governing the overall translocation process. Our results show
that small molecule permeation across the OM of P. aeruginosa can be
predicted with high precision and accuracy based on the abilities of com-
pounds to inhibit growth of cells with the native and hyperporinated OM.
These predictions can be made for a library of structurally diverse com-
pounds that likely use different mechanisms to penetrate the OM perme-
ability barrier. However, the robustness of the model is increased by
introducing descriptors of passive permeation across the OM model (per-
meationdescriptors).This result provides further support to a recentfinding
that most antibiotics and nutrients accumulate inside cells by diffusion
through the lipid bilayer of the OM.

We utilized the protocols of how the descriptors are calculated from
our earlier work in ref. 37 and as before, inferred insights into the perme-
ability barriers of Pseudomonas aeruginosa from the molecules’ descriptor
and the IC50 ratios. However, the current study has several crucial differ-
ences with ref. 37: (1) Our current dataset of compounds comprises 1260

molecules from at least 16 different structural chemotypes as listed in Fig. 1.
Reference 37 used 290 compounds all belonging to a single structural class
(Rempex), essentially peptidomimetic compounds. (2) Our analysis of
correlations among descriptors and clustering is generalized to account for
non-linear relationships going beyondwhat ref. 37 implemented, which is a
traditional linear correlation analysis. (3) The target class in our current
analysis is the OM permeation and inhibition capabilities that a given
compound has given the values of its mechanistic descriptors. Reference 37
focused on efflux avoidance and did not consider OM permeation because
Rempex compounds are polycationic and readily permeate theOM. (4)We
deliver detailed lists of the ranges of the key single, pairs, and triplets sets of
descriptors found to be predictive of OM permeation. Reference 37 lists
single properties only and no explicit range of values for the descriptors is
provided. (5)We demonstrate the applicability of the rules uncovered from
our study into a new library of compounds, which illustrates the advantages
as well as the limitations of our approach.

An accurate calculation of drug permeation is very challenging and
requires extensive computing resources as the permeation is related to the
exponent of the potential mean force69. It becomes impractical when the
calculations are required for a large number of compounds such those
considered here. Instead, we have generated a large number of molecular
and mechanistic descriptors and used machine learning to identify the
descriptors that are predictive of compound permeation. Interestingly, we
find that descriptors indicative of interactions with different regions of the
OM (HB, Δh) are among top ranked predictors for permeation. In fact, a
favorable interaction with the membrane can lead to a positive chemical
potential in virtue of high compound density, leading to an increase in
translocation across the OM70. Not surprisingly, the presence of descriptors
associated with both the Lipid-A and the core-2 of LPS indicates their
importance during passive diffusion. With the exception of the highest
ranked descriptor, hydrogen-bonding interactions at the membrane-water
interface (HB-MEM-INTER), other highly ranked permeability descriptors
can be substituted by QSAR descriptors, resulting in models with slightly
lower accuracy. However, this can be beneficial when detailed calculations
such MD simulations are not available. This is expected since inherent
physicochemical properties of the compounds can be indicative of the
chemical space they prefer. In particular, the importance of molecular
connectivity (Randic index) and ASA properties for accurate prediction in
our analysis indicates that surface exposure to the environment may be
critical during the passage of the compounds across the OM. From the
mechanistic perspective, the exposure of hydrophobic surfaces (ASA_H)
can indeed enhance the interaction with the hydrophobic regions of the
membrane71 and is apparently in our calculations amore relevant descriptor
for the prediction of permeation than the water-octanol partition coeffi-
cients (LogP). We want to highlight however, that QSAR descriptors by
themselves are unable to replicate the level of accuracy obtained by using
permeation descriptors, highlighting the importance of descriptors gener-
ated using all-atom MD simulations of compounds with a realistic Gram-
negative OMmodel.

In reference to docking descriptors, our calculations indicate that
distance to/contacts with ASN125 and THR130 are relevant. These two
residues found in the substrate-binding pockets of RND transporters and
have been shown to play a role in efflux37,72,73. In MexB, both THR130 and
ASN135 are in the cave region of the Distal Binding Pocket and thus are in
thepathof substrate translocation.MDsimulations andmutational analyses
suggest that interaction between substrates and these residues contribute to
substrate specificity and efflux efficiency37,72. Previous studies further sug-
gested that the compound properties needed for permeation across the
outer membrane and for recognition by efflux pumps complement each
other74. In other words, compounds permeating the outer membrane are
better substrates of efflux, because pumps are exposed to higher con-
centrations of these compounds in the periplasm.

From a data analysis perspective, our main challenge is to circumna-
vigate themultidimensional set of descriptors in away that rationally lessens
the computational cost of running a classification algorithm on every single
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combination of them. The proposed analysis is designed to map, navigate,
and reduce this extensive parameter set highlighting the theoretical/com-
putational quantities that better correlate with our experiments. Since the
reduction is done at the level of the cluster, it is key to use an optimal
clustering technique that accounts for the nonlinearities found in the data.
Hierarchical clustering is adequate because it uses correlations as its simi-
larity measure63 and when applied to a ranked data set (i.e., ranked corre-
lations), it accounts for nonlinear monotonic relationships among the
different features [Fig. 2]. In addition,weuse a random forest classifier65 that
also identifies and benefits from nonlinear trends found in complex
datasets75–77. Using a cluster-centered framework alleviates part of the
computational cost of testing myriad combinations of parameters and
grants a wider perspective on the overall properties that are linked to
improvements in their permeation properties. As shown in Supplementary
Fig. S8, although there are performance differences when using different
members of a cluster, there are highly correlated descriptors with a per-
formance that are comparable to each other, and the best descriptor is the
one that is broadly represented by a general property of the compound (e.g.,
size) rather than a very specific one (e.g., Wiener index). Even after the
implementation of these techniques, the number of possible combinations
of descriptors is still very large. A sampling technique was therefore
implemented to scan the clusters, rank them according to their predictive
capacity, and in parallel, test the different combinations of descriptors of
each sample. The effectiveness of this technique at finding a good parameter
space for permeation is demonstrated by themore rigorous reverse analysis
shown in Supplementary Fig. S7, where alternative combinations of
descriptorswithin the same clusterwere identified, and their score compares
to that of the combination found during the sampling process. This effec-
tiveness would have not been possible if the clustering technique imple-
mented ignored the nonlinear relationships, since it yields a smaller number
of clusters (29 clusters) restricting the parameter space and the descriptors
exploration.

Our analysis identified nine key clusters containing the relevant
descriptors that maximize the model’s prediction performance, which in
turn, allowed us to classify the compounds according to the consistency in
their predictability. This classification identified three sets of compounds
[Fig. 5]. The largest of them (set G accounting for 83.6% of the compounds)
is the most consistent yielding correct predictions in every calculation
performed. This gives us confidence in the robustness of the properties
captured and in the statistical techniques employed. In reference to the sets
R and B, a structural examination using a complete Tanimoto similarity
analysis reveals that 10 subgroups contain most of these compounds
pointing to a structural connectionwith their permeation predictability.We
find that for someof these subgroups there are subgroup-specificdescriptors
able to correctly classify the compounds andbypass the predictiondifficulty.
However, for other subgroups, even thebest-rankeddescriptors appear tobe
unable to separate the permeation classes. Though this is a limitation of this
approach based on descriptors, this is only found on 4 subgroups of the
structural chemotype 14 (Rempex), which is 1 among the 16 structural
chemotypes considered in this study. Focusing on the majority set (i.e., set
G),wefind that it is characterizedbyprojecting strong andweakpermeators
in well-segregated parameter regions [Supplementary Fig. S12] allowing us
to extract simple empirical rules associatedwith the descriptor space akin to
OM permeation. Using the descriptors of the nine key clusters, we estab-
lished one-, two- and three-body (i.e., descriptors) rules that better describe
the patterns found in all of the active compounds. For example, the one-
bodyanalysis highlights the role of thepermeationdescriptors, especially the
hydrogen bonds and the enthalpy computed in several regions of the OM
[Supplementary Tables S5 and S6]. The patterns found reveal that weak
permeators are characterized by having very limited hydrogen bond stabi-
lization with the OM, as well as, having a very weak enthalpy of association
[Fig. 6]. The two- and three-body analysis [Supplementary
Figs. S13 and S14] revealed a complementary role of the compound’s polar
and hydrophobic surface areas that enhance the number of compounds
correctly classified [Supplementary Tables S7 and S8]. Docking descriptors,

particularly those describing properties of the deep pocket of MexB, are
found to be highly correlated with the OM permeation. In fact, there are
many examples of three-descriptors sets yielding correct classification
scores that are comprised by one permeation, one docking, and one QSAR
descriptor [Supplementary Table S7]. This highlights a complex relation-
ship among these types of descriptors that captures well-rounded properties
of both, weak and strong permeation, and hence, it facilitates their correct
identification. An application of these uncovered rules on a new batch of
compounds demonstrate their predictability power and opens the door to
similar data-driven studies in otherGram-negative pathogens. This analysis
complements similar efforts at determining the key properties that distin-
guishes strong and weak permeators78.

In summary, our work combines experimental, computational, and
statistical protocols in order to identify the critical properties that optimally
predicts thepassageofmolecules across the bacterialOMand inhibit growth
ofGram-NegativeP.aeruginosa. The successful approachwas able to reduce
the spectrumof relevantmechanistic properties in a set of chemically diverse
compounds with known antibacterial activity into simple but non-trivial
empirical rules for the prediction of strong or weak permeators. We hope
that the found relationships can guide additional experimental efforts and
accelerate the rational design of new classes of molecules for combating
antibiotic resistant strains. Our approach can be expanded for targeting the
permeability of molecules to different biological membranes, regardless of
their composition or distribution.

Methods
Experimental methods and chemical syntheses
The experimental set-up has been reported before37,70. Briefly, P. aeruginosa
cellswere grown inLuriaBertani Broth (LB) (10 g tryptone, 5 g yeast extract,
5 g NaCl per liter, pH 7.0) at 37 °C with shaking. Inhibitory concentration
(IC50) determination was carried out using the 2-fold broth dilution
method. Two independent experiments were carried out. The expression of
the Pore was induced at OD600 = 0.3–0.4 by addition of 0.1mM IPTG.
Chemical structures of the assembled library of 1260 compounds and the
measured IC50 values are available upon request.

Computational setup and protocols for computing molecular
descriptors
QSAR, QM, and MD calculations. For each compound we considered
the protonation/charge state most populated at physiological pH. We
used the ChemAxon’sMarvin suite of programs79 to obtain standard 1-2-
3D descriptors used in QSAR studies (e.g., numbers of heavy atoms,
rotatable bonds, H-bond donors/acceptors, van der Waals volume and
surface, etc. see ref. 37). The geometry of themajormicrospecies has been
used to perform QM calculations with the Gaussian16 package80 as
previously described81. Employing a polarizable continuum model to
mimic the effect of water solvent we optimized the ground-state structure
and performed full vibrational analysis, obtaining real frequencies in all
cases. On the optimized geometry, we performed single-point energy
calculations in vacuum to generate the atomic partial charges fitting the
molecular electrostatic potential. Under the constraint of reproducing the
electric dipole moment of the molecule, we used the Merz-Kollman
scheme82. Atomic partial charges were generated through the two-step
restrained electrostatic potential method83 implemented in the Ante-
Chamber package84. With this program we derived general Amber force
field (GAFF) parameters85. QM descriptors associated with the ground-
state optimized structure include static polarizabilities, frontier mole-
cular orbital energies, permanent dipole moment, and rotational con-
stants. For each compound, we performed 1-μs-long all-atom MD
simulation in explicit water solution (0.1 M KCl) using the Amber18
package as described before81. From MD simulations, we obtained
structural and dynamic features of the compounds investigated by
means of the CPPTRAJ program86. The number and population of
structural clusters were determined using a hierarchical agglomerative
algorithm87.
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P. aeruginosa OM set up for MD. The permeation descriptors were
calculated from an outer membrane (OM) computational MD model of
the Gram-negative bacteria Pseudomonas aeruginosa. Briefly, the OM
consists of an inner leaflet composed of 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine (DPPE) and an outer leaflet composed of a
truncated LPS structure. Themembrane is fully solvated using the TIP3P
water88 model and anionic charges in the LPS molecules are counter
balanced with Ca2+ cations. A schematic representation of the model is
provided in Fig. 1a and more details about its parameterization can be
found in the original work89. The initial coordinates OMmodel are found
in http://dqfnet.ufpe.br/biomat/software.html. The model has been
parameterized in line with the GLYCAM force field90 and parameters are
adapted to run in the GROMACS91 molecular dynamics engine.

Compounds were represented using the Amber force field. First, we
optimized the ground-state structure of each compound employing a
polarizable continuum model92 as to mimic the effect of water solvent
particularly to avoid formation of strong intramolecular H-bonds. This
geometry was confirmed performing a full vibrational analyses, obtaining
real frequencies in all cases. On the optimized geometry, we then performed
single-point energy calculations in vacuum to generate the atomic partial
charges fitting the molecular electrostatic potential. Under the constraint of
reproducing the electric dipole moment of themolecule, we used theMerz-
Kollman scheme82 to construct a gridof points around themolecule.Atomic
partial charges were then generated through the two-step restrained elec-
trostatic potential method83 implemented in the AnteChamber package84.
Using this program, we derived general Amber force field (GAFF)
parameter85, which were transformed into GROMACS input files using the
antechamber python parser interface (ACPYPE) tool93. In order to screen
the molecular descriptors corresponding to the permeation along the OM
membrane, each drug was placed into seven different molecular environ-
ments corresponding to specific regions along the normal of the OM
[Fig. 1a]. These regions were explicitly selected in order to cover the influ-
ence of both the inner (DPPE) and outer leaflet (LPS) of the OM. Thus,
seven independent simulations per drug were necessary in order to reca-
pitulate the influence of the OM into the permeation process. The whole
procedure was automated via a series of bash scripts, which iteratively
connected the pulling code and energy minimization in GROMACS91.

All simulations were run with the GROMACS 5.4.1 molecular
dynamics engine91 with a time step of 2 fs. The LINCS algorithm94 was
applied to constrain all bond lengths with a relative geometric tolerance of
10−4. In line with its original parameterization, short-range interactions
(vdW and Coulomb) were calculated using a cut-off scheme of 0.9 nm,
which were evaluated based on a pair-list recalculated every five time steps.
Long-range interactions were handled using a reaction field95 correction
with a permittivity dielectric constant of 66. After initial set-up, each system
was energyminimized using 3000 steps of conjugated gradient, followed by
a thermal equilibrationof 1 ns.Aharmonic potential of 1000 kJmol−2, along
the Z vector connecting the center of mass (COM) of the drug and the OM
of themembranewas applied inorder tomaintain the relativepositionof the
drug with respect to each of the seven defined regions of the membrane
[Fig. 1a]. During equilibration, bilayers were coupled to 1.0 bar using a
Berendsen barostat96 through a semi-isotropic approach with relaxation
time of 1.0 ps. Afterwards, production runs were coupled using a Parrinello
barostat97 algorithmandaconstant temperatureof 310 Kwasmaintainedby
weak coupling of the solvent and solute separately to a velocity-rescaling98

schemewith a relaxation timeof 1.0 ps. Production simulationswere run for
20 ns and trajectories were saved each 20 ps. A total of 8841 (176 μs) tra-
jectories were analyzed using in-home developed bash scripts, which were
directly interconnected to the in-built GROMACS tools. Thus, for each
simulation the following molecular descriptors were evaluated [Fig. 1a]:
Number of hydrogen bonds between the drug with its first solvation shell
(HB-WATER), number of hydrogen bonds between the drug and the
surrounding OM environment (HB), lateral mean squared displacement of
the Drug (Δxy), Total enthalpic component of interaction between drug
and surrounding environment (Δh),and total cumulative entropy of the

drug (Δs). All these analysis were carried with the in-built analysis tool set
provided in GROMACS.

Ensemble docking toMexB. Docking descriptors were calculated using
the default settings of the AutoDock Vina package64 except for the
exhaustiveness parameter which was set to 1024 (default of 8). Protein
and ligand input files were prepared withAutoDock Tools99. Flexibility of
docking partners was considered indirectly by using the ensemble of
conformations. In particular, for each compound we used 10 different
cluster representatives extracted from MD simulations in explicit water
solution, while for MexB, we considered 6 conformations, including
available X-ray crystal structures (PDB Ids 2V50, 3W9I, and 3W9J)100,101

and MD snapshots extracted from MD simulations46. For each docking
run, we retained the top 10 docking poses. Following ref. 102 we per-
formed two sets of guided docking runs into the two major binding
pockets of MexB: the access pocket of the access monomer (AP) and the
deep binding pocket of the binding monomer (DP). In each case, the
docking search was performed within a cubic volume of 40 × 40 × 40 Å3

centered in the center of mass of the pocket. The interaction between
compounds andMexBwas quantified bymeans of a statistical analysis of
all poses, yielding about 60 descriptors. These descriptors include average
binding affinities (according to the docking scoring function) as well as
the total number of contacts with single residues lining the two pockets
(see Supplementary Table S1 in the supplementary).

Statistical methods
Agglomerative clustering. This is an unsupervised statistical technique
that uses correlations among random variables to form groups (or clus-
ters) of highly correlated quantities, resulting in clusters that are highly
dissimilar from one another. This is a bottom-up technique that starts
with clusters formed by a single random variable. Then the correlations
coefficients among all the pairs are computed and ranked. The pair with
the lowest dissimilarity measure is merged together into a cluster of size
two. The dissimilarity Dij is defined as the square-root of one minus the
square of the correlation coefficient between the pair i and j:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
ij

q

; ð1Þ

where, Rij is the correlation coefficient between variables i and j. Subse-
quently, all correlation coefficients are computed again treating the cluster of
two as a single variable in which the resultant correlation between the pair
and another variable is derived as the average of the correlation with each
member of the cluster individually. Then, the dissimilaritymeasures among
all groups are ranked and the pairwith the lowest one ismerged into a larger
cluster. This process is repeated until only one cluster remains.

In our analysis we implement the ranked correlations coefficients
consisting on replacing the value of the random variable (i.e., molecular
descriptor of the compound) for the low-to-high rank of such value within
the distribution. For example, for the molecular property of molecular
weight, the lightest compoundwould have a rank of one, the second lightest
a rank of two, and so one. We do the same procedure for all descriptors.
Then, the ranked correlations are calculated by computing the Pearson
correlation coefficient over the list of ranked values.

In order to determine the optimal number of clusters we use the
fractional variance explained defined as the ration of the variance between
groups (i.e., points residing in different clusters) to the total variance (i.e., all
points):

σ fve ¼
σbetween groups

σtotal
¼

P

ijjci≠cjD
2
ij

P

ijD
2
ij

ð2Þ

This quantity increases as the number of clusters decreases and then sta-
bilizes, which points to an appropriate number of clusters. At this point
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variance from within clusters is small enough hinting at a relative closeness
among points within clusters and otherwise for points in different clusters.
The L method is employed to identify the optimal number of clusters nc.
First we create the list of the fractional variance explained σfve vs the number
of clusters n. For each candidate number nwefind the best straight linefit of
all points before and after n, and compute the weighted sum of the root
mean square error (RMSE) associated to the fits. The value of n that
minimizes RMSE corresponds to the point in which the variance stopped
increasing as a function of the number of clusters.We consider this point as
the optimal number of clusters.

Cluster reduction algorithm. We start by dividing the set of 600 com-
pounds into a large group of 480 compounds and a small group of 120.
The large group is used to train/validate on a subset of x descriptors a
nonlinear classifier and quantify the importance of each descriptor of the
subset. The small group is used to test the efficacy of the trained/validated
model at predicting the respective target class. The value of x is deter-
mined by the number of clusters considered in the calculation, and the
subset of descriptors is comprised by one descriptor per cluster randomly
selected.We start with the complete set of 37 clusters (i.e., x = 37 initially).
From this set, 200 subsets of x descriptors each, are randomly assembled.
For each subset, a random forest (i.e., bagged ensemble) classifier65

comprised byNe = 1001 estimators (i.e., 1001 classification trees) that use
x1/2 descriptors for each estimator assigned randomly with equal weight is
implemented using the scikit-learn package in python66. Using the
properties of the compounds in the training portion, each estimator
determines which permeation class is more appropriate for each com-
pound of the testing portion. The dominant class i.e., the one that is
assigned by themajority of estimators, becomes the class prediction of the
compound in question. The classification algorithm is trained over the
target class of 95% of compounds in the large group of compounds, and
the remaining 5% is used for validation, which helps to control for over-
fitting. For each subset of x descriptors, we carry out 50 classification runs
over random 95:5 training/validation splits (see dotted circle in Fig. 4a).
Hence, considering all 200 subsets of x descriptors, there are 10,000
classification runs that are carried out for each value of x. These calcu-
lations allow us to measure the cluster score according to their perfor-
mance (see details below in cluster score). This measure is then used to
rank the clusters accordingly. Finally, the number of clusters is reduced
by eliminating the lowest scoring one and the cycle is restarted for the
reduced set of clusters (i.e., x→ x− 1). In addition to this process, for
each of the classification runs, thefittedmodel is tested on the small group
of 120 compounds (orange arrow in Fig. 4a), where we compute the
standard confusion matrix and its associated evaluation metrics of
accuracy, precision, recall, specificity, and F1. In this way we keep track of
how better or worse themodel performs for the different combinations of
x descriptors, as well as, when the number of clusters decreases and find
the local optimal combination (see definition below).

Cluster score. We compute a performance score for each cluster by aggre-
gating the contributions of eachof the x tested descriptors in the randomset.
For each of the 200 random sets, which are tested across 50 training/vali-
dation splits (i.e., 104 calculations), we compute the performance score of
each descriptor and aggregate the results according to the descriptor’s
cluster membership. The aggregated score value for each cluster is what we
call cluster score. The performance score associated with each descriptor is
defined as the impurity (i.e., Shannon) entropy, which measures how good
the information from the descriptor decreases the classification uncertainty.
This is calculated with the built-in function “feature_importances_” pro-
vided in the sklearn package66.

Optimal combination. We define the optimal combination as the group of
descriptors that maximizes the model performance accuracy of the testing
portion of the data. In Fig. 4b this value is shown as the orange dot with the
highest y-axis value, which occurs at x = 9.

Evaluation metrics. The model evaluation metrics computed in this
work are based on combinations of the output from the traditional
confusionmatrix, which compares the truthfulness of the prediction (i.e.,
true or false), with the binary classification (class 1 or class 0) of the real
data. Hence, each prediction outcome can be classified as either true
positive (TP, or class 1 correctly identified), true negative (TN, or class 0
correctly identified), false positive (FP, or a real class 0 identified as class
1), or false negative (FN, or real class 1 identified as class 0). The accuracy
(a0) is the ratio of correct predictions to all predictions, i.e., the fraction of
correct predictions:

a0 ¼
TP þ TN

TP þ TN þ FP þ FN
: ð3Þ

In addition, themeasure of precision is targeted to minimize false positives,
and it is also known as the positive predictive value (PPV). It quantifies the
fraction of positive predictions that are real:

PPV ¼ TP
TP þ FP

ð4Þ

An equivalent measure to precision, but targeted to quantify the fraction of
negative predictions that are real, is known as the negative predictive value
(NPV):

NPV ¼ TN
TN þ FN

: ð5Þ

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data generated and analyzed during this study are included in this
published article (and its supplementary information files). Our library
of compounds used in this study, including chemotype, SMILES,
descriptor values and IC50’s, is provided in the Supplementary Data 1.
The definitions of all descriptors are provided in the Supplemen-
tary Data 2.

Code availability
All algorithms utilized in this study are open-source and referenced in the
manuscript and the supplementary information.
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