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Probing the dynamic landscape of
peptides in molecular assemblies by
synergized NMR experiments and MD
simulations
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Peptides or proteins containing small biomolecular aggregates, such as micelles, bicelles, droplets
and nanodiscs, are pivotal inmany fields ranging from structural biology to pharmaceutics.Monitoring
dynamics of such systems has been limited by the lack of experimental methods that could directly
detect their fast (picosecond to nanosecond) timescale dynamics. Spin relaxation times from NMR
experiments are sensitive to such motions, but their interpretation for biomolecular aggregates is not
straightforward. Here we show that the dynamic landscape of peptide-containing molecular
assemblies can be determined by a synergistic combination of solution state NMR experiments and
molecular dynamics (MD) simulations. Solution state NMR experiments are straightforward to
implement without an excessive amount of sample, while direct combination of spin relaxation data to
MD simulations enables interpretation of dynamic landscapes of peptides and other aggregated
molecules. To demonstrate this, we interpret NMR data from transmembrane, peripheral, and tail
anchored peptides embedded in micelles. Our results indicate that peptides and detergent molecules
do not rotate together as a rigid body, but peptides rotate in a viscousmediumcomposedof detergent
micelle. Spin relaxation times also provide indirect information on peptide conformational ensembles.
This work gives new perspectives on peptide dynamics in complex biomolecular assemblies.

Nanoscale biomolecular aggregates containing peptides or proteins have
applications in a wide range of fields. Micelle, bicelle and nanodisc systems
are used to characterize membrane proteins1,2, high and low-density lipo-
proteins (HDLandLDL) are lipiddropletswith apolipoproteins attachedon
their surface3,4, and nanodiscs stabilized by apolipoprotein mimetic and
peptide micelles have potential pharmaceutical applications5,6. However,
these small and highly dynamic aggregates are inaccessible with most
experimentalmethods that deliver atomistic resolutiondata of biomolecular
systems, such as crystallography or electron microscopy. Nuclear magnetic
resonance (NMR) experiments are sensitive to fast (ps to μs) timescale
motions of small aggregates, but interpretation of the data is often not
straightforward because (i) reference direction, such as membrane plane
that enables direct determination of order parameters, is not well defined in
solution state samples, and (ii) methods to interpret conformational

ensembles and dynamics of aggregates of lipid-like disordered molecules
from solution state NMR data are not available.

Spin relaxation times, T1, T2 and heteronuclear NOE relaxation (het-
NOE), measured with solution state NMR from isotopically labelled 15N
atoms in peptide backbone are often used to determine protein dynamics by
exploiting their connection to rotational dynamics of N-H bond vectors via
Redfield equations7,8. Spin relaxation times from proteins are typically
interpreted using Lipari-Szabo formalism or its extensions, where bond
vector rotational motions are assumed to be composed of overall motion
and one or more independent modes of internal motions, and parameters
describing these motions are then solved by fitting to the experimental
data8,9. However, for peptides or proteins embedded in disordered lipid-like
aggregates, it is not clear which kind of rotational modes should be used in
these calculations, and if allmolecules in aggregates rotate together as a rigid
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object or if peptides rotate independently fromothermolecules. In addition,
the number of molecules in each aggregate and the potential formation of
dimers or higher multimers of peptides may affect rotational dynamics. To
resolve all these free parameters by fitting would require a large amount of
experimental data. On the other hand, complex heterogeneous dynamics of
disordered molecules can be resolved by interpreting spin relaxation data
directly using molecular dynamics (MD) simulations10. However, this
approach requires careful exploration of MD simulation models that
reproduce experimental spin relaxation times with sufficient accuracy for
the interpretation of experimental data10,11.

Here we present an approach to resolve the dynamic landscape of
complexes formed by disordered biomolecules by interpreting spin
relaxation data from solution state NMR experiments using MD simula-
tions. This is demonstrated for six different types of peptides embedded in
sodium dodecyl sulfate SDS micelles, a common anionic membrane-
mimicking environment2. For the references, we resolved the dynamic
landscape of twowidely characterizedpeptides in themicellar environment:
amodel transmembrane GWALP peptide12 and an antimicrobialMagainin
2 peptide that is known to settle in a peripheral orientation parallel to
membranes13. To further demonstrate the usefulness of our approach, we
studied tail-anchored peptides shown to target the mitochondrial outer
membrane in yeast [eElaB(TA), eYqjD(TA), yFis1(TA)] or human
[hMff(TA)] cells. Themechanismbywhich these tail-anchored peptides are
inserted into the membrane is still poorly understood14–16. For these six
peptides, we predicted experimental spin relaxation times directly, without
any further fitting, from the MD simulation force field based on physical
interaction parameters between atoms. Our predictions allowed a detailed
interpretation of the dynamic landscapes of peptides and a better under-
standing of their behaviour in a lipid-like environment. Most importantly,

the approach presented here can be generally applied to characterize
dynamic landscapes of complexes formed by disordered biomolecules,
including not only more realistic membrane mimicking systems, such as
bicelles or nanodiscs1,2,5, but also to other systems such as lipid droplets3,4 or
membrane-less organelles17.

Results and discussion
Backbone 15N spin relaxation times of peptides in micelles from
NMR experiments
To experimentally characterize the dynamics of the selected six peptides in
SDSmicelle systems,wemeasuredT1,T2, andhetNOEspin relaxation times
of 15N atoms that were specifically labelled in the peptide backbone in
positions shown in Fig. 1a. All the labelled residues were visible in hetero-
nuclear single quantum coherence (HSQC) spectra with the exception of
labelled N-terminal residues of hMff(TA) and yFis1(TA). HSQC spectra
with the assignments and resulting spin relaxation times are shown in
Figs. 1b, c, respectively.

For T1 spin relaxation time, we observe an increasing trend in the
order of eElaB(TA) < eYqjD(TA) <Magainin 2 < hMff(TA) < yFis1(TA) <
GWALP, while the trend in T2 is exactly opposite. Mitochondria-directed
tail anchor proteins, eElaB(TA) and eYqjD(TA) derived from E. coli pro-
teins have lower T1 values and higher T2 values than hMff(TA) and
yFis1(TA) from humans and yeast. For peripheral Magainin 2 peptide, T1
and T2 times lay between values for tail anchors, while transmembrane
GWALPhashigherT1 and lowerT2 values than any otherpeptide.HetNOE
values lie between 0.4 and 1.0 for all the studied peptides, and systematic
differences between peptides are not observed.

Spin relaxation times of 15N are mostly sensitive to dynamics of N-H
bonds in ps to ns range inmagnetic field-dependentmanner7. However, the

Fig. 1 | Experimental results for peptides in SDSmicelles. aAmino acid sequences
with 15N labelled residues shown in red for transmembrane GWALP23, peripheral
Magainin 2, and mitochondria-directed tail anchor (eElaB(TA), eYqjD(TA),

yFis1(TA), and hMff(TA)) peptides. b 1H - 15N HSQC spectra and (c) T1, T2 and
hetNOE spin relaxation times measured from the peptides in SDS micelle and
sodium-phosphate buffer at 310 K with 850 MHz spectrometer.
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interpretation of molecular dynamics from spin relaxation times is not
straightforward, particularly for peptides in micelles where the detergent
environment affects peptide dynamics in anon-trivialmanner and standard
models for protein dynamicsmaynot be valid. Therefore, it is not clear from
experimental data whether distinct T1 and T2 values arise from differences
in overall rotation or conformational dynamics of peptides, and what is the
role of detergents in this. In the following sections, we show how this
experimental data can be interpreted using MD simulation models where
detergents are explicitly included.

Predicting spin relaxation times of micelles from physical inter-
actions between atoms using MD simulations
To interpret themolecular dynamics of peptide-micelle complexes from the
measured NMR spin relaxation times, we set out to perform MD simula-
tions that reproduce the experimental spin relaxation times without any
further fitting for both the micelle detergents and peptides. Such models
provide comprehensive interpretation for the experimental data, which
enables the separation of contributions of micelle dynamics from peptides’
internal and overall dynamics to the experimentally measured spin
relaxation times. To this end, we first aim to perform simulations that
correctly capture micelle dynamics and reproduce experimental deuterium
spin relaxation times from the literature18.

Because Amber-based force fields with water models derived from
TIP4P were previously successful in such tasks for partially disordered
proteins10, we first simulated an SDSmicelle in water with parameters from
AmberTools19. However, this micelle ended up in a gel-like phase with slow
dynamics anddeuterium spin relaxation times diverging fromexperimental
data obtained from the literature18 (Fig. 2). On the other hand, another
popularprotein forcefieldwith SDSparameters available,CHARMM3620, is
parameterized with the TIP3P21 based water model, which suffers from low
water viscosity and overly rapid dynamics, leading to incorrect spin
relaxation time values that do not relate well to data obtained by
experiments11. This is indeed observed also in our simulations in Fig. 2.
Therefore, we proceeded to use CHARMM36 parameters with OPC water
model22 which has a viscosity value in good agreement with experiments23.
This combination has been previously shown to give reasonable results for
bilayers and monolayers24,25. Indeed, SDS micelles simulated with
CHARMM36 parameters and the OPC water model remain in a fluid-like
phase and predict deuterium spin relaxation times that are in good agree-
ment with experiments (Fig. 2). Therefore, we set up also simulations of
peptides inmicellar environments using the CHARMM36 parameters with
the OPC water model.

MD simulations predicting spin relaxation times of peptide-
micelle complexes
Besides the force field parameters, the number of SDS molecules per
micelle has to be set manually in molecular dynamics simulations of
peptide-micelle complexes, because simulations of spontaneous aggre-
gation in large systems are not feasible at atomistic resolution. For pre-
liminary screening, we simulated each peptide in a micelle with the sizes
of 40, 45 and 50 SDS molecules for about 300 ns. In this quick scan,
systems with 50 SDS molecules reproduced the experimental spin
relaxation data quite well for all the peptides except GWALP. Due to the
substantial computational cost, we performed a more systematic study on
the micelle size dependence only for hMff(TA) which indicated the
strongest size dependence in the initial screening. For this, we simulated
hMff(TA) in micelles with 40, 45, 50, and 60 SDS molecules. Each system
was simulated for at least 3 μs and repeated 3 times from different initial
configurations. The results in Fig. 3a show systematic but weak depen-
dence of T1 on micelle sizes, while T2 and hetNOE spin relaxation times
from differently sized micelles are mostly within the error bars. Based on
these results, we ran three independent simulations of each peptide
except GWALP with 50 SDS molecules for at least 3 μs each. Spin
relaxation times from these simulations were close to experimental values
with the exception of eElaB(TA) for which T1 was slightly overestimated

and T2 slightly underestimated (Fig. 3). Therefore, eElaB(TA) simula-
tions were repeated also in micelles with 40 SDS molecules, which indeed
gave T1 and T2 values significantly closer to experiments, see Fig. 3d.

To understand the origin of large T1 and small T2 values in GWALP
experiments, we screened the dependence on micelle size up to 80 SDS
molecules per micelle for this peptide. Furthermore, we investigated
whether dimerization could explain distinct spin relaxation times for
GWALP by simulating two peptides in micelles with different numbers
of SDS molecules. Results in Fig. 3 show that we can reproduce the
experimental T1 spin relaxation data either with one GWALP peptide in
a micelle with 80 SDS molecules or with two GWALP peptides in a
micelle with 70 SDS molecules. For systems with two GWALP peptides
in an SDS micelle, we observe two different scenarios: peptides either
strongly interact with each other, creating a dimer that rotates in the
micelle as one entity, or the two peptides continue to rotate indepen-
dently, see Supplementary Fig. 1a, b. We observe slight differences
between these two scenarios in terms of T1 spin relaxation times. While
two independently rotating GWALP peptides in a micelle with 70 SDS
molecules reproduce the experimental results slightly better, peptides
rotating in a correlated manner would probably reproduce the experi-
mental data equally well after a slight decrease in the number of SDS
molecules. To also check the effect of dimerization on spin relaxation
times in other peptides, we run simulations with two eElaB(TA) or
yFis1(TA) molecules in one micelle. Differences between systems having
one or two peptides in a micelle were smaller for eElaB(TA) and
yFis1(TA) than for GWALP (Fig. 3b–d), and interactions between two
peptides were observed neither for yFis1(TA) nor eElaB(TA), see Sup-
plementary Fig. 1. In conclusion, our results suggest that distinct spin
relaxation times for GWALP systems in experiments can be explained by
their presence in larger aggregates, yet we cannot distinguish with the
current data whether there are one or two peptides in each micelle.
However, GWALP dimers seem slightly more probable than dimers of
other peptides as GWALP peptides sometimes dimerize spontaneously
and the dimers remain stable in simulations.

Spin relaxation times and representative snapshots from the systems
that predict values closest to experiments are shown in Fig. 4a, b, respec-
tively. These simulations reproduce the main experimentally observed dif-
ferences in spin relaxation times between the peptides, particularly the
increase of T1 values in the order of eElaB(TA)≲ eYqjD(TA)≲Magainin
2 < hMff(TA)≲ yFis1(TA) <GWALP. Notably, after selecting the force
field parameters and the number of molecules in the simulation system, no
further fitting is made to reproduce the experimental data. Therefore, the
selected simulations predict experimental spin relaxation times directly
from physical interactions between atoms with relatively good accuracy,
which justifies their further usage in interpreting the dynamic landscape of
peptides in micellar environments performed in the next sections.

Rotational dynamics of peptides in micelles
To characterize the timescales of proteins’ rotationalmotions inmicelles, we
exploit the weights of different timescales resulting from the fit of expo-
nential functions (Eq. (2)) to the rotational correlation functions of N-H
(Eq. (1)) calculated from simulations. We consider the combination of
weights and timescales from simulations that best reproduce experimental
spin relaxation times in Fig. 4 as an interpretation of the dynamic landscape
detected by the experiments. Notably, this direct approach (i) is free from
the assumptions about the number of relaxation processes or their time-
scales, (ii) does not require the re-scaling of inaccurate simulation data that
is required when using common methods to interpret dynamics from spin
relaxation data8,9,26–28, and (iii) provides a higher resolution and intuitively
more comprehensible interpretation than the dynamical detector analysis29.
We have previously reported similar analyses for pure protein10,11 and lipid30

systems.
The full dynamic landscapes for proteins with all observed timescales

and their weights are shown in Supplementary Fig. 2, while a more com-
prehensible presentation where the weight of each timescale is represented
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by the point size is shown in Fig. 5a. For all the peptides, we observe
dominant rotational timescales between approximately 5 and 9 ns, with
weights above approximately 0.5 formost residues. Because these timescales
are similarly present for almost all the residues within the same protein, we
interpreted them to correspond to the overall rotational dynamics of pep-
tides which can be described by one timescale in this case. Exception is the
magainin 2 for which the unfolded region (residues 13–22) does not share
the dominant timescales with others. Most residues in unfolded regions of
tail anchor peptides (approximately residues 1–8) have the common
dominant timescale with other residues, yet with slightly smaller weight.
While we assign here a timescale for the overall protein motion, caution
should be exercised when interpreting motions of peptides bearing sig-
nificant disorder for which concepts developed for rigid body rotation are
not valid. Because all proteins studied here (except GWALP) have large
disordered fractions with respect to their size, we believe that further

analyses and interpretations of peptide dynamics are better to do using
direct analyses from MD simulations (as exemplified in the following sec-
tions) than from components of rigid body rotation.

Nevertheless, we use the observed dominant timescales in Fig. 5a to
interpret qualitative differences in overall rotations between different pep-
tides. The fastest dominant timescales around 5 ns are observed for
eElaB(TA) andeYqjD(TA), andMagainin2, although theC-terminalhalf of
Magainin 2 has even faster timescales around 4 ns. Dominant timescales of
hMff(TA) and yFis1(TA) are slightly slower with values just above 6 ns,
while GWALP exhibits significantly slower rotational dynamics than other
peptides with dominant timescales of approximately 8 ns. Because the
differences in dominant timescales between peptides correlate with
the differences in T1 and T2 times, we conclude that the experimentally
observed differences in T1 and T2 values arise mainly arise from differences
in overall rotational dynamics between peptides.

Fig. 2 | Spin relaxation times of SDS micelles in water at 307 K. a Snapshots from
MD simulations showing the gel-like phase for Amber simulations and liquid-like
phase for CHARMM36 simulations. b Deuterium T1 and T2 spin relaxation data
from experiments18 and MD simulations for isotopically labelled α, γ and ω

segments. c Chemical structure of SDS with the assignment of labelled segments.
d Effective correlation times, τeff, of each C-H bond in SDS molecules from MD
simulations.
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Peptide and surfactant rotations are uncoupled in micelles
While peptide rotations are dominated by timescales between approxi-
mately 5–9 ns corresponding their overall rotations, analysis of dynamic
landscapes of SDS molecule C-H bonds reveals substantially different
behaviour Fig. 5b: dynamics is dominated by timescales below 100 ps, and
nanosecond timescalemotions related to overall rotation of peptides are not
observed for detergents. To further elucidate SDS rotation in micelles, dis-
tributions of SDS molecule overall rotation timescales calculated from
vectors from micelle center of mass to sulfate atoms in SDS molecules are
shown in Supplementary Fig. 3. Overall rotation timescales of individual
SDSmolecules exhibit wide distribution in all systems with most molecules
having timescales faster than approximately 4 ns. Slower timescales with

smallweights appear only in systemswith peptides. Thewide distribution of
timescales for individual SDSmolecules and the lack of common dominant
timescales with peptides suggest that their overall motions are not con-
certed. On the other hand, the appearance of slow timescales with small
weights in systems with peptides indicate that few SDS molecules are
attached to peptides such that they rotate partially together. Nevertheless,
because the rotation of the clear majority of SDS molecules is not coupled
with peptides, we conclude that peptides rotate independently from deter-
gent molecules in a viscous media formed by the micelle.

Our results suggest that peptide and surfactant rotations do not share
common timescales in micelles, and therefore a common timescale that
would describe the rotation of a micelle as a whole cannot be defined.

Fig. 3 | Effect of micelle size and dimerization on spin relaxation times. a Spin
relaxation times of hMff(TA) peptide as a function of SDS micelle size. The dashed
line shows the average over 3 replicas simulated with 1 peptide per micelle. The
shaded region is the standard error of the mean calculated from the 3 simulations.
b Spin relaxation times of GWALP peptide as a monomer or dimer as a function of
the SDSmicelle size. c Spin relaxation times of yFis1(TA) peptide in amicelle with 50

SDSmolecules as a monomer or dimer. For the dimer, a solid line shows the average
over the 2 peptides in a micelle in one simulation. For the monomer, the dashed line
is the average taken over 3 replicas. Shaded regions are the standard errors of the
mean. d Spin relaxation times of eElaB(TA) peptide in a micelle with 50 SDS
molecules as a monomer or dimer, and in a micelle with 40 SDS molecules as a
monomer.
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Nevertheless, for peptides with rigid structures, it is possible to remove the
peptide rotation from the trajectories and then analyze surfactant rotation.
To further demonstrate uncoupling of peptide and surfactant rotations in
micelles, we removed peptide rotation from trajectories of GWALP
monomers in micelles with different amounts of SDS molecules, and then
compared SDS overall rotation from these trajectories with the original
trajectories. Results in Supplementary Fig. 4 show similar SDS rotations in
trajectories with and without peptide rotation removal, providing further
evidence that peptide and surfactant rotations are uncoupled in micelles.

We further investigated the coupling between micelle and peptide
dynamics by comparing the peptide dynamics observed inMD simulations
to the prediction from the Stokes-Einstein equation, assuming that the
peptide-micelle complex rotates as a rigid body with a fixed radius in an
environment having the viscosity of water. The Stokes–Einstein equation
predicts significantly faster peptide dynamics and stronger dependence on
the micelle radius than is observed in simulations, as shown in Fig. 6. For
example, in the case of the hMff system in 50 SDS molecules, the gyro-
magnetic radius calculated from the simulations is 1.6 nm. However, to
obtain the rotational timescales observed in simulations from the Stokes-
Einstein equation, the radius of themicellewouldhave tobe 3.0nm,which is
almost twice as large as the value from the simulations. On the other hand,
the viscosity value in Stokes–Einstein equation should be 7.5mPa s toobtain
the same dynamics as observed in simulations, which is approximately ten
times larger than the viscosity of water at 310K (approximately 0.69mPa s).

In conclusion, our results indicate a dynamic conception of peptide-
micelle complexes where the rotational dynamics of peptides is dominated
by timescales of a few nanoseconds related to their overall motion that can
be experimentally detected by T1 values. Because peptides rotate indepen-
dently from detergents in a viscous media formed by the micelle, the rota-
tion of the peptide-micelle complex cannot be described by the Stokes-
Einstein equation that assumes that peptides and detergents rotate together
as a spherical rigid body.

Correlations between spin relaxation times and peptide sec-
ondary structure in micelles
While the peptide overall rotation explains the experimentally observed
differences in T1 and T2, spin relaxation times vary also along the sequence
within a protein. Spin relaxation times measured here are sensitive to the
rotational dynamics of peptide backbone N-H bonds, yet these dynamics
depend indirectly also on conformations sampled by the peptides.

Therefore, differences in spin relaxation times along sequence are potential
proxies also for conformational ensembles of peptides which is the case for
example for partially disordered proteins10. To investigate if spin relaxation
times could be useful to characterize peptide conformations also in the
micellar environment, we analyzed correlations between peptide helicity
and spin relaxation times in simulations (Fig. 7).

In simulations of individual systems, such as yFis1(TA) peptide in a
micelle with 50 SDS molecules shown in Fig. 7a, helical regions have high
hetNOE values and lower T2 values than non-helical regions, while the
changes in T1 values are less clear. To investigate the generality of such
correlations, we plotted the spin relaxation times as a function of the peptide
helicity from all simulations listed in Supplementary Tables 1, 2 into Fig. 7b.
This analysis reveals that helicity correlates withT2 and hetNOEvalueswith
Pearson correlation coefficients of −0.57 and 0.79, respectively, while the
correlationwithT1 values is weakerwith a Pearson correlation coefficient of
−0.15. However, spin relaxation times depend also upon other properties
besides helicity that vary between systems, such as micelle size. Therefore,
we also calculated Pearson correlation coefficients between helicity and spin
relaxation times separately for each individual simulation in Fig. 7c. In all
individual simulations, correlation coefficients between helicity and het-
NOE values are above 0.5, with p-values below 0.05. In the case ofT2 values,
all the systems have correlation coefficients with helicity below−0.45 with
p-values below 0.05 except for three systems (two replicas of hMff(TA)with
45 SDS molecules and a GWALP monomer with 50 SDS molecules) for
which significant correlationwas not found (correlation coefficients around
−0.25 with p-values around 0.2). In the case of T1 values, negative corre-
lation with helicity with correlation coefficients below −0.5 and p-values
below 0.05 are common, yet significant correlation is not found in many
systems and some systems have also significant positive correlation. On the
other hand, T1 has a strong positive, T2 mild negative, and netNOE very
mild positive correlation with the micelle molecular weight in Supple-
mentary Fig. 5, in line with conclusions in the above sections.

Observed correlations in simulations suggest that the residues with
large hetNOE and small T2 values have a higher tendency to form helices,
particularly with respect to other residues within the same peptide, whereas
correlations of T1 values with the helical tendency is less straightforward.
Such correlations motivate more detailed comparisons of spin relaxation
time changes along the sequence between simulation and experiments. The
central part of hMff(TA) and beginnings of eElab(TA), eYqjD(TA), and
yFis1(TA) are unfolded in simulations and exhibit increased T2 and

Fig. 4 | Spin relaxation times from the best simulations compared with experi-
ments. a Spin relaxation times from the best simulations and experiments.
Experimental values are in the middle of the shown rectangles and the edges

represent the experimental error. The lines represent an average over 3 simulation
replicas and the shaded region shows the error of the mean. b Representative
snapshots of the studied peptides in SDS micelles.
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decreased hetNOE values, but 15N labeled residues in experiments are too
sparse to fully evaluate this observation.Magainin has reduced alpha-helical
tendency at the end of the sequence associated with slight increase ofT2 and
a decrease of hetNOE. These changes are not visible in experiments sug-
gesting that simulations may not fully capture magainin secondary struc-
ture. Changes in spin relaxation times between residues are not observed in
GWALP suggesting helical structure, with the exception of low hetNOE
value of residue 11 in experiments. Thismay indicate somehelical instability
that is not visible in simulations, but could also be the experimental outlier.

In conclusion, our results suggest that inter-residual differences in spin
relaxation times bear information on peptide secondary structure in a
micelle which can be used to evaluate simulations and interpret experi-
ments. However, accurate experimental data from multiple residues along
the sequence are required for solid conclusion because relevant differences
may be small.

Conclusions
We show that MD simulations based on physical models can predict
experimental peptide backbone 15N spin relaxation times in detergent sys-
tems with sufficient accuracy to interpret experiments without any further
fitting. Our direct combination of MD simulation models and NMR data
avoids indirect comparisonsbetween twodifferentmodels, i.e., amodel used
to interpret spin relaxation data vs. MD simulationmodel, which is done in
many currently used methods31. On the other hand, our approach is free
from assumptions about the number and timescales of rotation modes
present in the system, as well as from arbitrary scaling of simulation results
that are required to interpret spin relaxation time data and reproduce
experimental results when deploying othermethods9,26–28,31. These advances
enable the interpretationof spin relaxation times for systems that arebeyond

the scope of current approaches due to the large amounts of data required
for parameter fitting, such as complex protein aggregates containing lipids
or detergents.

To demonstrate the practical advances of our approach, we determined
the dynamic landscape of peptide-detergent aggregates. Our findings support
a view of peptide dynamics within a detergent matrix in which peptides and
detergentmolecules do not rotate together as a rigid body in a solvent. Rather,
peptides rotate in a viscous medium composed of detergent micelle. Based on
our interpretation of peptide backbone 15N spin relaxation times, the rotation
of analyzed peptides in detergent aggregates was dominated by timescales
between approximately 4–8 ns arising from the overall rotation of peptides.
We explain the substantially slower overall rotation observed for trans-
membrane GWALP peptide, with the timescale of ~8 ns, by its preference for
larger detergent aggregates than peripheral Magainin 2 or mitochondria tail
anchor peptides having overall rotational timescales of ~4–6 ns. This result
supports previous studies suggesting that mitochondria tail anchor peptides
are more similar to peripheral peptides than transmembrane peptides15,32–34.
On the other hand, the rotational dynamics of SDS molecules forming the
detergents is dominated by timescales faster than 100 ps while ns timescales
dominating in embedded peptides are absent.

Furthermore, our results elucidate indirect relations between peptide
backbone 15N spin relaxation times, peptide dynamics and conformational
ensembles. We found significant correlations of helical propensities of
peptide residues with large hetNOE and low T2 values, particularly when
compared with the other residues within the same peptide. On the other
hand, T1 values mainly correlated with the overall rotation of peptides.
These relations support rapid interpretations of peptide conformations in
detergent aggregates from spin relaxation times even whenMD simulation
data is not available. On the other hand, these relations can be used to
evaluate predictions from MD simulations against experiments.

The advantages of our direct combination of NMR experiments and
MD simulations are demonstrated here for peptides in SDS detergent
micelles, yet the presented approach can be applied to any biomolecular
aggregate for which experimental spin relaxation times are accessible and
realisticMDsimulations canbeperformed.This includesmany systems that
are difficult to characterize by currently available experimental methods,
such as fully or partially disordered proteins10, bicelles or nanodiscs1,2,5,
membraneless organelles17, and lipid droplets3,4. In addition to the inter-
pretation of experimental NMR data, the presented approach will be useful
also for the evaluation and improvement of MD simulation quality. In the
era of data science andmachine learning, such benchmark data is becoming
increasingly important and endeavours to define such data for proteins and
lipids are ongoing35–37.

Materials and methods
NMR experiments
Peptides with the selected alanine, phenylalanine, glycine, or leucine having
15N labels in the backbone (positions shown in Fig. 1) were purchased from

Fig. 5 | Dynamics landscape of micelles with peptides. Dynamic landscape of (a)
peptides and (b) SDS molecules from the simulations in the best agreement with
experiments in Fig. 4. The point sizes represent the weight of each timescale in the
rotational relaxation process.

Fig. 6 | Rotational dynamics of peptides as a function of micelle size. Char-
acteristic timescales from Stokes–Einstein equation (black line) andMD simulations
for hMff(TA)monomer (red) andGWALP dimer (brown) inmicelles with different
numbers of SDS molecules. X-axis shows the radius of gyration.
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Peptide Protein Research Ltd (United Kingdom) in a powder formwith the
purity above 95%. Approximately 0.3mg of each peptide was weighed in an
eppendorf vial using an analytical balance (Precisa, XT 120A). The powder
was then dissolved with deuterated sodium dodecyl sulfate (SDS, Sigma
Aldrich) to obtain a solution with 0.3 mM peptide in 30 mM SDS and 20
mM sodium-phosphate buffer. 5%D2Owas added for the lock in the NMR
spectrometer. The solvent was prepared dissolving approximately 4.2mg of
SDS with 337.5 μl of milli-Q water, 90 μl sodium-phosphate buffer (pH 7.4,
0.1 M) and 22.5 μl of D2O. The samples were transferred into 5 mmNMR
tubes and all the NMR measurements were performed at 310 K using on
BrukerAvance IIIHD850MHz spectrometer equippedwith a cryogenically
cooled probe head at the Institute of Biotechnology, University of Helsinki.

To assign the peaks from labelled amino acids, we measured [1H,15N]-
HSQC(2048points in theF3domain, 128points in theF2domain, 16 scans,
and recycling delay of 1.1 s between scans), [1H,1H]-TOCSY (1536 points in
F3 domain, 512 points in F2 domain, 16 scans, mixing time of 60 ms), and
[1H,1H]-NOESY spectra (1536 points in F3 domain, 512 points in F2
domain, 16 scans,mixing timeof 280ms).A recyclingdelayof 2.1 swas used
between scans and the 1H carrier frequencywas positioned at 4.703 ppm for
both TOSCY and NOESY measurements. The spectral widths were 14.0
ppm (1H, F1) and 10.2 ppm (1H, F2) for [1H,1H]-TOCSY and 10.2 ppm (1H,

F1) and 10.2 ppm (1H, F2) [1H,1H]-NOESY. For HSQC spectra, the 1H
carrier frequency was positioned at 4.703 ppm, the 15N carrier frequency at
119ppm, and the spectralwidthswere 12.0 ppm(1H, F2) and33.0 ppm(15N,
F1). All these experiments were processed and analyzed using CcpNmr
Analysis software (version 3.0.3)38. For the assignment, the complete spin
systems of the amino acid residues were first identified using their proton-
proton J-couplings ([1H,1H]-TOCSY) combinedwith their proton-nitrogen
J-coupling ([15N,1H]-HSQC). These spin systems were then located within
the peptide sequence by means of through-space, sequential NOE con-
nectivities between adjacent residues39.

Spin relaxation timeswere acquiredwith standard pulse sequences7,40,41

using 1664 points in the F3 domain, 300 points in the F2 domain, and
8 scans.Delay timeswere set to20, 50, 100, 200, 300,500, 700, and900ms for
T1, and 34, 51, 68, 85, 119, 153, 187, 220, and 254 ms for T2. The recycling
delay of 3.5 s between scans was used for both T1 and T2, and 5 s for
heteronuclear NOE. The spectral widths were the same as in HSQC
experiments. The T1 and T2 relaxation data were processed and analyzed
using Bruker Dynamic Center software (version 2.7.2). For the analysis of
hetNOE spin relaxation times, peak heights were determined by TopSpin
software from spectra with and without NOE. To determine the errors for
hetNOEs, the signal-to-noise ratio was first determined from the region

Fig. 7 | Correlations between helicity and spin relaxation times of peptides.
a Three most abundant secondary structures detected by DSSP60 analysis and spin
relaxation times from a simulation of yFis1(TA) in a micelle with 50 SDSmolecules.
b Scatter plot and Pearson correlation coefficients between helicity and spin
relaxation times from individual residues in all simulations listed in Supplementary
Tables 1, 2. The local environment helicity on the x-axis is the average over the given

residue and the left and the right neighbouring residue if these exist. The colour of a
point then encodes for the helicity of the given residue without neighbour averaging.
c Pearson correlation coefficients and their p-values between the residual local
environment helicity and spin relaxation times calculated separately for individual
simulations. d Average helicities over three replicas with representative snapshots
from MD simulations.
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without any peaks, and the limiting extremes of the noise values were then
added toor subtracted fromthepeaks to estimate the largest effect ofnoise to
the ratio between the peaks in the two spectra.

MD simulations
Simulated systems. SDS micelles in water without peptides were
simulated using Amber parameters from AmberTools19 and
CHARMM3620 parameters from CHARMM-GUI42,43. Following the
electronic continuum correction (ECC) to implicitly include electronic
polarization, atom charges were scaled by factor 0.75 in Amber
simulations44 and compatible ion parameters were used45. Amber simu-
lations were run with TIP4P21 and CHARMM36 simulations with
TIP3P21 (CHARMM version), OPC22, or TIP4P21 water models. We first
simulated SDS micelles at 298 K and 307 K with the standard saving
frequency of 10 ps for coordinates for 362–1809 ns. Because SDS mole-
cules had a substantial amount of rotational dynamics with faster time-
scales than the saving frequency, we initiated simulations with the saving
frequency of 0.01 ps using conformations at different timepoints from the
first simulations as the starting configurations. Simulated systems of SDS
micelles without peptides and their starting configurations are listed in
Supplementary Table 3.

To construct the initial configurations of peptides in micelles, peptide
PDB files were first generated using ProBuilder server https://www.ddl.
unimi.it/vegaol/probuilder.htm, and then embedded to SDS micelles using
CHARMM GUI42,43. Systems were hydrated with approximately
24,000–40,000 water molecules and the total charge was neutralized with
sodium ions. To test the potential dependence of the results on simulation
box size, we ran hMff(TA) simulations with different box sizes, see Sup-
plementary Fig. 6. We observed mild dependence on simulation box size
with systems less than approximately 39,000 water molecules. This should
be taken into accountwhenplanning the simulations, or concludingoptimal
micelle sizes from simulations with less amount of water than this. Simu-
lation replicas were initiated from different time points of the first simula-
tion for each system with a new random set of starting velocities. Further
details are given in Supplementary Table 1.

Starting configurations for simulations with two GWALP, yFis1(TA),
or eElaB(TA) peptides within the same micelle were prepared by (i)
removing water molecules from an equilibrated snapshot of a monomeric
system, (ii) adding a second peptide to close proximity of the micelle, (iii)
solvating the system again. For the GWALP peptide, such simulations were
run with 40, 45, 50, and 60 SDS molecules. In the simulation with 50 SDS
molecules, two GWALP peptides started to interact with each other and
created a dimer where the two peptides rotated together in the micelle, see
Supplementary Fig. 1d). Therefore, with the optimal micelle size of 70 SDS,
we ran replicas starting from conformations with (together) and without
(separate) mutual interactions of two GWALP peptides. In all of the
“together" simulations, peptides stayed in the form of the dimer for the
whole length of the simulations. One of the systems with a “separate"
starting configuration indicated potential dimer formation at the end of the
simulation, while peptides retained independent motions otherwise.
Simulations with systems having two peptides in the same micelle are
summarized in Supplementary Table 2.

The convergence of systems wasmonitored by calculating the number
of SDS molecules in each micelle as described below, for example of equi-
librated system see Supplementary Fig. 7. We also ensured by visual
inspection that all peptides were incorporated into micelles. Only the con-
verged parts of trajectories were used for the analyses.

Simulation details. All simulations were performed using Gromacs
versions 2021.1, 2021.5, and 2022.246,47. Parameters from AmberTools
were converted to Gromacs format using ACEPYPE48. Standard
CHARMM-GUI equilibration procedure was used for all systems with
the initial structure generated using CHARMM-GUI42,43. Replicas and
other simulations initiated from already equilibrated configurations were
started using randomly generated velocities without any further

equilibration. Energy for Amber simulations with initial structures from
CHARMM simulations were minimized before starting the simulation
whenever required.

For CHARMM36 simulations, timestep of 2 fs was used, the tem-
perature was coupled using aNosé-Hoover thermostat49,50, the pressure was
set to 1 bar with isotropic Parrinello-Rahman barostat51, particle mesh
Ewald (PME)was used for electrostatic interactions at distances longer than
1.2 nm52,53, and Lennard-Jones interactions were cut off at 1.2 nm.

For simulations with Amber parameter, the timestep of 2 fs was used,
the temperature was coupled using v-rescale thermostat, the pressure was
set to 1 bar using isotropic Parrinello-Rahman barostat51, PME was used to
calculate electrostatic interactions at distances longer than 1.0 nm52,53, and
Lennard-Jones interactions were cut off at 1.0 nm.

Calculation of spin relaxation times from MD simulations and
interpretation of underlying timescales. To couple spin relaxation
times and molecular dynamics, we used Redfield equations54 which
connect T1, T2 and hetNOE spin relaxation times to the Fourier trans-
formation (Spectral density) of the second-order rotational correlation
functions of N-H, C-H or C-D bonds11,18. We calculated the rotational
correlation functions, C(t), for peptide backbone N-H bonds and C-H
bonds in SDS molecules using the equation implemented in the gromacs
package (gmx rotacf)55

CðtÞ ¼ 3
2
cos2θt0þt �

1
2

� �
t0
; ð1Þ

where θt0þt is the angle between bond vector at the times t and t0. To
calculate the spectral density, we fitted a sum of exponential functions with
the large number,N, of pre-fixed timescales, τi, to the correlation functions
from simulations using the Python scipy optimize.nnls solver:

CfitðtÞ ¼
XN
i¼1

αie
�t=τi : ð2Þ

For peptide N-H bonds,N = 100 and τi values were equidistantly spaced in
logarithmic scale between 1 ps and 100 ns. For SDS C-H bonds with a
substantial amount of dynamics below1 ps timescales,N=500 and τi values
were equidistantly spaced in logarithmic scale between 1 fs and 1 μs. As a
result, the fitting gives the weight, αi, for each timescale that represents the
relevance of the given timescale for the rotational relaxation of the bond.
Spectral density, J(ω), is then obtained from the analytical Fourier
transformation

JðωÞ ¼ 2
Z 1

0
CfitðtÞcosðωtÞdt ¼ 2

XN
i¼1

αi
τi

1þ ω2τ2i
ð3Þ

and substituted into Redfield equations11,54. The spin relaxation time cal-
culation is implemented in the python code available at https://github.com/
nencini/NMR_FF_tools/tree/master/relaxation_times.

Correlation functions up to lag times (t in Eq. (1)) of one-hundredth of
the total simulation length were used when analyzing the N-H peptide
bonds, which should provide good statisticswhen analyzing singlemolecule
simulations56. For C-H bonds in SDS molecules, averaging over a larger
number of molecules enables usage of lag times up to one-twentieth of the
total simulation length. Small but non-zero weights (below ~ 1% in all
systems except micelle simulations with Amber in gel-like phase with the
weights below ~ 10%) for the slowest possible timescale (100 ns for peptide
N-H bonds, 1 μs for SDS C-H bonds) were observed for some correlation
functions. These artificial timescales, arising from incomplete equilibration
of correlation functions toplateau to zero,werenot taken into account in the
analyses, although ignoring them did not have major effects on the spin
relaxation times.

To comprise dynamic landscapes of peptides and detergent molecules
in micelles, we describe the relevance of different timescales for rotational
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relaxation processes in different parts ofmolecules using theweights (αi) for
timescales (τi) resulting from the fit of Eq. (2) to the correlation functions
calculated from simulations using Eq. (1). A similar analysis in our previous
studies10,11 gave dominant weights for the timescales reconciling with the
overall rotation timescales for folded proteins, while most of the timescales
had zero weights. For disordered protein regions, we observed more dis-
persed timescales without any dominant motion10. These results indicate
that the approach candetect relevantdynamicprocesseswithout any further
assumptions. Here we interpret dynamic landscapes of peptides and
detergents in micelles using the weights of each timescale that result from
the fitting to correlation functions from simulations that give the best
agreement with experiments. To better emphasize the essential timescale
ranges, we merged weights of five consecutive timescales for the plots of
dynamic landscapes.

Analysis of other properties. Effective correlation times used to char-
acterize the average dynamical timescales of SDS molecules in micelles
were calculated as an integral over rotational correlation functions

τeff ¼
Z 1

0
CðtÞdt ≈

XN
i¼1

αiτi: ð4Þ

To analyze the orientation of two peptides in the same micelle with respect
to each other, we calculated the angle between the principal axes of the two
peptides using theMDAnalysis package57,58. Rotational dynamics predicted
byMD simulations were compared with the prediction for a spherical rigid
body in a water media from the Stokes-Einstein equation

Dr ¼
1

6πτ
¼ kBT

8πηr3
; ð5Þ

where kB is a Boltzmann constant, T is the temperature, η is the viscosity of
water, r is the radius, Dr is the rotational diffusion coefficient, and τ is the
timescale of the rotational dynamics of a rigid spherical object59. The radii of
micelles were approximated using the radius of gyration. Because not all
SDS molecules remain within a micelle throughout the simulation in some
systems, we first determined which molecules are part of the micelle in
simulations separately for each time step. This was done by selecting SDS
molecules with any atom closer to any peptide atom than a cut-off distance
of 1.4-1.8 nm. The cut-off distance was set system specifically to give the
most reasonable results as exemplified for eYqjD(TA) simulation with 50
SDSmolecules in SupplementaryFig. 7where cut-off value 1.8nmwasused.
The radii of gyrations were then calculated using these molecules together
with the peptide(s) first separately for each configuration and then averaged
over time. The number of SDS molecules in a micelle as a function of time
was also used to monitor the equilibration of simulations as exemplified in
Supplementary Fig. 7. The average numbers of SDS molecules within a
micelle in each simulation are reported in Supplementary Tables 1, 2. These
analyses were performed with Python scripts utilizing the MDAnalysis
package57,58.

Propensities of secondary structures in peptides were calculated using
DSSP plug-in in Gromacs55,60. The propensity of individual secondary
structural motives was averaged over the time of trajectories. The local
environment helicity propensity of a residue was correlated with the T1, T2
and hetNOE value of the residue for all peptides and simulations. Local
environment helicity is defined as an average over a given residue and its left
and right neighbour if these exist (the end residues have either only the left
neighbour or only the right neighbour). The correlation was characterized
by the Pearson correlation coefficient and the corresponding p-value using
the Pearson function from the Python scipy.stats package.

Data availability
Simulation data are available from references listed in Supplementary
Tables 1, 2, 3. Data for figures are available from https://doi.org/10.5281/
zenodo.10534985 and for correlation functions from https://doi.org/10.

5281/zenodo.8374967.All recordedNMRspectra are available fromhttps://
doi.org/10.5281/zenodo.10522640.

Code availability
Codes to calculate spin relaxation times and create figures are available from
https://doi.org/10.5281/zenodo.10534985.
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