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Molecular fragmentation as a crucial step in the
AI-based drug development pathway
Shao Jinsong1, Jia Qifeng1, Chen Xing1, Yajie Hao 1 & Li Wang 2✉

The AI-based small molecule drug discovery has become a significant trend at the inter-

section of computer science and life sciences. In the pursuit of novel compounds, fragment-

based drug discovery has emerged as a novel approach. The Generative Pre-trained Trans-

formers (GPT) model has showcased remarkable prowess across various domains, rooted in

its pre-training and representation learning of fundamental linguistic units. Analogous to

natural language, molecular encoding, as a form of chemical language, necessitates frag-

mentation aligned with specific chemical logic for accurate molecular encoding. This review

provides a comprehensive overview of the current state of the art in molecular fragmentation.

We systematically summarize the approaches and applications of various molecular frag-

mentation techniques, with special emphasis on the characteristics and scope of applicability

of each technique, and discuss their applications. We also provide an outlook on the current

development trends of molecular fragmentation techniques, including some potential

research directions and challenges.

Over the past fifty years, the application of AI in drug design has never ceased. Following
the successful prediction of approximately 200 million protein structures from over a
million species using the Artificial Intelligence (AI) prediction algorithm AlphaFold21,

as unveiled by DeepMind, the field of AI-driven small molecule drug discovery has become a
major trend at the crossroads of computer science and life sciences. However, the extent to which
this technology can bring about changes in drug development in the short term still depends on
the computer’s ability to understand and represent chemical space. A thorough and rational
fragmentation of compounds is a crucial step in the computer’s understanding of compounds.
By fragmenting compounds and identifying important correlations between substructures, a
solid foundation can be established for subsequent work.

In the pursuit of novel compounds, fragment-based drug discovery (FBDD) has emerged as a
new method, gaining increasing traction in the pharmaceutical industry. FBDD is employed to
reduce losses and provide leads for biological targets that are challenging for traditional drug
discovery. FBDD facilitates the optimization of low molecular weight ligands (~150 Da) into potent
molecules with drug-like properties. In contrast to high-throughput screening, fragment-based
methods require screening fewer compounds. Although initial potency hits may be lower, these
methods offer more efficient and productive optimization approaches, significantly expanding
chemical space. The rising Generative Pre-trained Transformers (GPT) models have demonstrated
robust application capabilities across various domains. GPT’s essence lies in the pre-training and
representation learning of linguistic units (characters or words), which relies on segmenting longer
sentences following linguistic logic. If compounds are perceived as a language, the concepts of
linguistic units like characters and words can be replaced with molecular fragments possessing
specific functionalities. In this context, molecular fragments serve as the linguistic units of com-
pounds. The inspiration for innovative drug discovery methods stems from rethinking the research
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paradigm of Quantitative Structure-Activity Relationship (QSAR),
which fundamentally explores the relationship between sub-
structures and activity. The problem of molecular substructure
delineation bears resemblance to the challenges of sentence frag-
mentation and translation in Natural Language Processing (NLP),
thus presenting opportunities for mutual insights. Large-scale
generative models hinge on precise representations of com-
pounds. In earlier studies employing Transformers for compound
representation, the fragmentation of drugs into fragments has
facilitated the convenient utilization of Transformer models to
extract semantic relationships between compound substructures,
significantly enhancing the model’s understanding of compounds2,3.
Hence, fragmentation becomes a necessary and efficient step toward
advancing AI-driven drug discovery.

As a fundamental strategy in medicinal chemistry and drug
discovery, fragmentation involves the systematic dissection of
complex molecules into smaller fragments. This approach offers
insights into the structural features and interactions critical for
molecular recognition and binding to biological targets. By
breaking down intricate compounds into simpler components,
researchers gain a deeper understanding of the underlying prin-
ciples governing ligand-receptor interactions. Fragmentation
techniques play a pivotal role in lead compound identification,
optimization, and the exploration of chemical space, ultimately
contributing to the development of novel therapeutic agents. In
this context, the study of fragmentation methodologies and their
applications continues to illuminate new avenues for efficient
drug design and development.

This review first summarizes 15 methods for molecular frag-
mentation. It introduces the logic of fragmentation from the
perspectives of fragmentation-based methods, sequence-based
methods, and structure-based methods, and also proposes
potential fragmentation methods. Secondly, it discusses the
applications of molecular fragmentation. Finally, it suggests a
strategy for selecting molecular fragments based on specific
application scenarios.

Significance of fragmentation. FBDD, as a fragment-based drug
discovery approach, has emerged as a potent tool in the pursuit of
novel pharmaceutical agents. It has evolved as a compelling
alternative to the traditional method of lead compound identifi-
cation through high-throughput screening (HTS). Distinguished
from HTS, FBDD demonstrates the capability to recognize even
smaller chemical components. Leveraging the concept of frag-
mentation, FBDD facilitates the acquisition of molecular frag-
ments, allowing them to interact with distinct segments of
biological target molecules. The extraction and analysis of
fragment-target interaction relationships stand as a pivotal focal
point within the realm of FBDD research.

Compared to HTS, FBDD offers several advantages. The
primary rationale behind fragment-based screening is that hits
identified through this approach can explore a broader chemical
space while screening a limited number of compounds. FBDD
provides a better opportunity for generating lead compounds
with standard drug-like properties. Moreover, due to the
complexity of interactions involving ligands and amino acid
residues in active sites, relying on the identification of compounds
perfectly matching the binding site of the intended target is not
viable. Conversely, molecular fragmentation is a simpler
approach, characterized by fewer inevitable interactions. As a
result, it enhances the probability of achieving targeted interac-
tions within the binding site.

The continued prominence of GPT has sparked extensive
discussions on how GPT influences drug development. Tradi-
tional NLP research primarily relied on expert-crafted grammar

and rules. However, in recent years, the advent of Transformers
and attention mechanisms (including multi-head attention) has
enabled models to grasp diverse relationships among tokens
within input sequences. This paradigm shift has profoundly
revolutionized the field of sequence data processing, constituting
a pivotal breakthrough in natural language text comprehension.

Chemical structures of molecules can be represented using
linear encodings akin to the representation of natural language
text. Similar to sentence segmentation in NLP, the delineation of
molecular fragments bears a resemblance to this concept. Such
words in a sentence can be harnessed for fragment-based drug
discovery (Fig. 1). In a broader chemical space, molecular
fragments composed of atoms and bonds can similarly construct
more precise representation scenarios. At the same time, it gives
more flexibility to the molecular representation process4–6.

However, the current challenge lies in determining how to
derive fragment divisions from a vast pool of molecules that not
only retains the integrity of chemical activity representation but
also avoids excessive expansion that might result in an unwieldy
and sparse fragment lexicon. Conventional approaches often rely
on fragment libraries7, which are maintained over extended
periods by numerous companies and pharmaceutical research
teams. However, their high fragment copyright costs, limited
fragment quantity, and uneven fragment distribution hinder their
scalability for broader applications in universal drug discovery
scenarios.

Due to the significant trend of AI molecular fragmentation and
the limitations posed by the current usage of fragment libraries,
employing large-scale nonexpertise-dependent fragmentation
methods has become a crucial aspect of subsequent research.
Thus, in this review, we comprehensively summarize the methods
of fragmentation based on expert-driven approaches in recent
years. Particularly, we expand on an array of non-expertise-
dependent methods built upon these foundational approaches.
Our review includes the elucidation and organization of
fragmentation principles and implementation techniques, along
with an extensive examination of issues stemming from method
derivation. Some intricate methods are explained using figures to
facilitate the reading and comprehension for beginners in the
following sections.

This review summarizes and compiles the currently employed
fragmentation methods. The executable and original code are
organized and made available on a Github page for sharing,
detailed at https://github.com/NTU-MedAI/MolFrag.

Method of fragmentation. Molecular fragmentation is the pro-
cess of dividing a large molecular compound into smaller mole-
cular fragments. These smaller fragments can consist of
individual functional groups or compound segments containing
specific structural features. Molecular fragmentation finds wide-
spread applications in fields such as computational chemistry,
drug design, and chemical informatics. This work focuses on the
systematic categorization and organization of methods related to
molecular fragmentation. The categorization encompasses var-
ious aspects, including the mode of molecular fragmentation,
whether specific structures (such as cyclic structures or double
bonds) are disrupted, the retention of fragmentation information,
and the incorporation of predetermined fragment libraries. These
properties have been summarized and organized, as depicted in
Table 1. As shown in Table 1, we list recommendations for the
application tasks of current common fragmentation methods for
reader evaluation.

Fragmentation based on existing fragment libraries. FBDD, based
on fragment principles, holds pivotal significance for both the
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industrial and academic sectors as a vital strategy in drug design.
Within the FBDD methodology, a selection of low molecular
weight polar fragments/compounds is screened against specific
targets. Common screening techniques involve biophysical
methods, encompassing X-ray crystallography, nuclear magnetic
resonance, differential scanning fluorimetry, isothermal titration
calorimetry, surface plasmon resonance, and others7. One key
factor in the success of FBDD is that the size of fragment-like
compounds is smaller than that of drug-like compounds.

The latest advancements in computational tools and methods
for fragment-based approaches have enhanced the identification
of promising fragment hits. Typically, this approach begins with
determining the structure of the target protein, followed by the

preparation, docking, and hit confirmation of a virtual fragment
library through molecular docking and molecular dynamics
simulations. With the advancement of current technology,
screening large libraries of fragments has become more feasible,
resulting in higher hit rates. These fragments can subsequently be
extended, merged, skipped, or linked to construct novel
molecules.

In traditional FBDD practices, a majority of researchers opt to
utilize existing fragment libraries for molecular fragmentation.
Fragmentation through libraries is a prevalent chemical compu-
tation approach commonly employed in computer-aided drug
design and molecular simulation research7. However, fragment-
based fragmentation is a heuristic method that might not

Fig. 1 Molecular fragmentation technologies benefit downstream tasks. Effective molecular fragmentation technology can pay more attention to the local
as well as global association and be more flexible in the application of downstream tasks, like the token extraction technology in NLP technology.

Table 1 Summary of Fragmentation Methods.

Methods No. Fragmentation
method name

Dimension Breaking of Cyclic
Structures

Retention of break
Bond Information

Inclusion of
Predefined Fragment
Libraries

Breaking
Double Bonds

Task**

1 FCS2 1D Yes No No Yes IP
2 Character Slicing

(CS)16
1D Yes No No Yes PP49

3 BPE17 1D Yes No No Yes IP
4 SPE18 1D No No No No MG
5 MMPs21 2D No Yes Yes No IP, MG
6 RECAP22 2D No No No Yes IP, MG
7 BRICS(BCS)22 2D Yes No /* Yes IP
8 eMolFrag23 2D No No No Yes IP
9 BPE_NLM32 1D Yes No No Yes IP
10 MacFrag26 2D Yes Yes Yes Yes /
11 FG splitting27 2D No No No Yes IP, PP
12 FASMIFRA29 1D No No No Yes MG
13 CReM30 2D Yes Yes Yes Yes MG
14 UNIFAC31 2D Yes Yes Yes Yes PP50

15 VOLT33 1D Yes No No Yes IP

*The “/” symbol represents that it was not reported in the original text.
** IP represent the interaction prediction task; MG represent the molecular generation task; PP represent the properties prediction task.
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encompass all potential molecular fragments. Nonetheless, it
often serves as a rapid screening or preprocessing technique. For
intricate molecules, a combination of alternative fragmentation
methods or manual intervention might be necessary to attain
more accurate outcomes. Fragmentation through conventional
chemical software packages like RDKit8 and Open Babel9 is
widely applied in computational chemistry research.

Presently, a plethora of fragment libraries offer diverse
fragment information. This work collates this information, as
detailed in Table 2. This approach involves fragmenting
molecules into segments containing specific substructures.
Currently, predefined substructures (e.g., rings, heterocycles,
and specific functional groups) can be defined and subsequently
matched within molecules to facilitate fragmentation.

Sequence-Based Fragmentation. Before SMILES was widely
popularized, there were many non-atomic ways to representation
molecules, such as Wiswesser Line Notation (WLN)10,11,
Hayward12 and Skolnik Notation13. These methods use tokens
that represent functional groups, such as carboxyls or phenyls, as
well as ring systems. SYBYL Line Notation (SLN)14 allows for
macro atoms which specify multiple atoms in a substructure. The
Hierarchical Editing Language for Macromolecules (HELM)15

represents complex biomolecules by declaring monomers and
then connecting them in a polymer line notation.

Hakime et al. introduced the Character Slicing (CS) method in
their work on DeepDTA16. The fragmentation products in CS do
not correspond to traditional fragments. This approach employs
the smallest constituent letters as minimal tokens, and during
molecular representation, it directly employs fully connected
layers to extract features from each token.

Rico Sennrich utilized the Byte-Pair Encoding (BPE)17

algorithm for molecular segmentation17. This method treats the
compound SMILES as a sentence, determining the size of
subwords. It then statistically counts the occurrence frequency

of each consecutive byte pair and stores it as a codefile.
Subsequently, words are split into character sequences, and the
most frequently occurring byte pairs are merged based on the
codefile. By iteratively merging, the subword vocabulary size
reaches the set value, thereby completing the segmentation.

Frequent Consecutive Sub-sequence (FCS)2 shares a similar
logic with BPE17, with the distinction that the Moltrans research
team applied pre-fragmentation on a designated large dataset and
then integrated it into the fragmentation of molecular
substructures.

Sequential Piecewise Encoding (SPE) is a data-driven tokeniza-
tion algorithm proposed by Xinhao Li et al. 18 SPE first learns
vocabulary from extensive chemical datasets (e.g., ChEMBL19)
regarding high-frequency SMILES substrings. Then, based on the
acquired vocabulary, it tokenizes SMILES for practical training of
deep learning models. In the process of molecular representation,
the typical approach involves information extraction and
correlation based on the atom level. However, SPE enhances
widely used atom-level encodings by appending human-readable
and chemically interpretable SMILES substrings as encodings for
SMILES pairs (Fig. 2).

Structure-based fragmentation. Structure-based fragmentation is a
method used in drug design and compound analysis, which
involves breaking down compounds into molecular fragments to
identify and optimize key features of drug molecules. Scaffold
refers to the abstract representation of the core structure in a
compound, possessing both invariance and variability. The
methods for scaffold generation aim to identify and extract the
shared core structures within a collection of compounds, facil-
itating improved analysis of structure-activity relationships and
drug design. This means that Structure-Based Fragmentation can
utilize the concept of Scaffold to identify and extract shared core
structures in a collection of compounds, thereby playing a crucial
role in drug design and structure-activity relationship analysis. In
earlier work, Bemis and Murcko attempted to extract frameworks
from molecules by analyzing the two-dimensional molecular
structures, atom types, hybridization, and bond orders. This
represented early work in structure-based fragmentation based on
the efforts of researchers on scaffold, computational chemistry
has accelerated, and we have found more structure-based frag-
mentation methods in recent work, which are derivatives of work
on scaffold20.

Matched Molecular Pairs (MMPs) is a fragmentation algorithm
introduced by Hussain et al. to simulate fragment linking
scenarios21. Initially, the MMPs algorithm dissects each molecule
using a dual cleavage approach, wherein non-functional groups
and non-ring single bonds within each compound are
doubly cleaved. This transformation converts the compound into
a four-part structure: “fragment 1, linker, fragment 2, molecule”

Table 2 Molecular fragment libraries.

Name Link Number of fragments

Life Chemicals General and Natural Product-Like https://lifechemicals.com/screening-libraries/fragment-libraries 61,600
Aurora fine chemicals https://aurorafinechemicals.com/targeted-library.html 8794
Otava general and natural product-like https://otavachemicals.com/products/fragment-libraries 13,685
Enamine natural product-like https://enamine.net/compound-libraries/fragment-libraries 220,000
Schrodinger Glide https://www.schrodinger.com/products/glide /
ACB Blocks https://www.adbblocks.com 1280
ChemDiv https://www.chemdiv.com 4283
IOTA https://www.iotapharma.com 1500
TimTec https://www.timtec.net 3200
Bioblocks https://www.bioblocks.com /
ZINC https://zinc15.docking.org/ 1,611,889

Fig. 2 Fragmentation Logic of the SPE Method18. Compared to the atom-
level tokenization model, SPE tokenizes SMILES for practical training of
deep learning models based on the acquired vocabulary learned from
extensive chemical datasets.

REVIEW ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-024-01109-2

4 COMMUNICATIONS CHEMISTRY |            (2024) 7:20 | https://doi.org/10.1038/s42004-024-01109-2 | www.nature.com/commschem

https://lifechemicals.com/screening-libraries/fragment-libraries
https://aurorafinechemicals.com/targeted-library.html
https://otavachemicals.com/products/fragment-libraries
https://enamine.net/compound-libraries/fragment-libraries
https://www.schrodinger.com/products/glide
https://www.adbblocks.com
https://www.chemdiv.com
https://www.iotapharma.com
https://www.timtec.net
https://www.bioblocks.com
https://zinc15.docking.org/
www.nature.com/commschem


corresponding to two terminal fragments, a linker, and the
original compound. All possible fragment molecule quadruples
(FMQs) are enumerated. Subsequently, the FMQs undergo
further screening based on the “rules of three” criterion, meaning
that if any terminal fragment of an FMQ violates the “rules of
three” criteria, the FMQ is discarded. The requirement for linker
fragments is essentially to connect two proximate fragments using
a linker that is as simple as possible. The remaining FMQs are
subjected to additional filtration based on a Linker (Shortest
Linker Bond Distance less than 15) and Synthetic Accessibility
score (SAscore) using a filter. This ensures that terminal
fragments possess reasonable synthetic feasibility (SAscore less
than 5) and that the linker’s SAscore is lower than the sum of the
fragments. This safeguards against the generation of highly
complex linkers in the first generation.

The Retrosynthetic Combinatorial Analysis Procedure
(RECAP) method, introduced by Jörg Degen et al., is the first
approach within its category to apply 11 distinct rules for
fragmenting active molecules to acquire active building blocks22.
Certain common chemical reactions result in the formation of
specific bonds, and it is these bonds that are cleaved. The
presence of these 11 predefined bonds ensures that the resulting
fragments are suitable for combinatorial chemistry. In this
context, the concept of a fragment space is introduced. Unlike
fragment libraries, such a space is not solely composed of a set of
fragments but also a set of rules that dictate how fragments are
reassembled by fusing their respective chemical motifs. A notable
characteristic of this method is its capability to preserve the ring
structure of compounds.

Jörg Degen et al. simultaneously propose that compiling a
corresponding fragment space by specifying a set of complemen-
tary rules for reassembly via respective chemical motifs is an
effective way to partition compound fragments. Based on such
rules, they develop a novel fragment-splitting approach called the
breaking of retrosynthetically interesting chemical substructures
(BRICS), which features 16 cleavage rules. This method disrupts
retro synthetically relevant chemical bonds within molecules to
obtain various fragment information, corresponding to 16
distinct chemical rings22 (Fig. 3). The approach extensively

considers the chemical environment of each cleavage bond and its
surrounding substructures.

Tairan Liu et al. proposed a compound fragmentation method
named eMolFrag in their research work, where the functionality
is primarily achieved by dividing molecules into two types of
fragments: bricks and linkers, both of which belong to building
blocks23. The eMolFrag approach divides molecules into
fragment sets through two steps: (i) In eMolFrag, a set of
molecules is initially decomposed using the BRICS algorithm
implemented in RDKit. The molecules are broken down into
fragments based on 16 chemical environments defined by the
BRICS model, resulting in larger portions referred to as bricks.
Brick fragments are molecular structures with at least four non-
hydrogen atoms. Subsequently, bricks are removed from the
molecules, and the remaining fragments are classified as linkers.
Broken bonds are replaced by dummy atoms, which serve as
placeholders for the atoms removed from specific bonds.
Comprehensive information, including the types of atoms
involved in the broken bonds, is stored on each brick to provide
empirical connectivity patterns. Linkers possess distinct auxiliary
connection information, indicating the maximum number of
bonds annotated only at different positions on these fragments.
(ii) Redundancy is eliminated to minimize the size of both bricks
and linkers. If two fragments satisfy the condition of a Tanimoto
coefficient (TC)24 of 1.0, determined through the topological
constraints maximum common substructure calculation of the
kcombu program25, the two fragments are considered equivalent
and merged into the same fragment class.

Yanyan Diao et al. introduce MacFrag in 2023, defines
systematic ring-breaking rules and extends the BRICS method,
thereby increasing the likelihood of obtaining novel molecular
fragments26. The first step of MacFrag is to recognize all cleavage
bonds and cut he molecule into the smallest building blocks.
Then, atomic environments were defined using SMARTS strings,
which were subsequently combined into bonds to be cleaved. A
user-definable parameter maxSR is settled to determine whether
the ring structure will remain intact by comparing the parameter
and the ring structure containing the number of atoms. A very
large value of maxSR means that the cyclic bonds will not be split,

Fig. 3 Fragment prototypes of the BRICS Method22. BRICS disrupts retro synthetically relevant chemical bonds within molecules to obtain various
fragment information, corresponding to 16 distinct chemical rings.
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which is the same as the original BRICS version. The generated
molecular fragments may encompass varying numbers of
minimal building blocks, covering a broader fragment space to
cater to diverse requirements in drug design tasks. The molecule
is transformed into a graph with minimal building blocks as
nodes, and an efficient induced subgraph enumeration algorithm
called Simple is introduced, the fragments were extracted after
removing extra atoms and bonds. The output fragments will be
labeled with dummy symbols to specify the position of breaking
bonds, and redundant fragments of the same molecule will be
filtered. Figure 4 presents the complete MacFrag fragmentation
process, which involves breaking chemical bonds, constructing
undirected graph fragments, enumerating subgraphs, and ulti-
mately extracting fragments.

To transform molecules into Functional Group(FG) graphs of
a large dataset, Zewei Jiden et al. devised an algorithm for the
automatic extraction of FGs from atom-level graphs, termed FG
splitting in their work ReLMole27. This method defines three
types of substructures as building blocks for constructing FG-level
graphs. Rings: For every ring structure within a molecule, it is
designated as an FG. If two ring-form FGs share more than two
atoms, implying the presence of bridge bonds between them, they
are merged into a new FG. Non-ring FGs: In the non-ring
portions of a molecule, functional atoms are first marked,
encompassing heteroatoms, carbons in non-aromatic double or
triple bonds, and aliphatic carbons bonded to two or more
oxygen, nitrogen, or sulfur atoms. Subsequently, connected

marked atoms and their adjacent carbons (i.e., those connected
to unmarked carbons) are merged into FGs. Carbon-Carbon
Single Bonds: Each Carbon-Carbon single bond not belonging to
the previous two FG categories is also defined as an FG to achieve
a complete partition on the atom-level graph. Based on the given
definitions, a comprehensive list of substructures covering all
compounds in the database can be generated, ensuring a unique
and explicit partition. Since molecular graphs are partitioned into
FGs, each FG is regarded as a node in the FG-level graph. If two
FGs share any atoms, indicating adjacency in the atom-level
graph, an edge is added to depict their connection (Fig. 5).

Xianbin Ye et al. proposed an alternative method known as
Tree Decomposition28. When provided with a two-dimensional
molecular graph G, the approach initiates by identifying all its
simple cycles, with the graph’s edges not belonging to any cycles.
If two simple cycles share two or more overlapping atoms, they
are merged together as they form a distinctive structure known as
bridged compounds. Each of these cycles or edges is treated as a
cluster. Subsequently, a cluster graph is constructed by adding
edges between all intersecting clusters. Finally, one of its spanning
trees is selected as the connection tree for G. Due to cycle
merging, any two clusters in the connection tree share at most
two common atoms.

Francois Berenger and Koji Tsuda proposed another fragmen-
tation logic based on molecular structures in FASMIFRA29.
FASMIFRA performs molecular fragmentation by identifying
bonds between heavy atoms which not in rings that can be

Fig. 4 Fragmentation process of the Macfrag Method23. MacFrag fragmentation process involves breaking chemical bonds (recognize all cleavage bonds
and cut he molecule), constructing undirected graph fragments (transform molecule into a graph with minimal building blocks as nodes), enumerating
subgraphs (introduce a induced subgraph enumeration algorithm), and ultimately extracting fragments.

Fig. 5 Strategies of ReLMole extracts FGs method. To transform molecules into Functional Group(FG) graphs of a large dataset, ReLMole is devised for
the automatic extraction of FGs from atom-level graphs by defining three types of substructures (Rings, Non-cyclic parts and Carbon-carbon single bonds).
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cleaved. Meanwhile the bond must not be connected to a stereo
center nor involved in cis-trans isomerism. The bonds that meet
the above requirements will be randomly selected for cleavage.
Excitingly, the authors propose a numerical calculation for how
many fragments a molecule should be properly cleaved.

CReM is a structure-based generation method proposed by
Pavel Polishchuk30. This method generates new molecular
scaffold by mutating, growing and linking molecular fragments.
They generate a database of interchangeable fragments in the
following two steps: (i) structures of known compounds are
exhaustively fragmented by cutting up to 4 non-cyclic single
bonds between two heavy atoms using RDKit implementation of
the matched molecular pairs algorithm. Hydrogens are cut
separately. (ii) a context of a given radius is determined for
attachment points of each fragment and encoded in a SMILES
string.

Simon Muller developed a molecular fragmentation algorithm
to deal with some challenges in automatic fragmentation, such as
non-unique group assignment, incomplete group assignment and
the composition of the fragmentation scheme31. To overcome the
challenges, three features were implemented in his work: (i)
Heuristic group prioritization. The patterns of the fragmentation
scheme are sorted based on a set of heuristically determined
descriptors. These descriptors can be, for example, the number of
atoms describing the pattern, the number of bonds avail- able or
the number of double bonds. (ii) Parent–child group prioritiza-
tion. The complete fragmentation scheme is analyzed to find
patterns that are contained within others. E.g. CH2 is contained
in CONHCH2. Whenever searching for a specific pattern, if the
group has such a parent pattern, the parent pattern is searched
first. After that, the child pat- tern is searched. (iii) Adjacent
group search. To avoid incomplete group assignments, whenever
a part of the structure is already fragmented, the subsequent
matches have to be adjacent to the groups already found.

Potential fragmentation methods. At present, most of the frag-
mentation methods are based on the improvement or combina-
tion of the existing methods. These methods share the same
advantages as well as the same disadvantages. Cross-domain
segmentation (e.g., NLP) may be an important potential way to
solve the problem for many possible use cases. We list a few
possible fragmentation methods, some of which have been vali-
dated in molecular fragmentation work but have not been
published.

The BPE_NLM method is an extension of the BPE_NLM
model proposed by Rafael-Michael Karampatsis et al., applied in
the field of molecular fragmentation32. The approach of the
BPE_NLM model utilizes BPE-selected subword units to predict
tokens. This method introduces a caching mechanism to leverage
source code locality while also adapting dynamically to new
projects, such as molecular fragmentation tasks.

Vocabulary Learning via Optimal Transpot(VOLT) interprets
molecular fragments as an exploration of tokenization, aiming to
represent the optimal transport problem by finding an optimal
token dictionary of appropriate size33. VOLT ranks all candidate
tokens based on the pre-generated token frequencies. For
simplicity, VOLT often adopts tokens generated by BPE (e.g.,
BPE-100k) as candidates. All tokens with probabilities are
employed for initialization in the optimal transport algorithm,
and at each time step, the vocabulary with the highest entropy can
be obtained according to the transport matrix. Additionally,
tokens with token frequencies less than 0.001 in the distributed
character are removed. By exhaustively considering all time steps,
a vocabulary satisfying the specified exponential search space is
selected as the final vocabulary. The merged tokens in the
vocabulary will combine two consecutive tokens into one token

until no more tokens can be merged. Tokens outside the
vocabulary are split into smaller tokens.

Applications of fragmentation techniques. Building a high-
quality library of molecular fragments is crucial for the successful
fragment-based drug discovery. In the process of drug develop-
ment, traditional computer-aided drug design methods often
involve directly obtaining complete information about drug
molecules for computer representation. Through the encoding
and training process of input data, a relatively reliable functional
application model can be obtained34–39. FBDD, namely
Fragment-Based Drug Discovery, is a drug discovery method that
differs from traditional high-throughput screening methods. Here
are some advantages of the FBDD method:

(i) High Sensitivity4: FBDD is more sensitive, capable of
detecting small and stable molecular fragments that may be
overlooked by other methods. This increases the opportu-
nity to discover new drug-candidate compounds.

(ii) Smaller Compound Libraries40: Compared to traditional
large compound libraries, FBDD typically uses smaller
fragment libraries. This reduces the number of compounds
to be tested, improving efficiency.

(iii) High-Quality Starting Points41: FBDD often utilizes small
molecular fragments that are chemically simple and easy to
synthesize. Such fragments are more easily optimized into
drug molecules with high affinity and selectivity.

(iv) Increased Drug Efficiency42,43: Since FBDD focuses on
small and stable molecular fragments, it is easier to
optimize them, enhancing the efficiency and pharmacoki-
netic properties of drugs.

(v) Better Understanding of Binding Sites44: FBDD typically
employs methods such as X-ray crystallography to elucidate
the binding mode between proteins and molecular
fragments, providing more detailed structural information.
This aids in a better understanding of the interaction
between drugs and targets.

(vi) Reduced Compound Consumables and Costs44: Due to the
use of smaller compound fragments, the cost of synthesis
and testing is relatively lower, contributing to the overall
reduction in the cost of the drug discovery process.

(vii) Increased Diversity of Drug Compounds45: FBDD often
identifies diverse molecular fragments, thereby increasing
the diversity of the final drug molecules. This is beneficial
for overcoming drug resistance and enhancing efficacy.

In summary, the advantages of the FBDD method lie in its
higher sensitivity and efficiency, allowing the discovery of small
molecular fragments that may be overlooked by other screening
methods, thereby providing more possibilities for drug discovery.
However, how to choose the appropriate molecular fragmentation
method to fully demonstrate the advantages of FBDD in practical
application scenarios is still one of the main problems that
perplexes researchers. It should be noted that in this review, we
have included two molecular segmentation methods that are not
currently actually reported. These two approaches are NLP-based
text segmentation methods applied to 1D molecular representa-
tion encoding (e.g., SMILES and SELFIES). These methods had
some good results in the field of NLP32,33, at the same time,
through the test at hand in the interaction prediction task also has
good performance.

Selection of molecular fragment. When the purpose of mole-
cular fragmentation is to facilitate molecular representation, the
selection of fragments after splitting becomes particularly crucial.
The screening of the fragment library generated through
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fragmentation is a vital step to obtain high-quality fragments.
While this selection may lead to the loss of some information, the
chosen molecular fragments can efficiently capture the inherent
chemical properties within the molecule.

In the context of FBDD, compounds are screened, typically
with fewer heavy atoms compared to conventional high-
throughput screening sets. Hit identification methods must adapt
to the smaller fragment size, necessitating sensitive biophysical
techniques or higher concentrations for biochemical assays46.
Theoretically, a carefully curated fragment library can cover a
much larger proportion of chemical space than a carefully curated
HTS library, providing researchers with increased confidence
when constructing molecules from the fragment library47.

One of the earliest methods to describe fragment chemical
properties is the “rule of three” proposed several years ago48.
Other useful attributes can be utilized for fragment library
screening, including quantitative evaluations of fragment purity,
properties, stability, and solubility. More specific analysis criteria,
such as fragment aggregation propensity and protein binding
affinity, can also contribute to the selection process. Ultimately,
the careful selection of fragments ensures that the chosen
components effectively represent the chemical characteristics of
the original molecules, enhancing the success of subsequent drug
discovery processes and computational analyses.

When constructing a filtered molecular fragment library, the
first consideration is the number of compounds to include in the
fragmentation library; this is to some extent driven by the
detection techniques used for fragment screening. High-
throughput techniques, such as High Concentration Screening
(HCS), often utilize biochemical assays and are generally less
sensitive compared to low-throughput biophysical techniques.
Generally, less sensitive techniques require more efficient
fragments, which might be more complex compound fragments,
implying the need for a larger fragment library.

Simultaneously, as ligand complexity increases, the probability
of any fragment being hit decreases exponentially. A more
common scenario is that fragment libraries are screened using
sensitive biophysical techniques, where the fragment library
usually needs to comprise several thousand compounds with
molecular weights between 140 and 230 Da. Therefore, it is
necessary to ensure that the library:

(i) Sampling relevant chemical space by incorporating key
pharmacophores that drive fragment binding.

(ii) Incorporating an appropriate distribution and balance of
fragments with adequate complexity and different shapes
(refer to the section on 3d metrics). Overly complex
fragments can reduce the hit rate as functionalities may
interfere with binding; due to the entropy cost of
constraints, a higher hit rate flexibility leads to lower
intermolecular pharmacophore affinity.

(iii) Encompassing diversity of comprehensive accessible growth
vectors to enable efficient optimization of fragment hits into
lead compounds. Avoiding clusters associated with known
and high-reactive, solution-aggregating, or persistently
false-positive data47.

Small fragments often generate hits with low affinity and
specificity, but these fragments can extract features that are
involved in interactions with proteins. Low specificity has two
consequences: first, fragments might bind to a variety of proteins;
second, fragments could bind to a single protein in multiple ways.
In the first sense, low specificity can enhance the hit rate in
fragment screening, as specificity can be introduced later in
fragment optimization. The ability of fragments to bind to
proteins in multiple ways might hinder optimization strategies
that assume consistent binding poses for establishing structure-

activity relationships. However, fragments with multiple binding
modes can still be valuable for druggability studies. They can be
integrated into a comprehensive program to experimentally and
computationally probe proteins with very small compounds, such
as water and organic solvents, which bind to proteins containing
a small number of non-hydrogen atoms and form clusters
consistent with known inhibitor positions. Furthermore, the
extension and relative positions of these clusters carry important
information about the druggability of the protein.

Outlook
In the future work, some new directions or outstanding problems
are listed here. The first direction is expanding molecular frag-
mentation methods. Methods based on energy-based fragmen-
tation can avoid cutting high-energy chemical bonds that are not
easily broken, thereby preserving functional group fragments in
chemical reactions. The second direction is preserving fragmen-
tation information. After molecular fragmentation, in addition to
retaining the structural information, it should also include
information such as the position, energy, and the correlation of
the fragments in the original molecule. The final direction is
evaluating the quality of molecular fragmentation. In addition to
relying on downstream task performance evaluations, it is
necessary to establish a system for assessing the quality of
molecular fragmentation directly from the fragment self. This
ensures fairness in the evaluation of molecular fragmentation
quality.
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