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Automatic feature engineering for catalyst design
using small data without prior knowledge
of target catalysis
Toshiaki Taniike 1✉, Aya Fujiwara1, Sunao Nakanowatari1, Fernando García-Escobar2 & Keisuke Takahashi 2

The empirical aspect of descriptor design in catalyst informatics, particularly when con-

fronted with limited data, necessitates adequate prior knowledge for delving into unknown

territories, thus presenting a logical contradiction. This study introduces a technique for

automatic feature engineering (AFE) that works on small catalyst datasets, without reliance

on specific assumptions or pre-existing knowledge about the target catalysis when designing

descriptors and building machine-learning models. This technique generates numerous fea-

tures through mathematical operations on general physicochemical features of catalytic

components and extracts relevant features for the desired catalysis, essentially screening

numerous hypotheses on a machine. AFE yields reasonable regression results for three types

of heterogeneous catalysis: oxidative coupling of methane (OCM), conversion of ethanol to

butadiene, and three-way catalysis, where only the training set is swapped. Moreover,

through the application of active learning that combines AFE and high-throughput experi-

mentation for OCM, we successfully visualize the machine’s process of acquiring precise

recognition of the catalyst design. Thus, AFE is a versatile technique for data-driven catalysis

research and a key step towards fully automated catalyst discoveries.
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Over the years, the trajectory of natural science has been
conventionally steered by the intuition of individual
researchers, guiding the formulation of hypotheses and

their subsequent validation through experimentation. However,
with the advent of a data-driven approach, this paradigm is now
shifting, challenging established norms and registering significant
success across diverse fields, including catalysis1–4. Within the
realm of data-driven catalysis research, particularly in the context
of experimental catalyst discoveries, the limited availability of
data characterized by both sufficient quantity and quality for
effective machine learning (ML) presents a major hurdle5–8. In
this context, data typically assume the form of tabular datasets
comprising observations (e.g., catalyst samples) and parameters
describing these observations (properties of catalysts), commonly
referred to as features or descriptors when employed to predict a
specific target variable (performance of catalysts) within the fra-
mework of supervised ML. In the field of catalysis, data are
predominantly categorized into small data, seldom surpassing a
thousand observations. This characteristic renders the data
unsuitable for the deployment of elaborate ML models with a
multitude of adjustable parameters necessary to capture intricate
trends. Thus, the design of descriptors that encapsulate the
essence of catalysis is imperative for the efficient and accurate
capturing of data trends using simple ML models. However,
except in limited cases of crystal structures9 and organic
reactions10, the data limitation has rendered the application of
deep learning impractical, prompting researchers to address the
fundamental issue of descriptor design in ML1,11. Indeed,
descriptor design based on individual researchers’ insights into
structure–activity relationships, such as the d-band center in
metal nanoalloys12 and the buried volume in organometallic
asymmetric catalysis13, constitutes a key aspect of the progress in
catalyst informatics6,14–16. However, such descriptor design is
generally challenging and performed ad hoc, as it requires pro-
found domain knowledge to identify all pertinent factors for the
target catalysis1,16,17. In particular, practical solid catalysts con-
stitute multiple components that are structured in an ill-defined
manner, and the complex interplay of these components over
multiple spatiotemporal scales results in the overall catalytic
performance18,19. This intricacy, coupled with data scarcity, ele-
vates the difficulty of crafting descriptors in catalysis, when
compared to other fields.

To surmount these challenges, in this study, we developed an
automatic feature engineering (AFE) technique that works on
small data for complex materials, such as solid catalysts, without
requiring any prior knowledge of the target system. The AFE is a
structured pipeline of (i) assigning a series of features to materials
of arbitrary compositions, (ii) synthesizing numerous higher-
order features considering nonlinear and combinatorial effects,
and (iii) selecting a feature subset in the context of supervised
ML. This study explores the applicability of AFE across various
heterogeneous catalysis scenarios, each characterized by distinct
catalyst designs. Furthermore, an extension of AFE to active
learning, coupled with high-throughput experimentation (HTE),
is implemented to comprehend catalyst design rules and
streamline catalyst discoveries.

Results and discussion
Automatic feature engineering. Figure 1a illustrates the work-
flow of AFE. Here, we consider supported multi-element catalysts
as typical examples, wherein the dataset comprises elemental
composition and performance data for individual catalysts. While
the straightforward and commonly employed approach involves
directly using elemental compositions as descriptors in con-
structing an ML model, this neglects the physical properties of

elements, leading to drawbacks such as insufficient prediction
accuracy and an inability to handle elements absent in the
training data. However, crafting physically meaningful features of
catalysts remains challenging, as proposing these features is
equivalent to hypothesizing their relevance in the target catalysis.
The proposed AFE technique is based on the premise of our
scarce knowledge of a system, a common characteristic in today’s
research and development landscape with continually emerging
demands over a short period. The first step in AFE involves
assigning primary features to catalysts by computing commu-
tative operations of a feature library, such as a maximum and
weighted average. This accounts for notational order invariance
(e.g., features of Li‒W must be equal to those of W‒Li) and the
elemental compositions of catalysts (e.g., the features of Li‒Li‒W
must be differentiated from those of Li‒W‒W)20. The feature
library collects all possible features of the catalyst constituents
(such as the properties of elements and molecules) from all
available sources, assuming that all features are equally probable.
In the next step, higher-order features, also called compound
features21–23, are synthesized. These features are arbitrary func-
tions of primary features (first order) and products of two or
more of these functions (second or higher order), addressing the
nonlinear and combinatorial aspects of the problem. This com-
pensates for the limited expressive power of simple ML models
suitable for small data. A detailed classification of different feature
types is presented in Table S1. In the final step, the optimum
feature combination that maximizes the performance of super-
vised ML is selected from a large pool of features (typically 103‒
106). Hence, AFE generates a vast number of features (hypoth-
eses) and recommends the most plausible combination within the
context of supervised ML. While previous studies have employed
preselected physical properties of elements to describe multi-
element catalysts24–26, these properties have been hardly utilized
to systematize feature engineering through the synthesis and
screening of a large number of features. Herein, AFE was
demonstrated using three HTE datasets of supported multi-
element catalysts for different catalysis27–32 (Fig. 1b‒d; the data-
sets are given in Tables S2‒4). In particular, 5568 first-order
features were constructed by applying eight types of commutative
operations and 12 types of functions to 58 features of elements
stored in XenonPy33. Then, eight features were selected to
minimize the mean absolute error (MAE) in leave-one-out cross-
validation (LOOCV) using Huber regression. Note that Huber
regression is a linear regression method that employs the Huber
loss instead of ordinary least squares to enhance robustness
against outliers34. This approach not only mitigates the risk of
overfitting on small data owing to its simplicity but also provides
resilience against experimental errors and singular catalysts. Note
that many of the generated features are inherently ineffective in
describing the desired catalysis. However, given the limited
knowledge and the fact that algorithm-based filtrations necessa-
rily deteriorate the regression scores, filtering these features prior
to feature selection is discouraged. Further details on this aspect
are presented in the Methods section. In all cases, reasonable
regression results evidenced the versatility of the method in tai-
loring the features for individual catalysis without prior knowl-
edge (Fig. 1b‒d). The MAE values of the obtained models during
training and CV were 1.69% and 1.73% in C2 yields, 3.77% and
3.93% in butadiene yields, and 11.2 °C and 11.9 °C in T50 of NO
conversion, respectively. Notably, these MAE values are sig-
nificantly smaller than the span of each target variable and
comparable to the respective experimental errors. The remarkable
accuracy of the AFE-generated models in CV was unattainable
when using catalyst elemental compositions as descriptors,
regardless of the ML methods and hyperparameter sets (Fig. S1).
In particular, relatively complex methods such as support vector
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regression and random forest regression exhibited a tendency of
overfitting with MAE in training significantly lower than that in
CV. By contrast, AFE led to consistently low MAE values in both
training and CV, offering a minimal set of engineered features
suitable for capturing complex trends with limited data.

Integration with active learning. In scenarios where the available
data are limited, researchers cannot disregard alternative
hypotheses. Similarly, when the training data are either limited in
size or constrained in the diversity of elemental compositions in
catalysts, AFE proposes multiple models exhibiting similar scores,
even though different feature sets are selected. Although these
models demonstrate similar performance in explaining the
training data, their predictive behaviors for unknown catalysts
can vary significantly. In other words, many of these models are
only locally fit, lacking the global characteristics necessary to
explain the entire composition. An active learning strategy
enables AFE to exclude locally fit models and identify a globally
fit model, i.e., the true hypothesis set. Here, this was practised
using the oxidative coupling of methane (OCM) dataset
(Table S2). The dataset includes the C2 yield of catalysts with up
to three elements selected from an element library and supported
on BaO, each at a fixed amount27. Initially, eight first-order
features were selected based on LOOCV-MAE in Huber regres-
sion on a given training dataset. Subsequently, 20 catalysts were
prepared and evaluated through HTE, among which 18 catalysts
were selected via farthest point sampling (FPS) in the selected
feature space, and two were chosen based on their highest
absolute errors in the regression. Note that FPS adds catalysts that
are least similar to those in the training data within the selected
feature space, which aids in efficiently excluding models lacking
global characteristics. The obtained data were fed back to AFE to
update the feature space (Fig. 2a). This process was repeated over
four iterations, resulting in the addition of 80 new catalysts
(Table S5). A more detailed procedure is presented in Figure S2.

Figure 2b, c provides a summary of the relevant scores and
individual test results, respectively. In the first cycle, the largest
diversification of catalyst composition driven by FPS moderately
increased the MAEtrain,CV values, but subsequent cycles did not
largely change these values. The final MAEtrainv,CV values (2.2‒
2.3%) were higher than the typical experimental error (1.0‒2.0%),
partly because the linear model failed to capture various 0% C2

yield data (any observed inactivity may be attributed to several
reasons). Excluding these data points reduced the MAECV to
~1.9%. The changes in the test score were larger than those in the
training and CV scores. Several extrapolations occurred during
the first cycle, where the predicted yield was >30% or <0%,
resulting in an extremely large MAEtest. These extrapolations
correspond to the model attempting to explain catalysts entirely
beyond its original consideration. As the cycle progressed and the
catalysts in the training dataset diversified sufficiently, these
extrapolations disappeared, and the difference between the
observations and predictions decreased monotonically. Pearson’s
correlation coefficient between the regression models increased
from 0.6 in Cycles 0 and 1 to 0.9 in Cycles 3 and 4, indicating the
convergence of feature engineering toward a global model.

Decoding machine’s perception. Figure 2d visualizes the pro-
gress of feature engineering using t-distributed stochastic neigh-
bor embedding (t-SNE)35, where the eight features selected
during each active learning cycle were reduced in two dimen-
sions, maintaining the pairwise similarities of the catalysts. This
approach allowed us to monitor the evolution of the machine’s
ability to perceive individual catalysts. The plot shows all 4060
catalysts in the library (including both tested and untested ones),
with the color indicating the predicted C2 yield and circled data
points representing the test results. Leveraging the advancements
in active learning, the data were divided into a larger number of
clusters, representing the machine’s process of refining a feature
space to distinguish the catalysts better through distinct

Fig. 1 Automatic feature engineering (AFE) and its demonstration. a Schematic of the AFE pipeline. Prediction of (b) C2 yields in the oxidative coupling of
methane (OCM), (c) butadiene yields in ethanol conversion, and (d) light-off temperatures for NO conversion in three-way catalysis. Eight features that
minimized the mean absolute error (MAE) in leave-one-out cross-validation (LOOCV) with Huber regression were selected from 5568 first-order features.
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composition–performance relationships. Then, the question is
how does the machine perceive the composition-performance
relationships? This was addressed in two steps. First, the dataset
was subjected to manual statistical analysis, as shown in Fig. S3.
Early transition metals such as Mo and Zr and heavy alkali metals
such as K and Cs are attributed high performance (Fig. S3a, b).
This is because early transition metals can form oxometalate

anions active for OCM when they are combined with Ba in the
support or other supported elements with low electron
affinity28,36,37. Alkali metals can enhance the C2 selectivity by
strengthening the basicity of alkali earth metal oxides38–40. By
contrast, late transition metals (excluding Zn with completely
filled 3d orbitals) tend to decrease the C2 yield with increasing
group number (Fig. S3a, c), as they act as combustion catalysts41.
Next, keeping the abovementioned researcher’s observations in
mind, the machine’s perception was interpreted by analyzing the
distribution of individual elements in the feature space (Fig. S4).
Figure 3 summarizes the regions where individual elements are
concentrated after active learning, which decodes the machine
perception. Late transition metals form separate clusters, whereas
Mo and W are concentrated in narrow regions, indicating that the
machine recognizes these elements as having differently sig-
nificant impacts on the performance. By contrast, elements with a
wide spatial distribution either have limited data points (e.g., La)
or exhibit significantly different performance depending on their
combination (e.g., Mg and Mn). Elements with overlapping dis-
tributions are not only similar in their physicochemical properties
but also in their impact on the catalytic performance. For
example, high-performing K and Cs have overlapping distribu-
tions, whereas the less-effective Li and Na are separated. These
observations align with the researchers’ understanding acquired
from Fig. S3. An application of the same analysis to the unse-
lected feature set and the feature set selected before active
learning (Fig. S5) revealed the essentiality of both feature engi-
neering and active learning in achieving such level of dis-
crimination. Eventually, AFE transformed general
physicochemical knowledge of elements into an OCM-specific
one, while active learning enhanced the machine’s accuracy in
discriminating elements. The visualization of the feature space is
also valuable for uncovering combinatorial rules (Fig. S6). For
example, catalysts containing both high-performing Mo and low-
performing Pd are found within the cluster of Pd-based catalysts,

Fig. 2 Active learning implemented for the OCM catalyst design. a Schematic of the active learning loop. The feature engineering was repeated five times
with the data of 20 catalysts added per update. The model scores and the testing results are shown in (b) and (c), respectively. The deviation between
predicted and observed C2 yields decreased monotonically throughout the active learning cycle. (d) Eight features were selected from 5568 first-order
features to minimize the MAE in LOOCV with Huber regression. The development of the feature engineering and prediction is visualized based on
t-distributed stochastic neighbor embedding (t-SNE). The circled data points are the test results except for the last cycle, which used the training data
instead. The color reflects the predicted or observed C2 yield. Each t-SNE image delineates how the machine perceives the composition and performance of
individual catalysts in each active learning cycle. The increase in the number of clusters during active learning signifies the evolution of the machine’s ability
to discern diverse catalysts based on their distinct composition-performance relationships.

Fig. 3 Machine perception of the OCM catalyst design. The feature space
of the latest model is visualized by t-SNE, along with the Gaussian kernel
density estimation for the C2 yield above 18%. The dotted lines indicate the
regions where catalysts containing individual elements are concentrated.
This visualization illustrates the machine’s perception in identifying the
composition and performance of catalysts based on specific elements. It
showcases common elements found in high and low-performing catalysts,
similarities among elements within the feature space, and other pertinent
insights.
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suggesting that Pd has a more dominant influence than Mo in
OCM. Strongly interacting combinations, such as those of Cs
with Ti, Zr, and Mo, that are frequently observed in high-
performing catalysts, are distributed in small clusters separated
from the main cluster for Cs-based catalysts. Additionally, Fe-Zn,
while not prominently featured in the training data, is isolated in
a very narrow region with relatively high predicted C2 yields, an
aspect to be explored further.

Validation, limitations, and future prospects. The primary
advantage of AFE, particularly when combined with active
learning, lies in its high predictive accuracy and applicability
across a wide range of catalysts. To showcase this, we applied FPS
to a subset of catalysts with predicted C2 yields ≥ 15% using the
model obtained after active learning; this resulted in the recom-
mendation of 36 catalysts. Subsequent experimental evaluation
revealed that 30 out of the 36 catalysts actually exhibited C2 yields
≥ 15%, with 16 of them surpassing a yield of 18% (Fig. 4,
Table S6). This is compared to only 37 cases exceeding a yield of
18% among 175 catalysts in the training data. These catalysts
predominantly comprise elements whose oxides possess high
basicity, such as alkaline, alkaline earth, and rare earth metal
elements, along with early transition metal elements from groups
4 to 6. By contrast, many of the high-performing catalysts iden-
tified in Fig. 4 do not conform to this pattern, with a notable
presence of elements like Fe and Zn. These elements are largely
underexplored in the history of OCM research42. A unique
advantage of our methodology lies in utilizing the integration of
AFE and HTE to systematize the model’s education, rather than
solely focusing on catalyst discoveries. As a result, the model,
enhanced through active learning, significantly streamlined the
discovery of high-performing catalysts.

The preceding discussions have elucidated the usefulness of the
model involving the engineered features in understanding catalyst
design rules and identifying various high-performing catalysts.
Conversely, directly extracting physical insights from the engineered
features themselves is currently not practical. The engineered features,
either individually or in combination, exhibit statistical correlations
with catalytic performance. However, statistical correlations do not
guarantee causality in catalysis. Moreover, the physical properties of
single elements used to generate catalyst features are logically too
distant from causal relationships. For instance, the model obtained
after active learning is presented as a combination of features: 22.0
(first_ion_en_max)3+ 3.32 ln(gs_mag_moment_min)−1− 8.63
(Polarizability_min)−0.5+ 4.59 (dipole_polarizability_min)−0.5− 4.22
lattice_constant_min − 6.44 exp(electron_affinity_pro)−1+ 10.0

(gs_mag_moment_std)2+ 3.26 hhi_r_max + 27.8, among which
Polarizability_min, dipole_polarizability_min, and first_ion_en_max
are identified to be particularly impactful. These features serve to

discriminate between elements whose oxides exhibit strong basicity,
those that are useful for O2 activation, and other elements, particularly
late transition metal elements that catalyze unselective combustion.
However, such interpretations are not insights gained directly from the
features themselves but rather post hoc explanations assigned to their
roles with reference to existing knowledge. Indeed, attempts to extract
physical insights based on elemental features have been hardly
successful in literature24,26. To extract physical insights from the
engineered features without relying on prior knowledge, a diverse and
comprehensive collection of catalytically relevant properties of
elements, so-called a catalysis feature library, is essential (e.g.,
formation energies of oxides, redox properties, acidity/basicity, and
interaction with various molecules). Such a library, albeit currently
unavailable, would leverage the advantage of AFE’s compatibility with
simple and interpretable ML models. This catalysis feature library, in
addition to transparent ML models43, is another indispensable piece
for achieving fully interpretable catalyst informatics, where density
functional theory calculations are expected to play a significant role44.

Conclusion
In summary, we developed and demonstrated AFE as a versatile
technique, facilitating effective ML for small datasets of solid
catalysts characterized by diverse compositions. AFE exceled in
designing highly expressive features tailored to a specific catalyst
system without requiring prior knowledge of the system. The
availability of process-consistent datasets obtained through HTE
was crucial in the development of AFE. The integration of AFE,
FPS, and HTE in an iterative loop through active learning sys-
tematized the process to educate the machine, promoting the
elimination of alternative hypotheses and the identification of a
true hypothesis set that applies to a wide array of catalysts. This
success can be attributed to the ability of the machine to develop a
feature or knowledge space for recognizing the
composition–performance relationships of catalysts. Our sys-
tematic approach led the enhanced machine to equip remarkable
efficiency in pinpointing various high-performing catalysts.
However, the extraction of direct insights from engineered fea-
tures remains a future challenge, necessitating a comprehensive
collection of catalytically relevant properties. The integration of
AFE into automated experiments45 would enable highly efficient
autonomous catalyst designs. Furthermore, the knowledge
acquired for a specific system is not only beneficial for predicting
the performance of unknown compositions within the same
system but also for facilitating knowledge acquisition for different
systems through transfer learning. As the machine accumulates
knowledge across diverse catalytic systems, it is poised to develop
comprehensive catalytic knowledge. This advancement promises
a future in catalyst development that transcends reliance on
researchers’ experiences and knowledge.

Fig. 4 Discovery of high-performing OCM catalysts using the developed ML model. Herein, 36 catalysts were selected from a subset of catalysts with
predicted C2 yields ≥ 15% using FPS. The bars represent experimentally obtained C2 yields, with colors indicating the yield levels.
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Methods
Automatic feature engineering. Feature engineering is an
essential part of catalyst informatics, as constructing predictive
ML models necessitates features that capture the essence of cat-
alysts. Although deep learning can automate feature engineering,
the accompanying training requires big data and is often not
suitable in the catalysis field where small data are prevalent.
Consequently, current feature engineering heavily relies on
researchers’ intuition, but this empirical approach is insufficient
for exploring diverse designs of catalysts. To address this chal-
lenge, we developed an AFE technique capable of handling small
data on a variety of materials, including catalysts, without prior
knowledge. This technique involves assigning features, synthe-
sizing higher-order features, and selecting important features in
the context of supervised ML (Fig. 1). Each step is detailed below,
using multi-element solid catalysts as a representative example.

Feature assignment. A feature library is created by collecting all
possible properties of elements from public databases. It can be
appropriately normalized and shifted to prevent the divergence of
first-order features. Commutative operations are applied to this
feature library to assign primary features (denoted as X0) that
consider the notational order invariance and elemental compo-
sition of individual catalysts20. We adopted 58 features of ele-
ments stored in XenonPy33 and applied eight types of
commutative operations (maximum, minimum, weighted sum,
weighted average, weighted sum of squared distance, weighted
average squared distance, weighted product, and weighted geo-
metric mean), resulting in 464 primary features.

Feature synthesis. Expressive ML models generally require larger
training datasets. Simpler models are suitable for small data, but
the reduced expressiveness must be compensated through feature
engineering. Therefore, first-order features (f(X0)) that consider
nonlinearity and second- or higher-order features (f(X0)·g(X0),
etc.) that combines two or more first-order features are
synthesized21–23. We adopted 12 types of functions (x, x1/2, x2, x3,
exp(x), ln(x), and their reciprocals), resulting in 5568 first-order
features.

Feature selection. Identifying a feature subset is crucial for
constructing predictive models, as it is not feasible to use all
synthesized higher-order features for model fitting. Despite the
availability of several feature selection techniques, an exhaustive
approach is typically recommended. We employed a genetic
algorithm mainly to minimize the MAE value in LOOCV with a
specified number of selected features. Huber regression34 was
adopted owing to its superior performance in handling experi-
mental noise and singular catalysts compared to that of its non-
robust counterpart.

AFE was implemented using Python 3.8 and common libraries
such as Pandas, NumPy, and scikit-learn, executed in parallel on
a PC cluster. The significance of each step is outlined in Table S7,
wherein AFE was applied to the OCM dataset, with certain steps
intentionally omitted. The analysis revealed that both feature
assignment and feature selection were critical for producing a
meaningful model, emphasizing the importance of selecting
appropriate physicochemical descriptions of catalysts. Higher-
order features resulted in a systematic improvement in the score
by providing more direct features to the target variable. For small
datasets like the OCM dataset, controlling the overfitting in
complex models such as random forest regression was difficult. A
genetic algorithm (an exhaustive approach) yielded better feature
sets than sequential feature selection (a greedy approach)46.

Dataset. We used three HTE datasets for different heterogeneous
catalytic systems to demonstrate AFE (Tables S2‒S4). These
datasets were obtained using a single protocol, rendering them
process-consistent, a crucial feature for reliable ML47. A brief
overview of the datasets is provided below, with additional details
available in published papers27–32.

Dataset for oxidative coupling of methane. The C2 yields of 95
M1‒M2‒M3/BaO catalysts during OCM were collected27–30. M1‒
M3 were selected from Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni,
Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, and
none (blank), with repetitive selection allowed. The amount of
each element was fixed at 0.371 mmol per gram support.
Although most catalysts were obtained through random selection
of elements, certain catalysts were recommended by different ML
methods. The experimental protocol used to obtain this dataset is
identical to that of the high-throughput experiment described
later in this section.

Dataset for conversion of ethanol to butadiene. The butadiene
(C4H6) yields in ethanol conversion were collected for 177
catalysts31. The catalysts were prepared by co-supporting up to 14
elements (Mg, Zn, Cu, Ag, Ni, Al, La, Y, Hf, Zr, Cr, Ga, Nb, and
Mo) on SBA-15 through wet impregnation. The loadings of
individual elements were optimized within a total loading of
3.00 mmol per gram support to maximize the C4H6 yield using a
genetic algorithm. The C4H6 yield was measured using a catalyst
bed packed in a fused quartz reactor (bed height: 2.0 cm; inner
diameter: 4 mm on the influent side and 2 mm on the effluent
side) at 400 °C and 21.8 mLmin−1 of 8.4% ethanol diluted in Ar.

Dataset for three-way catalysis. The light-off temperatures of 51
nanoparticle-supported catalysts for NO reduction in three-way
catalysis were collected32. The light-off temperature is defined as
the temperature at 50% NO conversion. Bimetallic to pentame-
tallic nanoparticles with equimolar compositions and containing
at least one Pt-group element were prepared using a hot-injection
method and deposited onto a γ-Al2O3 support at 0.3 wt%.
Temperature ramping experiments were performed using a cat-
alyst bed packed in a fused quartz reactor (bed weight: 60 mg;
inner diameter: 4 mm on the influent side and 2 mm on the
effluent side) with a 10 mLmin−1 gas flow of a stoichiometric
mixture of CO (13000 ppm), C3H6 (2000 ppm), NO (3000 ppm),
CO2 (100000 ppm), O2 (14000 ppm), and He (balance).

High-throughput experiment. To demonstrate active learning,
selected catalysts were actually prepared and evaluated using the
same experimental method that was used to obtain the training
data27–30. The catalysts were sampled from a pool of 4060 can-
didates, generally expressed as M1‒M2‒M3/BaO. M1‒M3 were
chosen from Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr,
Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, or none, with
repetitive selection allowed. They were prepared using a paralle-
lized impregnation method using LiNO3, NaNO3, Mg(NO3)2,
KNO3, Ca(NO3)2·4H2O, Ti(OiPr)4, VOSO4·xH2O (x= 4),
Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O,
Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2,
Y(NO3)3·6H2O, ZrO(NO3)2·2H2O, (NH4)6Mo7O24·4H2O,
Pd(OAc)2, CsNO3, Ba(NO3)2, La(NO3)3·6H2O, Ce(NO3)3·6H2O,
Nd(NO3)3·6H2O, Eu(OAc)3·4H2O, Tb(NO3)3·5H2O, Hf(OEt)4,
and (NH4)10H2(W2O7)6 as precursors. These precursors were
obtained from Sigma-Aldrich, Kanto Chemical, Wako Pure
Chemical Industries, and Alfa Aesar. Ba(OH)2·8H2O purchased
from Wako Pure Chemical Industries was used as the precursor
for the BaO support. The support powder (1.0 g) was suspended
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in 4‒5mL of a precursor solution under stirring at 50 °C for 6 h.
The concentration of the solution was adjusted to 0.371 mmol per
gram support for each of the selected elements. After drying, the
catalyst was calcined in air at 1000 °C for 3 h and thoroughly
ground using a mortar and pestle before use. When using metal
alkoxides, impregnation was performed in two steps, starting with
an aqueous solution and followed by an ethanol solution of the
metal alkoxides.

The performance of the catalysts in OCM was evaluated using
an in-house high-throughput screening instrument47. The
instrument comprises a gas mixer for generating the reaction
gas mixture (MU-3504, HORIBA STEC), a gas distributor for
splitting the reaction gas equally into 20 reactor tubes (fused
quartz tubes with an inner diameter of 4 mm on the influent side
and 2 mm on the effluent side) loaded with catalyst powder and
symmetrically placed in a hollow electric furnace, and an auto-
sampler for supplying the effluent gas from individual tubes to a
quadruple mass spectrometer (Transpector CPM 3, INFICON).
Mass signals were converted into the relative pressures of
individual gases based on external calibration. Cooperative action
among the programmed gas generation, temperature, and auto-
sampling enabled an automatic evaluation of the performance of
20 catalysts under a predetermined set of reaction conditions.

The catalyst powder was packed at a height of 10 mm in the
neck of the reactor tube using quartz wool and was in-line
calcined at 1000 °C under an O2 atmosphere for 3 h. A reaction
gas mixture of CH4 and O2 balanced with Ar was flowed through
the 20 tubes, and the temperature was decreased stepwise from
900 to 700 °C in 50 °C increments. The total gas flow volume (10,
15, and 20 mLmin−1), CH4/O2 ratio (2, 4, and 6 mol mol−1), and
Ar concentration (PAr = 0.15, 0.40, and 0.70 atm) were
respectively varied at each temperature, resulting in a total of
135 reaction conditions. The C2 yield, defined as the percentage
of the doubled sum of the partial pressures of C2H6 and C2H4

relative to that of CH4 in the influent, was obtained at each of the
135 conditions, and the maximum C2 yield was recorded for
further analysis.

Data availability
The three datasets used to demonstrate automatic feature engineering in Fig. 1 are
curated from published papers and listed in the Supplementary Information. The authors
declare that all data supporting the findings and those used for reproducing the figures in
this paper are available within the paper and its Supplementary Information. Source data
are provided with this paper.

Code availability
Codes are available at https://github.com/TaniikeLaboratory/Automatic-feature-
engineering-for-catalyst-small-data.
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