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Estimating the phase diagrams of deep
eutectic solvents within an extensive
chemical space
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Assessing the formation of a deep eutectic solvent (DES) necessitates a solid-liquid equilibrium phase
diagram. Yet, many studies focusing on DES applications do not include this diagram because of
challenges in measurement, leading to misidentified eutectic points. The present study provides a
practical approach for estimating the phase diagram of any binary mixture from the structural
information, utilizing machine learning and quantum chemical techniques. The selected machine
learning model provides reasonably high accuracy in predicting melting point (R2 = 0.84;
RMSE = 40.53 K) and fusion enthalpy (R2 = 0.84; RMSE = 4.96 kJ mol−1) of pure compounds upon
evaluation by test data. By pinpointing the eutectic point coordinates within an extensive chemical
space, we highlighted the impact of the mole fractions and melting properties on the eutectic
temperatures.Molecular dynamics simulations of selectedmixtures at the eutectic points emphasized
the pivotal role of hydrogen bonds in dictating mixture behavior.

Solvents play a pivotal role in facilitating chemical processes in vital
industries, including pharmaceutical production, oil refining, and fine
chemical production1. In 2020, the global market for common organic
solvents was USD 43,845.7 million, with projections estimating it will reach
USD67,837.8million by 20282. Regrettably, themajority of organic solvents
in use today pose environmental and health risks, thus there is a need to
develop more sustainable alternatives. Deep eutectic solvents (DESs) have
emerged as a potential solution for the environmental and health issues
observedwith current solvents. First described by Abbott et al.3,4, DESs have
since captured considerable attention as promising green solvents5. Litera-
ture reports have underscored the versatility of DESs, highlighting their
potential in diverse applications, including separation, gas capture, elec-
trodeposition, batteries, biomass processing, medical research, and nano-
material synthesis6.

While the potential applications of DESs are vast, a fundamental
understandingof thenature ofDESs remains limited7. The very definitionof
DES is nebulous, leading to divergent interpretations among researchers8.
Abranches and Coutinho have highlighted several prevalent misconcep-
tions in the literature9, including: (i) viewing DESs as analogous to ionic
liquids (ILs); (ii) viewing the depression of the melting point as a unique

characteristic of DESs; and (iii) presuming DESs form at fixed stoichio-
metric ratios. These misconceptions risk diverting DES research down
incorrect avenues and require urgent redress. We concur with Martins
et al.10, whodefinedDESs fromthe intrinsic thermodynamic traits, i.e.,DESs
are a subset of eutectic mixtures that exhibit negative deviations from
thermodynamic ideality. The concept of a eutectic mixture, i.e., a mixture
with a melting point lower than its individual components, is a basic
principle in physical chemistry, recognized long before the advent ofDESs11.

The DES definition proposed by Martins et al. is favored by many
researchers7,8,12–14 because it clearly distinguishes ideal eutectic and deep
eutectic phenomena from a thermodynamic standpoint. Consequently, a
solid–liquid equilibrium (SLE) phase diagram is imperative for evaluating
DES formation. While an SLE phase diagram is important for DES
assessment, the challenges of obtaining this diagram are evident. Acquiring
the melting points of a DES across a full spectrum of molar ratios, typically
executed using differential scanning calorimetry15, is both labor-intensive
and susceptible tomoisture interference16. Additionally,manyDESsderived
from natural organic compounds can decompose before the melting
properties can be ascertained17. Although computational techniques rooted
in the conductor-like screening model for real solvents (COSMO-RS) offer
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some solutions18, the software mandates that users input melting property
data (e.g., melting point and fusion enthalpy) of the pure components. Such
data are often not available, particularly when theDES components contain
novel chemical structures. Given these challenges, a practical method for
estimating SLE phase diagrams is vital to advancing DES research.
Employing such amethodcanalsounlock the chemical potential ofDESs, of
which only a fraction has been harnessed to date.

Machine learning (ML), a subset of artificial intelligence that enables
computers to make accurate predictions based on data patterns, holds the
potential to address the challenge of estimating phase diagrams. Recent
efforts have appliedML to predict the physical properties ofDESs, including
density19,20 and viscosity21–23. These MLmodels were developed using state-
of-the-art datasets reported in the literature. However, preparing ML
models to predict SLE phase diagrams of DESs is particularly challenging
due to the scarcity of training data. Therefore, implementing ML for SLE
phase diagram estimation requires innovative approaches, such as com-
bining ML with COSMO-RS and integrating the results in alignment with
thermodynamic principles.

In the present study, we present a practical method for estimating the
SLE phase diagrams of DESs, leveraging bothML predictions and quantum
chemical (QC) calculations. This strategy enabled a systematic exploration
of the expansive chemical space of DESs, relying solely on structural
information. Focusing on type V DES, we elucidated the SLE phase dia-
grams for 3000 mixtures and examined the associated ideal eutectic and
deep eutectic behaviors. Furthermore, we conducted molecular dynamics
(MD) simulations for selected mixtures at the eutectic mole fractions and
temperatures to probe the intrinsic interactions within DESs.

Results and discussion
The thermodynamic context
When two immiscible or partially immiscible solid compounds mix under
isobaric conditions, the melting points will generally decrease, as char-
acterized by the equation9,10,24,25:

ln xiγi
� � ¼ ΔfusHi

R
1

Tm;i
� 1
Ti

 !

ð1Þ

In this equation, xi, γi,ΔfusHi,Tm;i, andTi represent themole fraction,
activity coefficient, fusion enthalpy (J mol–1), pure compoundmelting point
(K), and melting point in the mixture (K) of component i, respectively. R is
the ideal gas constant, given as 8.3145 J mol−1 K−1. Calculating for Ti across
a rangeof values for xi from0 to1produces amelting curve for eachmixture
component. In a binary mixture, the eutectic point emerges where the
melting curves of the two constituents intersect, with the x axis and y axis
delineating the associated eutecticmole fractionxE andeutectic temperature
TE , respectively (refer to Fig. S1). Conventionally, if intercomponent
interactions match the intracomponent interactions, the mixture exhibits
ideal behavior, allowing γi to be set at 1. However, real eutecticmixtures can
display either a positive (γi > 1) or negative (γi < 1) deviation from this
ideality. The latter characteristic defines a DES, as proposed by Martins
et al.10. Accordingly, SLE phase diagrams for both ideal and real mixtures
can be derived by inputting the parameters Tm;i,ΔfusHi, and γi in Eq. (1). It
should be noted that Eq. (1) disregards the value of themolar heat capacity,
ΔmCi because its impact is minor compared with that of the other para-
meters (see equation S1).

Prediction of melting properties
Oneof themain challenges in employingML techniques forDES research is
the perceived scarcity of extensive datasets, especially those relating to SLE
phase diagrams. This perception largely arises from an approach that views
DESs as a novel class of compounds, rather than asmixtures.Whenbuilding
ML models tailored to DESs, researchers have often depended on training
data sourced solely from previous DES-specific studies, which are relatively

limited. In contrast, the melting curves in SLE phase diagrams can be
charted individually for each component. Thus, the associated melting
properties, Tm;i and ΔfusHi, can be predicted using ML models trained on
datasets of pure compounds, which are abundantly available in the
literature26,27.

Figure 1a–c shows parity plots of the training and test data of threeML
models developed in this study: random forest (RF); extreme gradient
boosting (XGB); and multilayer perceptron (MLP), to predict the Tm;i
parameter.All thesemodels demonstrateda robust learning abilityusing the
prescribed melting point dataset, as evidenced by the low root mean square
error (RMSE) and high coefficient of determination (R2) values. For the
training data, XGB recorded the smallest RMSE value (0.71 K), followed by
RF (14.67 K) andMLP (36.16 K). A similar trend emerged for the R2 values:
XGB (1.0) > RF (0.98) >MLP (0.85). When evaluating the test data, all the
models consistently gave low RMSE (≈40 K) values and high R2 (≈0.83)
figures, indicating their good predictive ability. Cross-validation analysis
further substantiated the reliability of the RF and XGB models, both
returning RMSE and R2 scores of 40 K and 0.82, respectively (Fig. S2a, b).
For the MLP model, a sharp decline in the loss function throughout the
learning history suggested a swift adaptation to data patterns (Fig. S2c).
These superior evaluation scores across the board indicated the aptness of
the selected dataset, molecular descriptor, and model design, supporting
their validity for use in predicting the melting points of novel or uncharted
compounds.

Figure 1e–g shows parity plots of ML models designed to predict the
ΔfusHi parameter. In training data performance, XGB had the best perfor-
mance with RMSE = 0.35 kJ mol−1 and R2 = 1.0, then RF
(RMSE = 1.92 kJmol−1, R2 = 0.98) and MLP (RMSE = 4.55 kJmol−1,
R2 = 0.89). However, this order shifted when evaluating the test data: RF
(RMSE = 4.96 kJmol−1, R2 = 0.84); followed closely by MLP
(RMSE = 5.40 kJmol−1, R2 = 0.81); and XGB (RMSE = 5.71 kJmol−1,
R2 = 0.79). Notably, the performance of RF and XGB was similar based on
cross-validation analysis, while MLP demonstrated a rapid data learning
ability (Fig. S2e–g).Given theoutstanding results across all themodels, there
exists the potential to confidently predict the fusion enthalpy of novel or as-
yet-unstudied compounds.

Traditionally, mixtures comprising a hydrogen-bond acceptor (HBA)
and a hydrogen-bond donor (HBD) have been considered to be likely
candidates for forming aDES. Thus,we identified 60 potentialHBAs and 50
potential HBDs. The names and simplified molecular-input line-entry
system (SMILES) representations of these compounds can be found in
Table S1. Our selection of HBAs contained both strong (phosphine oxide,
sulfinyl, and urea) and weaker (thiourea) HBA groups, with varied alkyl
chain lengths, for a systematic study. TheHBDswere largely natural organic
compounds, including amino acids, sugars, and fatty acids. Merging these
60 HBAs with the 50 HBDs yielded a total of 3000 possible mixtures. It was
anticipated thatmost of these combinationswould result in the formationof
type V DES, i.e., DESs obtained from the mixtures of non-ionic
compounds28–30.

Figure 1g, h shows the predictions for the Tm;i andΔfusHi values using
RF, XGB, and MLP models. A discernible trend in the melting point and
fusion enthalpy values was evident for the HBAs (compounds 1–60). This
trend was aligned with the length of the alkyl chains in each group, speci-
fically, longer alkyl chains corresponded to higher Tm;i and ΔfusHi values.
This observation was in accordance with basic chemistry principles, indi-
cating the ML models were likely to predict the real values. In contrast, for
the HBDs (compounds 61–110), a clear trend was not observed, likely
because the chosen HBD structures were not systematically selected.
Moreover, the predicted Tm;i and ΔfusHi values from each of the RF, XGB,
andMLPmodels largely coincided, as evidenced by the frequent overlaps in
the scatterplots. This convergence further bolstered our confidence in the
ML predictions. Because of the consistent performance of the model across
different datasets and evaluative methods, we opted to use the RF model to
derive the Tm;i and ΔfusHi values.
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Calculation of activity coefficients
To quantify deviations from thermodynamic ideality, QC methodologies
such as density functional theory (DFT) and the COSMO-RS model are
valuable tools as these methods have been shown to predict γi values with
good accuracy31–35. The COSMO-RS method, in particular, operates by
integrating QC calculations of molecular surfaces with statistical thermo-
dynamics, enabling the assessment of intermolecular interactions within a
mixture. This approach allows for the accurate prediction of mixture
properties such as solubility and phase behavior, utilizing the potential
energy profiles between molecules36. In the present study, we used ORCA
software for DFT calculations and the OpenCOSMO-RS package for
COSMO-RS calculations. The OpenCOSMO-RS, introduced by Gerlach
and his team, offers an open-source variant of the COSMO-RSmodel, with
the codebase available in both Python and C++ languages37.

Figure 2 shows the calculated lnγi values ofHBAs andHBDs displayed
in panels (b) and (d), respectively, in the mixtures. An illustration of the
calculationprocess is displayed inpanels (a) and (c). As anticipated from the
nature of real mixtures, the calculated lnγi values tended to be closer to 0 as
the xi values approached 1. Negative lnγi values indicate a preference for
interactions between HBAs and HBDs in a mixture. The calculated lnγi
values were predominantly negative, suggesting a high likelihood of DES
formation from these combinations.However, a sizeable number of the lnγi
values were positive, indicating that certain mixtures exhibited positive
deviations from ideality. It is interesting to note that while the presence of
H-bonds was anticipated across all the HBA–HBD combinations, such
bonds do not necessarily guarantee negative deviations from ideality. This
observation highlights that the correlation between HBA–HBD H-bond
formation and the activity coefficients in a mixture is not straightforward.

Fig. 1 | Constructing ML models to predict the melting properties of pure
compounds. Parity plots corresponding to training and test data of ML models to
predict the Tm;i value: a RF; b XGB; and c MLP. Parity plots corresponding to

training and test data of ML models to predict the 4fusHi value: d RF; e XGB; and
f MLP. Predicted g Tm;i and h 4fusHi values for the 110 selected compounds (60
HBAs and 50 HBDs). Source data are provided as a Source Data file.
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Consequently, relying solely on H-bond metrics as an indicator for DES
formation might be misleading. To truly understand the intricacies of DES
formation, SLE phase diagrams need to be analyzed across a vast chemical
spectrum.

Estimation of SLE phase diagrams
Having determined the parameters Tm;i, ΔfusHi, and γi from ML
predictions and QC calculations, we estimated SLE phase diagrams
for the proposed mixtures. To generate these diagrams, the melting
curves of HBAs and HBDs were determined individually by solving
for Ti in Eq. (1) at xi = 0.1 to xi = 1.0, with increments of 0.1. These
curves were then integrated into a single graph, with xHBA defining
the primary x axis and Ti designated as the y axis. The curve esti-
mations were carried out for both the ideal mixture model (γi = 1)
and real mixture model (γi ≠ 1), resulting in the collection of 6000
graphical images and 2 animated videos (Video 1: ideal, Video 2:
real) of SLE phase diagrams. The detailed results can be accessed
from an external data repository as described in the Methods section.
Essential analyses of the resulting SLE phase diagrams are given
in Fig. 3.

Figure 3a shows the mole fraction of HBA corresponding to the
eutectic mole fraction (xE) for each mixture. A considerable percentage of
the xE values derived from the ideal mixture model appeared at high HBA
fractions (xHBA > 0.8). The realmixturemodel showed a broader range of xE
values (xHBA > 0.3), yet most observations were still clustered around high
HBA fractions. This pattern underscored the fact that eutectic mixtures
typically occur when the molar fractions of the HBAs are comparable to, or
surpass, those of the HBDs. This data trend might also explain why
numerous reports have claimed successful DES formation at HBD: HBA
molar ratios of 1:1, 1:2, and 1:46,38,39. Nevertheless, designing DESs at fixed
molar ratios, as is typically the case in IL synthesis, cannot be justified. Such a
trend for xE values concentrated in a specificmole fractionwas not observed
in the investigated chemical space. This finding is in line with a previous

report debunking “magic compositions” in DESs using ab initio MD
simulations40. We recommend that DES compositions are consistently
described by themolar fractions (xHBA or xHBD), as is common formixtures,
instead of by the molar ratios (molHBD: molHBA) to avoid any ambiguities
with pure compounds, such as ILs41.

Figure 3b shows the distribution of eutectic temperatures (TE) for the
investigatedmixtures. Interestingly, the data trend appeared to resemble the
patterns of the predicted Tm;i and ΔfusHi values for the HBAs (Fig. 1g, h,
compounds 1–60). This observation suggested that themagnitude of theTE
value was greatly affected by themelting properties of the HBAs, which was
strongly correlated with the alkyl chain lengths. In the real mixture model,
numerous TE values were found to be lower than those in the ideal mixture
model, except for the mixtures 2300–3000. This observation was aligned
with the patterns of the lnγi values (Fig. 2b, d), indicating a favorable
interaction between the HBAs and HBDs in most of the mixtures. Further
analyses of the correlations between theTm;i,ΔfusHi, and lnγi values and the
TE values is shown in Fig. S3, which indicated the HBAmelting properties
had a considerable effect on the resulting eutectic temperatures.

Figure 3c shows the eutectic temperature difference (ΔTE) between
ideal and real models for the investigated mixtures. The majority of the
mixtures within the investigated chemical space had negative deviations
from the thermodynamic ideality and thus can be classified as DESs. It
should be noted, however, that many eutectic points of the ideal mixture
modelwere located below298 K (Table 1), i.e., a liquid at room temperature.
Therefore, assessing DES formation by merely observing solid-to-liquid
transformations would result in the misclassification of ideal eutectic mix-
tures, or even regular solutions, as DESs, as has been the case in previous
studies13,14. Basic information from the eutectic point data is summarized in
Table 1.

Figure 3d–f shows examples of SLE phase diagrams with melting
curves that behave ideally, exhibit positive deviations, and show negative
deviations, respectively. Specifically, Fig. 3d displays the SLE phase diagram
for Mixture 2996, a combination of 1-hexyl-1,3,3-trimethylthiourea and

Fig. 2 | Calculating the activity coefficients of
HBAs and HBDs in mixtures. Schematic illustra-
tions of the lnγi calculations for aHBAs and cHBDs.
Line plot representations of the calculated lnγi
values for b HBAs and d HBDs in the mixtures.
Source data are provided as a Source Data file.
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stearic acid. The melting curves of the real mixture were aligned with those
of the ideal model, suggesting that the interactions between 1-hexyl-1,3,3-
trimethylthiourea and stearic acidwere the same strength as the interactions
between the individual compounds. Figure 3e shows the SLE phase diagram
for Mixture 2650, comprising 1,3-diheptyl-1,3-dimethylthiourea and gly-
cine. The melting curves showed a positive deviation from ideality, indi-
cating less favorable interactionsbetween the twocomponents thanbetween
the individual compounds. Figure 3f shows the SLE phase diagram for
Mixture 171, formedby tributylphosphineoxide and erythrose. Themelting
curves here display a negative deviation, signifying a strong affinity between
the two constituents. This particular diagram (Fig. 3f) typifies the SLE phase
behavior of aDES.Key details for thesemixtures are summarized inTable 2.
Additional examples of SLE phase diagrams with varying melting-curve
behaviors are shown in Fig. S4 and Table S2. The comparison between
estimated SLE phase diagrams for selected cases and their experimental
counterparts is presented in Fig. S5, followed by an additional discussion in
Note S1. The experimental data were sourced from the recent report by
Schaeffer et al.42.

Simulation of DES interactions
MD simulations were carried out for Mixture 2996, Mixture 2650, and
Mixture 171 at the respective xE and TE values. The preliminary stages
encompassing energy minimization and system equilibration are shown in
Fig. S5. Molecular motions during the simulation can be seen in Video 3
(Mixture 2996), Video 4 (Mixture 2650), and Video 5 (Mixture 171),
available on an external data repository as described in theMethods section.

In the investigated mixtures, H-bonds associated with HBA–HBA
interactions were not present because of the absence of hydrogen-donor
sites. In Mixture 2996, only ~60 H-bonds associated with HBD–HBD
interactions could be observed at the beginning of the simulation, and this
number increased to almost 120 over 10 ns (Fig. 4a). This observation
suggested that while the interaction between the HBD (stearic acid) mole-
cules in Mixture 2996 was somewhat favorable, it remained fairly modest.
The number of H-bonds associated with HBA–HBD interactions was very
low (<3), indicating there was a poor interaction between 1-hexyl-1,3,3-
trimethylthiourea and stearic acid molecules in the mixture. The radial
distribution function (RDF) analysis showed a relatively weak interaction
between the HBA molecules and a modest interaction between the HBD
molecules, as indicated by the peaks at 0.11 nm (Fig. 4b). In Mixture 2996,
even though the strength of the HBA–HBD interactions was weak, the
HBA–HBA and HBD–HBD interactions were not particularly strong
either. Therefore, the ensemble of these weak interactions allowed Mixture
2996 to behave as an ideal mixture (Fig. 3d).

InMixture 2650, a considerable amount of H-bonds (~500) associated
with HBD–HBD interactions could be observed at the beginning of the
simulation (Fig. 4c). Within 10 ns, the number of hydrogen bonds had
increased to approximately 600. This increase in H-bonds suggested the
formation of HBD regions in the mixture, indicating favorable HBD–HBD
interactions and less favorable HBA–HBD interactions. Moreover, there

Table 1 | Basic information from the eutectic point data.

Description Ideal Real

(xE , TE ) count 2444 2579

0.1 < xE < 0.9 1473 2239

TE < 298 K 902 1594

TE max (K) 344 485

TE min (K) 232 153

Fig. 3 | Estimated SLE phase diagrams for the proposed mixtures and analysis of
the eutectic points. The distribution of a eutectic mole fractions, b eutectic tem-
peratures, and c eutectic temperature difference between ideal and real models for
the investigated mixtures. The red dots in b are not part of the graph and are

displayed only for visual guidance purposes. SLE phase diagram of dMixture 2996,
eMixture 2650, and fMixture 171. Themixture index starts from 0. The inset shows
the HBA (red) and HBD (blue) structures. Source data are provided as a Source
Data file.
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were hardly any H-bonds associated with HBA–HBD interactions. The
RDF analysis showed a relatively weak interaction betweenHBAmolecules,
as indicated by the small peak at 0.11 nm (Fig. 4d). In contrast, the inter-
actions between the HBD molecules were quite strong, as indicated by the
three large peaks at 0.09–0.11 nm. The strength of the HBA–HBD inter-
actionswas substantially lower than that of theHBD–HBDinteractions, and
thus, Mixture 2650 showed a positive deviation from the thermodynamic
ideality (Fig. 3e).

Mixture 171 exhibited amarkedly high number ofH-bonds associated
with both HBD–HBD (~800) and HBA–HBD (~600) interactions. The
number of H-bonds associated with HBA–HBD interactions appeared to
increase over the course of 10 ns, indicating a favorable interaction between
the HBA and HBD molecules. The P =O moiety of the tributylphosphine
oxidemolecule is a good acceptor forH-bondswith theO–Hmoieties of the
erythrose molecule. The RDF analysis showed a few small peaks associated
with HBA–HBA and HBD–HBD interactions at 0.09–0.11 nm, indicating
that these interactions were not dominant. Although the initial HBD–HBD
interactions produced a considerable amount of H-bonds, the ensemble
HBA–HBD interactions were favorable and thus led Mixture 171 to
undergo a negative deviation from the thermodynamic ideality (Fig. 3f).

Conclusions
This study presents a practical approach for estimating the SLE phase dia-
grams of DESs through the integration of ML predictions and QC calcu-
lations. ML and QC techniques were used to provide thermodynamic
parameters (Tm;i,ΔfusHi, and γi) that dictate themelting behaviors ofHBAs
and HBDs in mixtures. The ML model demonstrates a fairly high level of
precision in predicting the melting point (R2 = 0.84; RMSE = 40.53 K) and
fusion enthalpy (R2 = 0.84;RMSE = 4.96 kJ/mol) of pure compounds.Using
both ideal and real mixture models, we demonstrated the estimation of SLE
phase diagrams for 3000 binary mixtures consisting of systematically
selected non-ionic HBAs and HBDs. The analysis of eutectic point coor-
dinates (xE ,TE) over awide chemical landscape revealed some fundamental
insights: (i) Each DES exhibits a distinct eutectic point at a specific com-
position, diverging from commonly assumed fixed molar ratios; (ii) the
magnitude of the TE value was strongly correlated with the Tm;HBA and
ΔfusHHBA values; (iii)mixtures ofHBAs andHBDs frequently formedDESs,
but the possibility that the mixtures would behave ideally or deviate posi-
tively was not negligible; and (iv) the solid-to-liquid transformation at room
temperature or below without further verification of actual deviation from
thermodynamic ideality should not be used as the sole identification of a
DES. In addition, the MD simulations indicated the importance of the
H-bond interactions in a mixture, i.e., fewer H-bonds drives a mixture to
behave ideally, predominant H-bonding between HBD molecules leads to
positive deviations, and favorable H-bonding between HBA and HBD
molecules leads to negative deviations. The developed approach can easily
be expanded to a vast chemical space because this method only needs
structural information and, therefore, may be used to facilitate the devel-
opment of DESs and accelerate the discovery of greener solvents for

industrial applications. Future research could explore the use of more
advanced learning algorithms and larger training datasets to improve pre-
diction accuracy. This should be followed by systematic experimental
validation of the estimated SLE phase diagrams. Additionally, the overall
estimation process could be simplified by incorporating pretrained ML
models into the workflow.

Methods
Datasets and molecular descriptors
The melting point dataset, which contained 3041 data points, was sourced
fromtheBradleyMeltingPointDataset, available as opendata onFigshare26.
The fusion enthalpydatasetwasmanually curated from theCRCHandbook
ofChemistry andPhysics, 95thEdition, andprovided 516data points on the
fusion enthalpy of pure organic compounds27. The chemical structures were
represented in numerical values using RDKit 2D descriptors, taking
SMILES strings as input. These RDKit 2D descriptors encompass 208 fea-
tures (attributes), which include both physical and structural descriptors43.

MLmodels
Three ML models using the RF, XGB, and MLP algorithms were con-
structed and compared. Hyperparameters for each model were fine-tuned
either through a grid search or a randomized search, within specific search
spaces. For the RF model, the search space encompassed the number of
estimators, maximumdepth, andmaximum features44. For the XGBmodel,
this was the number of estimators, maximum depth, and the subsample
ratio of columns per tree; and for the MLP model, the number of hidden
layers and number of neurons per layer. The models were evaluated using
test data and cross-validation analysis. The test data were derived by ran-
domly selecting 20% of the data from the original training data, while cross-
validation was executed by splitting the training data into smaller subsets
using the k-fold approach. The resulting models were used to predict the
melting points and fusion enthalpies of the proposed pure compounds.
Construction of these ML models used the scikit-learn, xgboost, and keras
libraries45–47.

DFT and COSMO-RS
DFT calculations were executed using the ORCA 5.0 package48, following a
previously developed workflow37. The RDKit package served as the initial
tool, generating possible conformers from a given SMILES input43,49. The
geometries were then optimized using the analytical linearized
Poisson–Boltzmann model using the GFN2-xTB calculations50,51. The
conformerswerefiltered by an energywindowof 6 kcal/mol, clustered by an
RMSD window of 1, retaining only those with the lowest energy. Subse-
quently, COSMO geometry optimizations were performed using the BP86
function with a def2-TZVP(-f) basis set. For the conformer with minimal
energy, anotherCOSMOgeometryoptimizationwasperformedat theBP86
function with a def2-TZVP basis set. This was followed by a single-point
calculation at the BP86 functionwith a def2-TZVPDbasis set, producing an
“.orcacosmo” file. Next, the COSMO-RS model implemented on the

Table 2 | Key information on the investigated mixtures.

Description Mixture 2996 Mixture 2650 Mixture 171

HBA 1-hexyl-1,3,3-trimethylthiourea 1,3-diheptyl-1,3-dimethylthiourea tributylphosphine oxide

SMILES S =C(N(CCCCCC)C)N(C)C S =C(N(CCCCCCC)C)N(C)CCCCCCC O = P(CCCC)(CCCC)CCCC

HBD stearic acid glycine erythrose

SMILES CCCCCCCCCCCCCCCCCC(O) =O NCC(O) =O O =C[C@@H]([C@@H](CO)O)O

Behavior Ideal Positive Negative

xE ideal 0.88 0.60 0.69

xE real 0.86 0.98 0.44

TE ideal (K) 306 319 315

TE real (K) 306 328 253
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OpenCOSMO-RS package was employed to estimate the activity coeffi-
cients. The lnγi values for HBAs andHBDs in the mixtures were calculated
at a temperature of 298.15 K, considering the pure component as the
reference state, and using the “.orcacosmo” files as input data. For each
mixture, the lnγi values were calculated at xHBA = 0.0 to xHBA = 1.0 with a
step size of 0.1. All the calculation processes were controlled by a Python
script, enabling a simple and semi-automated workflow. Computation
outcomes were archived in the form of a NumPy binary object for sub-
sequent use45.

Coordinates of eutectic points
The coordinates of the eutectic points (xE ,TE)were determinednumerically
by pinpointing the intersection point of the HBA and HBDmelting curves
using Brent’s root-finding algorithm52. Initially, interpolating functions

were generated for each coordinate set, resulting in functions f1 and f2,
formulated through cubic spline interpolation. This interpolation enabled
value computation at any location on the curve, beyond the scope of the
original data points. Subsequently, the function f3 was delineated as the
difference between the functions f1 and f2. In the event of an intersection of
the curves, there should exist an x-value where f3 equates to zero, which
indicates the intersection point on the original curves. To locate this specific
x-value, a root-findingoperationwasundertakenusingBrent’smethod.The
root-finding operation spanned a range determined by the smallest and
largest x values extracted from both x1 and x2, assuring coverage of the
complete range of both curves. Upon convergence of the root-finding
operation, an intersection point was determined. The x-coordinate of this
point aligns with the root of f3, and the y coordinate was computed using
either f1 or f2. In cases where the melting curves lack an intersection, the

Fig. 4 | Simulated mixtures to investigate the nature of DES interactions. The
number of H-bonds in aMixture 2996, cMixture 2650, and e Mixture 171. The
simulation box containing a total of 1000 molecules at the initial (t = 0 ns) and final
time (t = 10 ns) is shown in the inset. The mixtures were simulated according to the

xE and TE values. The RDF of bMixture 2996, dMixture 2650, and fMixture 171.
The inset shows an enlargement of the values from 0.09–0.19 nm. Source data are
provided as a Source Data file.
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operationwill not converge, and a “None” value was appended to the result.
All the calculations were performed by implementing NumPy and SciPy
libraries53,54, with Matplotlib aiding in the visual representation55.

MD simulations
MD simulations were performed using the GROMACS package with the
CHARMM36 all-atom force field56,57. The topology and parameters of the
molecules were generated by the SwissParam tool58. At first, a total of 1000
molecules of the mixtures were placed into a box with a size of
15 × 15 × 15 nm (for Mixture 2996 and Mixture 2650) or 10 × 10 × 10 nm
(forMixture 171). The composition of these mixtures was derived from the
xE value identified in the associated SLE phase diagram. Subsequently, the
system was subjected to energy minimization and equilibration. The equi-
libration was performed in two steps: (i) under a constant number of par-
ticles, volume, and temperature (NVTensemble) to set the temperature and
(ii) under a constant number of particles, pressure, and temperature (NPT
ensemble) to set the pressure of the system. The temperature of the simu-
lation system was programmed to follow the TE value found in the
respective SLE phase diagrams using a Berendsen thermostat59. The pres-
sure was restrained at 1.0 bar using a Parrinello-Rahman barostat60. Finally,
the MD production was carried out for 10 ns with a time step of 2 fs in the
respective isothermal and isobar ensembles. The particle mesh Ewald
method61 with a cutoff distance of 1.0 nm and grid spacing of 0.16 nm was
used for the long-range electrostatic interactions. Then, theH-bondnumber
and the RDF were analyzed using the built-in GROMACS functions.
Visualizations were facilitated using the UCSF Chimera software package62.

Data availability
All data needed to evaluate the conclusions in this paper are presented in the
Manuscript, Supplementary Information, and/or Supplementary Files
(Images and Videos). Supplementary Files can be accessed at https://doi.
org/10.6084/m9.figshare.23995914. Additional data related to this paper
may be requested from the authors.

Code availability
All codes used in this study were deposited at https://github.com/
adroitfajar/eutectic-diagrams.
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