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Predicting Bordeaux red wine origins and vintages
from raw gas chromatograms
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Connecting chemical properties to various wine characteristics is of great interest to the science

of olfaction as well as the wine industry. We explored whether Bordeaux wine chemical

identities and vintages (harvest year) can be inferred from a common and affordable chemical

analysis, namely, a combination of gas chromatography (GC) and electron ionization mass

spectrometry. Using 12 vintages (within the 1990–2007 range) from 7 estates of the Bordeaux

region, we report that, remarkably, nonlinear dimensionality reduction techniques applied to

raw gas chromatograms recover the geography of the Bordeaux region. Using machine learning,

we found that we can not only recover the estate perfectly from gas chromatograms, but also

the vintage with up to 50% accuracy. Interestingly, we observed that the entire chromatogram

is informative with respect to geographic location and age, thus suggesting that the chemical

identity of a wine is not defined by just a few molecules but is distributed over a large chemical

spectrum. This study demonstrates the remarkable potential of GC analysis to explore fun-

damental questions about the origin and age of wine.
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Identifying and characterizing the origin of wines on the basis
of their chemical content is a challenging yet fundamental
problem in wine science. Wines are shaped by multiple factors

such as the soil, the climate1,2, the varietals, the microbiology and
the wine-maker’s practices. If we are to understand how these
factors influence the taste of a wine, we need to uncover what part
of the chemical composition determines its quality, origin, and
typicity. Wine typicity and authenticity are indeed at the center of
the wine industry’s preoccupations3–7.

One approach to address these questions consists in measuring
the concentration of specific targeted molecules that are thought
to be particularly informative with regard to wine origin and
flavor. This approach has led to the identification of several key
compounds but it is akin to finding a needle in a haystack8–14.
Unlike industrial beverages, wines are complex mixtures of
molecules and their taste often depends on molecules present
only in remarkably small concentrations. Also, it is quite possible
that the chemical typicity of wine is not defined by the con-
centration of a handful of molecules but depends instead on the
overall pattern of concentrations over a wide range of molecules,
possibly in a nonlinear way.

Several groups have indeed abandoned the targeted approach
in favor of a global perspective. They used statistical tools from
machine learning (ML) to analyze the output of broad-spectrum
chemical analysis. This approach has been applied for instance
to wine classification using ICP MS15, nuclear magnetic
resonance16, RP-HPLC/DAD5 and UV-spectroscopy17 or to wine
region classification using GC/QTOFMS18, isotopic ratio19,
absorbance-transmission and fluorescence excitation-emission
matrix (A-TEEM) or climate data20. Other studies have also
looked at sensorial properties and aroma profiles using gas
chromatography (GC)21 and wine quality using global chemical
measurements (alcoholic contents or acidity as examples)22 and
the emergence of oxidative markers during aging with GC23.

Here we apply (ML) techniques to raw chromatograms
obtained with GC. GC is a popular type of analysis for wine,
which has led to seminal discoveries, but which is typically used
within the targeted molecule approach, i.e., as a tool to identify
molecules of interest. Yet, GC is a lot more amenable to global
analysis because it can reveal the presence of a much wider
range of molecules than, say, UV-spectroscopy. The problem,
however, is to determine what class of chemicals to target with
GC, since GC can be tuned to reveal specific families of
molecules (e.g., esters) depending on the type of filter applied to
the output of the chromatography column. Moreover, it is
unclear which part of the chromatogram to focus on. Typically,
researchers integrate peaks of the chromatograms to quantify
the concentration of specific molecules, thus discarding the rest
of the chromatograms. Using the raw, unprocessed chromato-
grams could in principle lead to better results but this requires
using techniques that can automatically determine which parts
of the chromatograms are most informative for a particular
classification problem. This is precisely where ML can help
since ML algorithms can automatically find the most informa-
tive parts of a chromatogram.

Accordingly, we used a variety of ML techniques, including
nonlinear dimensionality reduction, linear and nonlinear classi-
fiers, and regression models to predict several features of wines
from the Bordeaux regions from chromatograms. We focused in
particular on the identity of estates and vintages. Our results
indicate that raw chromatograms are highly informative about
terroir and estate identity for the Bordeaux estates studied here.
We also found that integrating peaks to estimate the concentra-
tion of specific chemical compounds leads to lower performance
on all tasks. Finally, whether we use the raw chromatograms or a
quantification table of specific compounds, we observed that wine

chemical identity is defined by a large chemical spectrum rather
than a few specific molecules.

Results
Our results are based on three types of GC methods which, for
simplicity, we refer to as esters, oak, and off-flavor (offFla) in the
rest of the paper (see Fig. S1 for examples). However, these
chromatograms correspond to different extraction strategies (see
Methods), which are not exclusively sensitive to the targeted
molecules from which the method names arise. It is, therefore
important to keep in mind that the resulting chromatograms are
not simply reflecting the wine content for these three selections of
molecules. Also, we emphasize that this data set was not collected
specifically for the present study but had been used previously for
a different purpose24. Nonetheless, given its diversity, we thought
that this data set has the potential of being informative about the
estate and vintage of wine.

Recovering terroir through dimensionality reduction. We
first applied nonlinear dimensionality reduction to the gas
chromatograms, allowing us to visualize the distribution of the
wines in 2-D. This first analysis was based on the concatenation
of the three types of chromatograms (“esters”, “oak”, and “off-
Fla”, see Methods) into a single meta-chromatogram per wine.
Figure 1a, b shows the results for two different clustering tech-
niques, t-distributed stochastic neighbor embedding (t-SNE) and
UMAP, which project the data in such a way that wines with
similar chromatograms remain close to one another in the
projected 2-D space.

Several organizational principles emerged from these projec-
tions. First, wines from the same estate (or ‘chateau’, as they are
known in the Bordeaux region) tend to form distinct clusters
regrouping all vintages, with very few outliers (e.g., A-1990 and
C-1990). This suggests that the chromatograms reveal specific
features of each estate independently of the vintage. Second, two
large clusters are clearly visible in both Fig. 1a, b, regrouping the
A, C and B in one cluster and D, E, F, and G in another. Within
the second cluster, G and F tend to lie on one side, closer to the
(A, C, B) cluster while D and E lie on the other side of the cluster.
Strikingly, the spatial configuration of the projection reflects the
geography of the Bordeaux region (Fig. 1c) in the following way.
Wines (A, C, B) are all located on the right bank of the Garonne
river in the Libourne region, while (G, F, E, D) are all left-bank
estates from the Medoc. Furthermore, D and E are located in the
northern part of Medoc, while G and F are further south, next to
the city of Bordeaux, in between (A, C, B) and (E, D), as in
Fig. 1a, b. In other words, spatial relations between wines in 2-D-
embedded space are similar to the corresponding wine estates’
geographical relations.

We note that this is not true within the right bank estates,
which are not spatially arranged in a way consistent with their
relative geographical locations, but which also happen to be
particularly nearby (within 7 km, versus 40 km between C and G,
the two closest right and left bank estates). We also tried principal
component analysis (PCA), a linear dimensionality reduction
technique, and found that the clusters were not as clear, though
the right-left bank distinction was still evident (Fig. S2). Further
note that cluster spread and orientation depend on cluster
algorithm parameters such as the random seed, though the above-
described spatial relations remain invariant.

Next, we applied this analysis to the three types of chromato-
grams separately (Fig. S2). While right and left bank estates tend to
cluster together for all three chromatograms, this separation is
particularly clear with the “offFla” data. However, the “offFla”
(SBSE-GC/MS) do not show clear estate clusters while these clusters
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are clearly visible for the oak (liquid extract) and esters (SPME-GC/
MS). As to the north-south axis of the left bank, it is only observed
in oak, where we can see that the estates G and F stand in between
the right bank estates and the estates T and F, just as we observed for
the concatenated chromatograms.

We hypothesized that the following factors are likely to
contribute to these results. First, these estates use different blends
of four varietals: cabernet-sauvignon, cabernet franc, merlot, and

petit verdot. The percentage of these varietals varies across estates
and across vintages (Table S1). To evaluate whether this
variability in blends is sufficient to explain our results, we applied
the same dimensionality reduction technique to the percentages
in the blend (reducing 4 dimensions to 2). Figure 1d, e shows the
resulting plots. While three estate clusters (C, G, F) are clearly
separated, other estates are now indistinguishable (A and B, and E
and D). Moreover, the distinction between right vs left bank is
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less marked (in particular for UMAP for which C tends to be
closer to the left bank estates). Finally, the south-north axis in the
Medoc region is no longer present (G and F are not next to each
other and do not stand in between the E-D estates and the right
bank estate). This indicates that while the blend plays a partial
role, it is not the only contributing factor. Other factors are likely
to contribute such as the composition of the soil, vine and
climate, modulated by the wine-making practices of each estate.

Estate and vintage identification. Given the clear estate clusters
generated by t-SNE and UMAP, one would predict that it should
be possible to identify estates with high accuracy independently of
vintage from the chromatograms. Conversely, we expected that
vintage identification, independently of the estate, might be more
challenging given that vintages do not seem to cluster together
(Figs. 1a, b and S2).

This is indeed what we found, using LDA and logistic
regression (LR). Fig. 2 shows the histogram of test performance
(i.e., generalization to unseen data) across multiple splits and for
the three chromatograms independently or for the concatenated
chromatograms. On average, the best performance was obtained
with LDA applied to the concatenated chromatogram, leading to
99% correct estate classification. Interestingly, similar perfor-
mance was observed using only the oak chromatogram, or the
ester chromatogram, while the offFla chromatogram led to worse
performance (87% correct).

We used the same technique to decode vintages. In line with
the results of t-SNE and UMAP, and in sharp contrast to estate
decoding, we obtained relatively low decoding performance on
vintages, with a best performance of 27% correct with LDA
applied to the oak chromatogram. While small, this is still well
above chance performance of 8% (p < 0.001, Bonferroni cor-
rected). Decoding vintages from the esters and offFla chromato-
grams led to near-chance performance.

Detailed analysis of chromatograms. Wine chemical identity
could be defined primarily by the concentration of a handful of
molecules or, conversely, by the overall pattern of concentration
over a large range of molecules. To explore this issue, we looked
for the regions of the chromatograms that most contribute to
classification performance. We did so by first binning the chro-
matogram into 50 bins and then removing one by one the least
informative bins (a procedure we coined ‘survival of the fittest’).
This procedure revealed that decoding performance remains
stable (and sometimes even increases due to overfitting) after
removing about 45 bins (Fig. 3a). This was observed for both
estate and vintage classification. Figure 3a (lower panel) shows
the location of the remaining 5 bins on the chromatogram.
Interestingly, the most informative bins do not necessarily line up
with the largest peaks of the chromatogram suggesting that
classification performance is partly driven by molecules with
very low average concentration (µg.L−1 or less) (Fig. S1 shows

examples of normalized chromatograms, revealing the presence
of multiple small peaks).

This also shows that only a small fraction of the chromato-
gram is sufficient to reach asymptotic classification performance.
We verified this by training our classifier on the concatenation of
the N most informative bins for each of the three chromato-
grams, where N was systematically varied from 1 to 4, for a total
of 3xN bins. We found that keeping 2–3 bins per chromatogram
is sufficient to match, and in some cases outperform, the
classifier trained on the full concatenated chromatograms.
Indeed, the LDA estate classifier performed perfectly, 100%
correct, when trained on the concatenation of the top 3 bins for
each chromatogram, compared to 99% correct for the full
concatenated chromatogram (Fig. S3).

In the case of vintages, classification reached a performance
of 34% correct when training on the concatenation of the top 3
bins for each chromatogram, compared to 27% for the full
concatenated chromatograms. Performance reached up to 50%
correct when using only the most informative bins of the oak
chromatogram (Fig. 3c). We also observed that some vintages
are easier to decode than others, with 2007 being clearly the
easiest (Fig. S4).

These results can be slightly misleading in that they suggest
that there are just a few informative bins in each chromatogram.
It is possible instead that most bins are informative but also
happen to be highly redundant. The PCA analysis of the
chromatograms already points in that direction since 90% of the
variance in our data set is explained by only 20 dimensions
(Fig. S5). In order to explore this issue further, we trained
classifiers on each bin separately. The red histograms in Fig. 3b
show the estate classification performance for the individual
bins in all three chromatograms. Surprisingly, while some bins
are more informative than others, the vast majority of the bins
lead to similar estate classification performance, well above
chance (14%), indicating that many parts of the chromatograms
contain information about estate identity and vintage (Fig. 3d,
chance level at 8%).

This conclusion is consistent with the profile of the weights
used by the LDA classifier (Fig. S6). If only a few molecules
mattered, one would expect the weight pattern to show a few
prominent peaks, with smaller weights between the peaks.
Instead, we see that the weights are homogeneously large
throughout the chromatograms. Moreover, we ran an analysis
in which we removed one by one the most informative bins while
tracking classification performance (the opposite of the ‘survival
of the fittest’ procedure above). We found that performance
declines gradually, and drops sharply only when there is about
20% of the least informative bins left, thus revealing that the most
informative bins do not play any specific role in encoding the
chemical identity of the estate (Fig. S7). Altogether, these results
strongly suggest that the chemical identity of an estate does not
rely on the concentration of a few molecules but rather on the
whole chemical spectrum.

Fig. 1 Dimensionality reduction of chromatograms reflects the geography of the Bordeaux region. a t-SNE plot of the 80 concatenated chromatograms
with the first two embedding dimensions. Colors correspond to different estates while vintages appear next to each data point. The resulting map
recapitulates the geography of the Bordeaux region up to a rotation, but note that the overall orientation of the t-SNE projection is arbitrary. Wines from the
same estate but different vintages tend to cluster together, with little overlap between clusters. Right bank estates (A, C and B from Pomerol and St-
Emilion) and left bank estates (F, G, D, and E from Medoc) also tend to cluster together. Moreover, the left bank estates are organized along a north-south
axis, E and D being the furthest north, while G and F are closer to Bordeaux. b Same as (a) but with the UMAP algorithm. c The 7 estates in our data set are
shown in the same colors as in (a), coming from the two regions in South-West France (inset), highlighted by the ellipses on the right (Pomerol and St-
Emilion) and left (Medoc) bank of the Garonne river. The clusters follow the same general organization as for t-SNE. d t-SNE applied to varietal
percentages. e same as (d) but with UMAP. In (e), the distinction between right and left bank estates is less clear, and in both (d) and (e), there is no
north-south axis on the left bank and some estates (A and B, E and D) are no longer distinguishable. This suggests that the blend is not the sole contributor
to the map obtained with GC.
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Chemical-compounds based analysis. To further explore whe-
ther wine chemical identity relies on a large ensemble of mole-
cules or a small subset, we manually extracted the area under the
peak for 32 chemical compounds from the chromatograms,
converted these area measurements into concentrations, and
repeated the same set of analyses (16 compounds from Ester, 13
from Oak and three from offFla, see Methods for a complete list
of compounds, information on internal standards and calibration
strategies). In these new analyses, each wine is now characterized
by a 32-dimensional vector of compound concentrations.

Dimensionality reduction using either tSNE or UMAP reveals
estate-specific clusters though with significantly more overlap
than was observed for the maps from the raw chromatograms
(Fig. 4a, b). Moreover, the right/left bank distinction is less clear,
particularly in the case of tSNE which does not group the right
bank wines (A, B, C) together.

With regard to wine estate classification, we found the
performance was markedly reduced (Fig. 4c). For instance,
performance for logistic regression using oak decreased from 95%
correct with the chromatograms to 78% with the oak compounds.
Likewise, performance decreased from 98% to 75% for ester and
85% to 27% for offFla. This suggests that many of the smaller peaks
in the chromatograms strongly contribute to the estate identity.
This also shows that the traditional approach of extracting the
concentration of targeted compounds is not as good as working
with the raw chromatograms, and has the disadvantage of requiring
extensive manual pre-processing.

The results for vintages on the other hand were mixed (Fig. 4d).
Oak performance for logistic regression decreased from 27% with
the chromatogram to 23% with the compounds. However, we
observed the reverse for ester, for which performance increased
from 7% to 23%. Still in all cases, performance remained below the
best vintage performance of 27%, which was obtained with the oak
chromatograms.

We saw previously that vintage classification performance
could be improved to 50% for the chromatogram when using our
survival of the fittest procedure. The same approach applied to

the compound concentrations also improves performance but
only to 37% correct (Fig. S10). Therefore, once again, using
compounds does not improve vintage classification performance
and, in this case, even results in lower performance.

One advantage of working with compound concentrations is that
we can measure the influence of any compound on classification
performance by examining the classification weights. Interestingly,
we found that the weights for estate classification tend to have
similar values across all compounds, indicating that most chemical
compounds contribute to the identity of the estate (Fig. S11).
We also trained classifiers based on the concentration of single
compounds, similar to our analysis based on single chromatogram
bins (Fig. 3b). Some compounds lead to up to 40% correct
classification on their own (such as acetosyringaldehyde,
ethylbutanoate-C4C2 and ethylhexanoate-C6C2) but, remarkably,
estate identity can be significantly decoded from the concentration
of any of the 32 compounds (Fig. S12). This brings further support
to our claim that estates are not defined by the presence of a few
specific chemicals but instead by the overall chemical spectrum

Discussion
Gas chromatography has a long history in wine science, dating
back to the 1980s, but our results revealed that this analysis might
be more powerful than had been suspected hitherto. The fact that
nonlinear dimensionality reduction techniques recovered the
geography of the Bordeaux wine regions showed in particular that
the raw gas chromatograms provide a chemical signature of ter-
roir, i.e., a combination of the soil, rootstock, varietal, location,
blend, and winemaking practices. In addition, for the seven
estates we considered, estate identity can be predicted perfectly
from chromatograms, independent of vintage, while vintage
could be recovered with 27% accuracy, and up to 50% correct
when targeting a specific part of the chromatograms.

Other groups have recently started to use ML approaches to
classify estates or vintages from chemical measures. In particular,
Ranaweera et al.25 have reported nearly perfect performance

Fig. 2 Supervised vintage and estate decoding. a Performance histograms for decoding estate identity using two classifiers - linear discriminant analysis
(LDA) and logistic regression (LR). The horizontal black line in each histogram indicates mean performance across data splits. Chance performance (14%)
is shown by the dashed line. Note that the histograms are smoothed, which is why they can go beyond 100. Each peak corresponds to one of the possible
accuracies per run. The best average decoding accuracy was 99% correct for LDA and concat (all three types of chromatograms concatenated together),
though comparable results were observed for the oak and ester chromatograms. Performance was markedly weaker for the offFla chromatogram (87% for
both, LDA and LR). b Same as in (a) but for decoding vintages. Decoding performance was smaller overall than for estate identity, however performance for
LDA and LR applied to the oak chromatogram was significantly above chance (p < 0.001, 27% correct versus 8% for chance) and, to a lesser extent, for
offFla chromatogram (p= 0.0012). Concatenating chromatograms did not lead to stronger performance.
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in classifying three vintages and five subregions of Barossa valley
shiraz based on absorbance-transmission and fluorescence
excitation-emission matrix (A-TEEM). It is not clear whether this
technique could identify estates independent of vintages as we
report here, but the fact that their approach could clearly dis-
tinguish vintages suggests that a combination of A-TEEM and
GC might improve joint classification of estate and vintage. The
study of Li et al.18 is also particularly relevant for our approach
given that they analyzed Australian shiraz with GC, and more
specifically GC/qTOF-MS. However, they used a set of wines that
are separated by up to 1500 km and included only two vintages.

Moreover, they did not use raw chromatograms but manually
extracted features. In that respect, our analysis is simpler since it
is based on raw chromatograms. It is also cheaper as GC is
considerably less expensive than GC/qTOF-MS. Nonetheless, this
study complements ours in that it confirms the potential of using
GC for wine classification, even for single-varietal wines.

Our results also suggest that wine’s chemical identity is not
defined by the concentration of just a handful of molecules.
Indeed, we have found that wine classification does not depend
critically on specific regions of the chromatograms and, therefore,
on the concentration of specific molecules. Instead, most bins of

Fig. 3 Identifying most estate-informative sections of the chromatograms. a A “survival of the fittest” algorithm was applied, removing the 2% bins of the
ester chromatogram that had the least effect on estate decoding accuracy, before removing the next bin one by one, until the last bin was left. Importantly,
the same decoding accuracy was achieved with the best 10% of the total data than with the complete chromatogram, showing that these sections have all
the estate information. The top panel shows the decoding accuracy as a function of the fraction of the data with the best decoding accuracy. The lower
panel shows the five most important sections (red) on top of an example ester chromatogram (blue). The red color darkness indicates their rank in the
survival algorithm, darker bins being more informative. b Estate decoding accuracy per data bin (red bars) with an overlaid example chromatogram (blue),
for each chromatogram type. After dividing the chromatogram into 50 equal bins, estate decoding was performed using only single bins with LDA as in
Fig. 2. Test decoding accuracy is shown in red for each bin, fluctuating fairly continuously across section locations in the chromatogram with most having
above-chance (0.14) decoding accuracy. This indicates that estate chemical identity is not defined by just a few bins of the chromatogram but is distributed
throughout. The fact that the decoding performance only requires 5 bins (a) suggests that the information across bins is highly redundant. Similar results
were obtained for oak and offFla (Figs. S8, S9). c, d show the results of the same analyses performed for vintage decoding. Note that the reduction of the
oak chromatogram led to a 20% increase in performance, indicating that our decoder was subject to overfitting when applied to the whole chromatogram.
Decoding performance from individual bins is lower than for estate decoding yet still clearly above chance for most segments, again suggesting that vintage
information is distributed throughout the chromatogram and that there is a high level of redundancy across bins.
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the chromatograms contain information about estate identity.
However, classification does not require the entire chromato-
grams for near-perfect performance; 10–20% is typically suffi-
cient. This indicates that the information about estate identity is
distributed across the whole chromatogram and that there is a
large degree of redundancy in the sense that the concentration of
many molecules detected by GC must be strongly correlated
across estates. This conclusion was also supported by the analysis
of the concentrations of 32 chemical compounds extracted
manually from the chromatogram (Fig. 4), which revealed that
estate identity can be significantly decoded using the concentra-
tion of any of the 32 compounds in isolation.

The fact that we could perfectly identify estates, independently
of vintages, suggests that the estates we have analyzed here have
distinct identities. While wine experts believe that some Bordeaux

estates have indeed distinct profiles, this is, to our knowledge the
first time that this is demonstrated with a purely chemical ana-
lysis of Bordeaux wines. This result was by no means a foregone
conclusion. Indeed, one might have worried that GC does not
have the required sensitivity for this type of analysis. Ultimately,
however, our results reveal that this is not an issue probably
because of the redundancy in the chromatograms. As we have
seen, many regions can be used to identify estates. Therefore,
even if some parts of the chromatograms may not be sensitive
enough, the redundancy allows to compensate by looking at
other, more sensitive, regions of the chromatogram.

It would be interesting to compare the performance of our
model to the one of expert human tasters on blind tasting of the
80 wines we have analyzed. Whether expert wine tasters would be
able to match our model’s performance (100% correct) on these

Fig. 4 Estate and vintage decoding from compounds. a, b Dimensionality reduction of 32 compounds via tSNE and UMAP. The estate clusters are not as
well marked as with the raw chromatograms, and the right bank wines (A, B, C) are not clearly separated from the left bank ones (D, E, F, G), particularly in
the tSNE case (Fig. 1). c Performance histograms for decoding estate identity from subsets of compounds, using two classifiers: Linear discriminant analysis
(LDA) and logistic regression (LR), as in Fig. 2. The horizontal black line in each histogram indicates mean performance across data splits. Chance
performance (14%) is shown by the dashed line. The best average decoding accuracy was 91% correct for LR and m_concat (all three types of compounds
concatenated together, 32 dimensions), though comparable results were observed for the oak and ester compounds. Performance was markedly weaker
for the off-Flavor (offFla) compounds (41% for LDA). Overall performance is worse than with the raw chromatograms (Fig. 2). d Same as in (c) but for
decoding vintages. Decoding performance was smaller overall than for estate identity, however performance for LDA and LR was significantly above chance
(p < 0.001, 8% for chance) for all but offFla. Concatenating the three compound types into m_concat leads to slightly stronger performance.
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seven estates is not known. More generally, it remains to be seen
how a GC-based classifier would perform compared to humans
on estate, region, or varietal recognition across a wide range of
wines. Given our strong performance with estate recognition,
artificial and GC-based systems might be able to complement
human tasters on wine recognition. We note that other groups
have obtained promising results using chemical analysis to pre-
dict Rate-All-That-Apply sensory attributes, using techniques
that would complement the GC approach presented here26,27.

To conclude, this study demonstrates that the wine chemical
identity of the seven estates considered in this study can be
revealed directly from raw chromatograms, without any need for
manual extraction of peaks or optimization of the choice of
chromatography and ionic scanning. It is quite likely that even
better results could be achieved by allowing further tuning of
these experimental variables.

Material and methods
Wine samples. Our study involved 80 Bordeaux red wines from 7
estates (a.k.a. chateaux): A, B, C, D, E, F, and G. Twelve vintages
were available for each estate (1990, 1995, 1996, 1998, 1999, 2000,
2001, 2002, 2004, 2005, 2006, and 2007) except for estate F which is
represented by only eight vintages (1995, 1998, 2000, 2001, 2002,
2005, 2006, and 2007). One single bottle of 75 cL per wine was
studied and samples were analyzed in 2018 when the wines were
aged between 11 and 28 years in the estates’ cellars. A, B, and C are
right-bank wines from the Pomerol (A) and St-Emilion (B and C)
appellations, while the others are left-bank wines from the Pauillac
(D, E), Margaux (F) and Pessac-Léognan (G) appellations.

Gas Chromatography data acquisition and post-acquisition
treatment. All the wines were analyzed in a single batch in August
2018 by three previously designed GCmethods, one focused on the
quantification of odorous esters28, the second one on oak-flavor
compounds29 and the last one on off-flavor compounds30. This
data set was collected for another set of experiments, unrelated to
the current project24.

Analysis of off-flavor compounds using SBSE extraction. The
analytical procedure is based on the method developed by Franc
et al.30. The extraction of compounds was carried out using
10mm× 1mm (length × film thickness) polydimethylsiloxane stir
bars (Twister®, 63 µL coating, Gerstel, Mülheim an der Ruhr,
Germany). These were placed into the vial containing 10mL of
wine sample and 20 µL of an internal standard solution (hydro
alcoholic solution 50% v/v at 112 µg L−1 of d3-2-isobutyl-3-meth-
oxypyrazine, 55.5 µg.L−1 of d5-2,4,6-trichloroanisole 60 µg L−1 of
d5-4-ethylguaiacol and 300 µg./L−1 of (±)-d5-geosmin). After
60min of stirring at 900 rpm, the stir bars were removed, rinsed
with Milli-Q quality water (18.2MΩ cm−1), dried carefully with a
paper towel, and transferred into a desorption tube for chroma-
tographic analysis. Analyses were performed using an Agilent 6890
gas chromatograph system, fit with an Agilent HP-5MS capillary
column (30m × 0.25mm i.d. 0.25 µm film thickness). The GC was
combined into an Agilent 5975 mass spectrometric detector (Agi-
lent Technologies, Massy, France). The system was equipped with a
Gerstel MPS 2 autosampler, a Twister Thermal Desorption Unit
(TDU), and a Gerstel Cooled Injection System Programmable
Temperature Vaporization (PTV) inlet (Gerstel, Mülheim an der
Ruhr, Germany).The compounds adsorbed on stir bars were
thermally desorbed in the TDU with a helium flow at 50mLmin−1

in splitless mode and a temperature rate program of 60 °C.min−1

from 30 °C to 280 °C (held for 10min). TDU transfer line was kept
at 300 °C and the desorbed compounds were cryofocused in the
CIS maintained at−100 °C using liquid nitrogen. PTV injector was

then heated at 12 °C.s−1 from−100 °C to 290 °C (held for 5 min) to
inject the trapped compounds onto the capillary column. The
injection was performed in splitless mode at 1.5 min (helium purge
flow of 50mL.min−1). The program for the oven temperature was
as follows: 40 °C for initial temperature, increasing to 120 °C at a
rate of 2 °Cmin−1 and then to 290 °C (held for 9 min) at a rate of
10 °Cmin−1. Electronic ionization was performed at 70 eV with a
detector temperature at 230 °C. The selected ions monitored with a
dwell time of 50ms and distributed in time windows were the
following: Window 1—after solvent delay (15 min) to 30.5 min,
ions 122, 124, 137, 139, 152, 157; Window 2 - From 30.5 to
34.5 min, ions 195, 197, 210, 212, 215, 217; Window 3 - From 34.5
to 39min, ions 112, 114, 128, 149, 182, 186; Window 4—From 39
to 43min, ions 231, 244, 246; Window 5—From 43 to 46min,
ions 265, 278, 280, 329, 331, 346. Run time was 66min. The
method allows the quantification of: 2-Isobutyl-3-methoxypyrazine
(IBMP); 2,4,6-trichloroanisole (TCA); 2,4,6-tribromoanisole;
2,3,5,6-tetrachloroanisole; 2,3,4,5,6-pentachloroanisole; 4-
ethylphenol (EP); 4-ethylguaiacol (EG); (±)-geosmin. Only, IBMP
(in 2 samples at the levels of 4 and 17 ng L−1), EP and EG (in all the
samples but 3 at levels between 8 and 7000 µg L−1) have been
detected and quantified.

Analysis of oak-flavor compounds using liquid/liquid extraction.
Oak-flavour compounds were extracted according to the method
described by Bloem30: 200 µL of 1-dodecanol (45 mg L−1 in
hydroalcoholic solution 50% v/v) was added as an internal
standard to 50mL of wine. The sample was extracted three times
by 4, 2, and 2 mL of dichloromethane HPLC Grade during 5 min
at 700 rpm. The resulting organic extracts were dried with
anhydrous sodium sulfate (Na2SO4) and concentrated to 0.25 mL
under nitrogen gentle flow. An Agilent 7890 A gas chromato-
graph coupled with an Agilent 5975 C mass spectrometric
detector (Agilent Technologies, Massy, France) and equipped
with a Gerstel MPS2 autosampler (Gerstel, Mülheim an der Ruhr,
Germany) and a SGE BP21 capillary column (50 m × 0.32 mm
i.d., 0.25 µm film thickness) was used (SGE Trajan, Ringwood
Victoria, Australia). 2 µL of the extract was injected in splitless
mode (30 s) in the injector at 250 °C. The program for the oven
temperature was as follows: held 1 min at 60 °C, raised at
4 °Cmin−1 to 220 °C and held for 30 min. MS grade helium was
used as carrier gas with a debit of 1 mLmin−1. Electron ioniza-
tion was performed at 70 eV with a detector temperature at
180 °C. The selected ions monitored with a dwell time of 20 ms
and distributed in time windows were the following: Window 1—
after solvent delay (10 min) to 19 min, ions 71, 87, 99, 109, 124;
Window 2—From 19 to 28 min, ions 71, 83, 87, 97, 99; Window
3—From 28 to 31min, ions 111, 131, 139, 149, 154, 164; Window
4—From 31 to 41 min, ions 91, 123, 151, 152, 179, 194; Window
5—From 41 to 43.5 min, ions 123, 151, 166; Window 6—From
43.5 to 50 min, ions 153, 167, 181, 182, 196. Run time was 71 min.
The method allows the quantification of: oak-lactone (Whisky-
lactone; cis and trans); eugenol; gaiacol; vanillin; acetovanillone;
syringaldehyde; isoeugenol (cis and trans); furfural; 5-methyl-
furfural; acetosynringaldehyde and syringol.

Analysis of esters using SPME extraction. We used the method
developed by Antalick et al.28 to obtain a chromatogram that was
originally designed to analyze 32 specific esters in wine. In the wines
we study here, 16 esters were present at significant concentration,
i.e., above the limit of quantification of themethod in all the wines24.
The compounds were extracted by solid-phase micro-extraction
(SPME). Ten milliliters of wine and 10 µL of the internal standard
solution (mixture of 4,4,4-ethyl-d3-butanoate at 178mg L−1, ethyl-
d11-hexanoate at 209mg L−1, ethyl-d15-octanoate at 223mg L−1

and ethyl-d5-trans-cinnamate at 325mg L−1 in 100% ethanol v/v)
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were added to a vial containing 3.5 g of sodium chloride. SPME fiber
(polydimethylsiloxane, 100 µm film thickness, 1 cm length) from
Supelco (Bellefonte, Palo Alto, USA) was used as absorbent.
Extraction of compounds was performed at 40 °C for 30min with
agitation speed at 500 rpm. Following desorption for 15min at
250 °C, samples were injected in splitless mode (45 s). Gas chro-
matographic analysis was carried out on an Agilent 6890N gas
chromatograph coupled to an Agilent 5875 C mass spectrometer
(Agilent technologies, Massy, France) and equipped with a Gerstel
MPS2 autosampler (Gerstel, Mülheim an der Ruhr, Germany). An
SGE BP21 capillary column (50m× 0.32mm i.d., 0.25 µm film
thickness) was used (SGE Trajan, Ringwood Victoria, Australia),
and the carrier gas used was MS grade helium at 1.2 mLmin−1. The
oven temperature was programmed at 40 °C for 5min then raised at
3 °Cmin−1 to 220 °C (held for 30min). The mass spectrometer was
operated in electron ionization mode at 70 eV with a detector
temperature at 280 °C. The selected ions monitored with a dwell
time of 20ms were the following: 43, 55, 56, 57, 60, 61, 69, 70, 71, 74,
85, 87, 88, 89, 91, 97, 99, 101, 102, 104, 105, 106, 110, 114, 116, 122,
127, 131, 136, 142, 176, 178, and 181. They were monitored from
after solvent delay (2min) to 95min final run time.

Quantification of specific chemical compounds. For quantification,
the mass spectrometers were operated in selected-ion-monitoring
mode. The 32 quantified compounds were identified using
retention time associated with control and quantification ions
(m/z) as described in previous studies28–30. The internal standard
used to convert area under the peak into concentration was
identified using the specific ions as also described in previous
studies28–30. All the quantifications have been performed using an
external calibration set up in an old red Bordeaux wine matrix.

Chromatograms were extracted from Agilent Chemstation
software (Agilent Technologies, Santa Clara, CA, USA) as a .csv
file without any signal alignment nor baseline correction. These
chromatograms specify the signal intensity (A.U.) as a function of
retention time. We analyzed the chromatograms separately
(“esters”, “oak”, “offFla”) or as a single large chromatogram
obtained by concatenating all three chromatograms together
along the retention time axis (“concat”).

It is important to note that the TIC chromatogram includes
peaks produced by the fragmentation of compounds of the wine
extract which are not exclusively in the targeted classes. Examples
of chromatograms are presented in Fig. S1.

Data analysis
Dimensionality reduction. We used the t-SNE31 and uniform
manifold approximation (UMAP)32 algorithms to reduce the
thousands of dimensions of the chromatograms (corresponding to
the retention times) to two (or three dimensions, without any
visible structure beyond that seen in two dimensions, Fig. S2),
constrained by the distance structure between the chromatograms.
The analysis was performed with custom Python scripts, using the
scikit-learn library33 and a Python library for UMAP32 with default
parameters, except perplexity= 30 for tSNE and n_neigbors= 60
for UMAP. Before dimensionality reduction, we pre-processed the
data by standard scaling, i.e., for a given chromatogram, each
feature (dimension= retention time) was z-scored with respect to
all chromatograms (wine samples) of a given type. That means the
mean of this feature across samples was subtracted and then it was
divided by the standard deviation of this feature across samples (see
Fig. S1 for example chromatograms).

Supervised decoding. The supervised decoding of estate/vintage
from chromatograms was performed with LR and linear dis-
criminant analysis (LDA), implemented in Python, packaged in

scikit-learn33, with default parameters; no hyper-parameter tun-
ing was needed. We used leave-7-out cross-validation for the
estate decoding, which consists in splitting the data set into 73
data points for training the classifier and 7 data points for
determining generalization performance. The set of seven test
wines was obtained by drawing one wine randomly from each of
the seven estates. We repeated this split 50 times and reported the
average performance over all spits. A similar procedure was used
for vintages, but using leave-12-out cross-validation, where 12 is
the number of distinct vintages.

Binning and “survival of the fittest” algorithm. We tested if sec-
tions of the chromatograms contained decodable estate/vintage
information by first binning each chromatogram into N non-
overlapping consecutive bins of equal size (N= 50 in Fig. 3, and
N= 5, 10, 20 in Fig. S9). For instance, the oak chromatogram has
30 k data points (ordered by retention time), then the first bin
contains the first 600 data points, the second the next 600, and so
on, and the 50th bin contains the last 600 data points.

We then tested how the iterative removal of bins (sections of the
chromatogram) prior to decoding impacted performance, keeping
at each step the best bins. More specifically, the procedure is as
follows: we started with all N bins and then systematically removed
one bin at a time. Each time, we quantified the change in
performance when removing one bin. We then selected the bin for
which the change in performance was the most favorable (either
the smallest drop or largest improvement in performance) and then
removed this bin permanently from the chromatogram, resulting in
a chromatogram with N-1 bins. We repeated this procedure N-1
times until only one bin remained and reported performance each
time a bin was removed. In other words, this procedure removes
iteratively the most informative bins.

We coined this procedure “survival of the fittest” in the sense
that the last few bins to be removed are among the most
informative ones.

Statistics. We used two different one-tailed significance tests.
First, decoding estate or vintage resulted in a distribution of
decoding accuracies for different train/test splits. Here, a t test
implemented in Scipy (scipy.stats.ttest_1samp34) was used to
estimate the likelihood that the chance level is the mean of the
distribution of decoding accuracies. We corrected p-values via
Bonferroni’s method, multiplying them by the number of com-
parisons (8 for vintage and estate decoding, as there are three
chromatogram types, their concatenation, and two classifiers).

Data availability
The data for this study are available at https://github.com/mschart/wine_decoding.

Code availability
All the code for the analysis presented here is open source and publicly available at:
https://github.com/mschart/wine_decoding All figures can be readily generated from the
raw data contained in the same GitHub repository.

Received: 9 August 2023; Accepted: 2 November 2023;

References
1. van Leeuwen, C. & Darriet, P. The impact of climate change on viticulture and

wine quality. J. Wine Econ. 11, 150–167 (2016).
2. van Leeuwen, C. et al. Recent advancements in understanding the terroir effect

on aromas in grapes and wines. Oeno. One 54, 985–1006 (2020).

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01051-9 ARTICLE

COMMUNICATIONS CHEMISTRY | (2023)6:247 | https://doi.org/10.1038/s42004-023-01051-9 |www.nature.com/commschem 9

https://github.com/mschart/wine_decoding
https://github.com/mschart/wine_decoding
www.nature.com/commschem
www.nature.com/commschem


3. Ramos, R. P. et al. Non-invasive setup for grape maturation classification
using deep learning. J. Sci. Food Agric. 101, 2042–2051 (2021).

4. Cosme, F., et al. Authentication of Douro DO monovarietal red wines based
on anthocyanin profile: comparison of partial least squares—discriminant
analysis, decision trees, and artificial neural networks. Food Control, 125,
107979 (2021).

5. Da Costa, N. L., Valentin, L. A., Castro, I. A. & Barbosa, R. M. Predictive
modeling for wine authenticity using a machine learning approach. Artif.
Intell. Agric. 5, 157–162 (2021).

6. Valls Fonayet, J., Loupit, G., & Richard, T. MS- and NMR-metabolomic tools
for the discrimination of wines: Applications for authenticity. In Advances in
Botanical Research, Vol. 98, 297–357 (Elsevier, 2021).

7. Ranaweera, R. K. R., Gilmore, A. M., Capone, D. L., Bastian, S. E. P. & Jeffery,
D. W. Authentication of the geographical origin of Australian Cabernet
Sauvignon wines using spectrofluorometric and multi-element analyses with
multivariate statistical modeling. Food Chem. 335, 127592 (2021).

8. Picard, M. et al. Involvement of dimethyl sulfide and several polyfunctional
thiols in the aromatic expression of the aging bouquet of red Bordeaux wines.
J. Agric. Food Chem. 63, 8879–8889 (2015).

9. Sherman, E., Coe, M., Grose, C., Martin, D. & Greenwood, D. R.
Metabolomics approach to assess the relative contributions of the volatile and
non-volatile composition to expert quality ratings of pinot noir wine quality. J.
Agric. Food Chem. 68, 13380–13396 (2020).

10. Koundouras, S. Environmental and viticultural effects on grape composition
and wine sensory properties. Elements 14, 173–178 (2018).

11. Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C.
Influence of Vineyard Location and Vine Water Status on Fruit Maturation of
Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and
Aroma Components. J. Agric. Food Chem. 54, 5077–5086 (2006).

12. Arapitsas, P. et al. Use of untargeted liquid chromatography–mass
spectrometry metabolome to discriminate italian monovarietal red wines,
produced in their different terroirs. J. Agric. Food Chem. 68, 13353–13366
(2020).

13. Cordero, C., Schmarr, H.-G., Reichenbach, S. E. & Bicchi, C. Current
developments in analyzing food volatiles by multidimensional gas
chromatographic techniques. J. Agric. Food Chem. 66, 2226–2236 (2018).

14. Ferreira, V., López, R., Escudero, A. & Cacho, J. F. Quantitative determination
of trace and ultratrace flavor active compounds in red wines through gas
chromatographic–ion trap mass spectrometric analysis of microextracts. J.
Chromatogr. A 806, 349–354 (1998).

15. Coetzee, P. P., van Jaarsveld, F. P. & Vanhaecke, F. Intraregional classification of
wine via ICP-MS elemental fingerprinting. Food Chem. 164, 485–492 (2014).

16. Gougeon, L., da Costa, G., Guyon, F. & Richard, T. 1H NMR metabolomics
applied to Bordeaux red wines. Food Chem. 301, 125257 (2019).

17. Philippidis, A. et al. Application of ultraviolet-visible absorption spectroscopy
with machine learning techniques for the classification of Cretan wines. Foods
10, 9 (2020).

18. Li, S., Blackman, J. W. & Schmidtke, L. M. Exploring the regional typicality of
Australian Shiraz wines using untargeted metabolomics. Aust. J. Grape Wine
Res. 27, 378–391 (2021).

19. Adami, L. et al. Geographic origin of southern Brazilian wines by carbon and
oxygen isotope analyses. Rapid Commun. Mass Spectrom. 24, 2943–2948 (2010).

20. Bramley, R. G. V. & Ouzman, J. Underpinning terroir with data: on what
grounds might subregionalization of the Barossa Zone geographical indication
be justified? Aust. J. Grape Wine Res. 28, 196–207 (2022).

21. Pearson, W. et al. Regionality in Australian Shiraz: compositional and climate
measures that relate to key sensory attributes. Aust. J. Grape Wine Res. 27,
458–471 (2021).

22. Koranga, M. Pandey, R., Joshi, M. & Kumar, M. Analysis of white wine using
machine learning algorithms.Materials Today: Proceedings, S221478532101316X.
https://doi.org/10.1016/j.matpr.2021.02.229 (2021).

23. Monforte, A. R., Martins, S. I. F. S. & Silva Ferreira, A. C. Discrimination of white
wine aging based on untarget peak picking approach with multi-class target
coupled with machine learning algorithms. Food Chem. 352, 129288 (2021).

24. Laboyrie, J. (2020). Composition et origine du bouquet de vieillissement des
vins rouges de Bordeaux. Influences du terroir dans l’expression aromatique des
vins vieux. (PhD Université de Bordeaux).

25. Ranaweera, R. K. R., Bastian, S. E. P., Gilmore, A. M., Capone, D. L. & Jeffery,
D. W. Absorbance-transmission and fluorescence excitation-emission matrix
(A-TEEM) with multi-block data analysis and machine learning for accurate

intraregional classification of Barossa Shiraz wine. Food Control 144, 109335
(2023).

26. Souza Gonzaga, L., Bastian, S. E. P., Capone, D. L., Ranaweera, R. K. R. &
Jeffery, D. W. Modelling Cabernet-Sauvignon wine sensory traits from
spectrofluorometric data. OENO One 55, 19–33 (2021).

27. Gehlken, J., Pour Nikfardjam, M. & Zörb, C. Prediction of sensory
attributes in winemaking grapes by online near-infrared spectroscopy
based on selected volatile aroma compounds. Anal. Bioanal. Chem. 415,
1515–1527 (2023).

28. Antalick, G., Perello, M.-C. & de Revel, G. Development, validation, and
application of a specific method for the quantitative determination of wine
esters by headspace-solid-phase microextraction-gas chromatography–mass
spectrometry. Food Chem. 121, 1236–1245 (2010).

29. Bloem, A., Lonvaud-Funel, A. & de Revel, G. Hydrolysis of glycosidically
bound flavor compounds from oak wood by Oenococcus oeni. Food
Microbiol. 25, 99–104 (2008).

30. Franc, C., David, F. & de Revel, G. Multi-residue off-flavour profiling in wine
using stir bar sorptive extraction–thermal desorption–gas
chromatography–mass spectrometry. J. Chromatogr. A 1216, 3318–3327
(2009).

31. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605 (2008).

32. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation
and projection for dimension reduction. arXiv:1802.03426 [cs, stat] (2020).

33. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

34. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261–272 (2020).

Author contributions
A.P., S.M., J.M.B., and M.S. devised the analysis ideas. A.P., S.M., and M.S. wrote the
manuscript. M.S. and A.P. performed the analyses. M.S. created figures. J.L., L.R., and
S.M. obtained the data and devised the data type.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42004-023-01051-9.

Correspondence and requests for materials should be addressed to Stephanie Marchand
or Alexandre Pouget.

Peer review information Communications Chemistry thanks the anonymous reviewers
for their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2024

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01051-9

10 COMMUNICATIONS CHEMISTRY | (2023)6:247 | https://doi.org/10.1038/s42004-023-01051-9 | www.nature.com/commschem

https://doi.org/10.1016/j.matpr.2021.02.229
https://doi.org/10.1038/s42004-023-01051-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commschem

	Predicting Bordeaux red wine origins and vintages from raw gas chromatograms
	Results
	Recovering terroir through dimensionality reduction
	Estate and vintage identification
	Detailed analysis of chromatograms
	Chemical-compounds based analysis

	Discussion
	Material and methods
	Wine samples
	Gas Chromatography data acquisition and post-acquisition treatment
	Analysis of off-flavor compounds using SBSE extraction
	Analysis of oak-flavor compounds using liquid/liquid extraction
	Analysis of esters using SPME extraction
	Quantification of specific chemical compounds
	Data analysis
	Dimensionality reduction
	Supervised decoding
	Binning and “survival of the fittest” algorithm
	Statistics

	Data availability
	References
	Code availability
	References
	References
	Author contributions
	Competing interests
	Additional information




