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Luminescence enhancement by
symmetry-breaking in the excited
state in radical organic light-
emitting diodes
Satoru Ohisa 1✉ & Satoshi Honda 2✉

Organic π-conjugated radicals have recently joined the ranks of high-efficiency
light-emitting materials; however, their light-emission mechanism is still a
matter of debate. Here, the authors highlight a recently proposed luminescent
enhancement mechanism and record-breaking efficiency of a radical organic
light-emitting diode.

Light-emitters for organic light-emitting diodes (OLEDs)
OLEDs are devices that convert electricity into light and are used as displays and in lighting1.
Under electric bias, holes and electrons are injected into OLEDs from the anode and cathode.
The injected carriers recombine on light-emitting molecules to generate excitons followed by
light emission. The luminous efficiency of the OLEDs significantly depends on the type of light
emitter used. In the closed-shell light-emitting molecule system (Fig. 1a), the ground state is a
singlet, and bright singlet and dark triplet excitons are generated in a 1:3 ratio at carrier
recombination. Therefore, the internal quantum efficiency (IQE) is limited to only 25%, as
shown in Fig. 1a, corresponding to a limited external quantum efficiency (EQE) of 7.5%,
assuming a light out-coupling efficiency (OCE) of 30%. To boost the luminous efficiency in
OLEDs, efficient conversion of dark triplet to bright singlet excitons is essential. To realize
efficient triplet-singlet conversion, the recent developments of OLEDs have brought various
types of light-emitting molecules showing heavy-metal mediated phosphorescence2, triplet-
triplet annihilation (TTA)3 and thermally activated delayed fluorescence4, resulting in high-
efficiency OLEDs with an EQE of over 30%5. On the other hand, recently, open-shell neutral
organic π-conjugated radicals (OPRs) have received great attention as a new class of highly
efficient light-emitters for OLEDs (Fig. 1b)6–10. In this system, both the spin multiplicities of
the ground state (D0) and the lowest-lying excited state (D1) are doublets, and the D0–D1

electronic transition is spin-allowed, making all the generated excitons bright. Therefore, the
IQE can reach 100% when OPRs are used as light emitters, as shown in Fig. 1b, and high-
efficiency OLEDs can be realized. However, despite these attractive properties of OPRs, they
have long not been applied to OLEDs. Significant improvements were necessary in the stability
and photoluminescence quantum efficiency (PLQE) for OLED applications, as described
below.

OPRs for OLED application
Organic carbon radicals have lone pairs on carbon atoms and are generally known as unstable
chemical species. The insufficient electronegativity of the carbon nucleus cannot bind the lone
pair to the carbon atom, and the loosely bound lone pair easily reacts with other chemical
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species. There are two strategies to stabilize organic carbon
radicals (Fig. 1c)11,12. One is the delocalization of the lone pair to
the π-conjugated system to form OPRs. One representative
example is the triphenylmethane (TPM) radical. The lone pair
delocalizes to the three phenyl rings and becomes stabilized by π-
conjugation. The other is the introduction of steric hindrance
near the radical to prevent the chemical reaction. One repre-
sentative example is the tris(2,4,6-trichlorophenyl)methane
(TTM) radical. The substituted chlorine atoms on the phenyl
rings act as steric hindrance, and thus, it is more difficult for other
molecules to be close to the radical than the unsubstituted TPM
radical, bestowing further stabilization to the TTM radical. The
TTM radical is stable at room temperature in contact with air and
has light-emitting properties, albeit at a low PLQE of several
percent. However, the TTM radical is weak against photoexcita-
tion and immediately undergoes decomposition. The recent
development of OPRs has overcome these difficulties. The
recently developed OPRs are summarized in Fig. 1d. The first
TTM radical-based OLED was developed by Peng et al. They
utilized a TTM radical substituted by one carbazole (1Cz),
developed by Gamero et al., as a light emitter6, 13. The TTM-1Cz-
based OLED showed deep red electroluminescence with a peak
wavelength of 700 nm. However, the achieved maximum EQE
was limited to 2.4%. The breakthrough of efficiency improve-
ments was brought by Ai et al.7 in 2018. They incorporated 3-
substituted-9-phenyl-9H-carbazole (3PCz) and 3-substituted-9-
(naphthalen-2-yl)-9H-carbazole (3NCz) into the core TTM
radical. TTM-3PCz and TTM-3NCz doped in solid 4,4-bis(car-
bazol-9-yl)biphenyl (CBP) films (3.0 wt%) exhibited high PLQEs
of 60.4% at 695 nm and 85.6% at 707 nm, respectively. TTM-
3NCz showed a much higher resistance than TTM in cyclohexane
solution under photoexcitation. The PL half-life of TTM was
~20 s, while the PL intensity of TTM-3NCz did not change after
several thousand seconds. In addition, TTM-3NCz and TTM-
3PCz exhibited high thermal resistance, enabling OLED fabrica-
tion using a thermal evaporation process. OLEDs were fabricated
using these radicals as light emitters. Surprisingly, a maximum
EQE of 17% for TTM-3PCz and 27% for TTM-3NCz were
achieved. This high EQE of 27% is close to the theoretical limit of
30%. Thus, Ai et al. proved that the IQE can reach 100% when
using radical emitters7. This success was achieved by improve-
ments in radical stability and PLQE. The spread of π-conjugation
in the substituted TTM is greater than that of TTM, and the lone
pair can delocalize more, which is the reason for the stability
improvement. In the luminous efficiency, in general, a large
overlap between the singly occupied molecular orbital located at
the core TTM and the highest occupied molecular orbital located
at the carbazole substituent is necessary for a large oscillation

strength. In addition, Abdurahman et al. proposed the PLQE
enhancement mechanism by intensity borrowing from an intense
high-lying electronic transition to a weak low-lying charge-
transfer electronic transition9. However, the mechanism of
luminous efficiency improvement is still a matter of debate.

Luminous efficiency enhancement by symmetry breaking in
the excited state
Very recently, Murto et al. reported the synthesis of mesityl group-
substituted TTM radicals (M1TTM, M2TTM, and M3TTM), and
M3TTM, having the highest symmetry, showed the highest PLQE10,
which is not explained by the above two mechanisms (Fig. 2a). They
explained the mechanism by symmetry breaking in the excited state,
where the dihedral angle of one mesitylated phenyl moiety is twisted
significantly more than the other two moieties, producing a large
transition dipole moment in M3TTM and enhancing the PLQE to
28% from 8% of that of the unsubstituted TTM radical in a film
doped with CBP host (Fig. 2b). This proposed mechanism is ver-
satile and can broaden the scope of molecular design for PLQE
enhancement, and it is worth exploring other substituents to further
improve the PLQE. They modified TTM-3PCz with two mesityl
substituents (M2TTM-3PCz), resulting in an increase in the PLQE to
93% in a film doped with a CBP host. The OLED using M2TTM-
3PCz was fabricated and showed a record-breaking EQE of 28% at a
wavelength of 689 nm. However, efficiency roll-off was observed in
the low current density region, and the efficiency decreased at high
luminance. In the doped film, time transient PL measurements were
performed, and the formation of the intermolecular charge-transfer
complex between the luminescent radicals and CBP host was
observed, resulting in long-lived excited states on the order of
microseconds. In closed-shell systems, TTA, a long-lived triplet-to-
triplet reaction, is thought to be responsible for the efficiency roll-off
at high current densities14. Even in the open-shell system of this
study, reactions between doublet and doublet excitons can occur and
cause roll-off. The interaction between radicals and host molecules
will need to be studied in detail to avoid generating long-lived
intermolecular CT states. They also synthesized a main-chain
copolymer of mesitylated TTM and 9,9-dioctyl-9H-fluorene
(PFMTTM) based on the postpolymerization radicalization of a
nonradicalized precursor, which is the first report of a luminescent
polymer with radicals embedded in the main-chain. PFMTTM
showed significantly redshifted emission beyond 800 nm, which is
expected to be a new near-infrared light source (Fig. 2c).

Outlook
While the present postpolymerization radicalization strategy did
not convert all the parent units to their radical forms, as evident

Fig. 1 Schematic illustrations of energy level diagrams and organic π-conjugated radicals for OLEDs. Differences in emission mechanisms of
a conventional closed-shell and b open-shell systems. Chemical structures of c conventional triphenylmethane (TPM) and tris (2,4,6-trichlorophenyl)
methane (TTM) radicals and d recently developed stable light-emitting radicals for OLEDs operating in the open-shell system.
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from the luminescence from nonradicalized units (Fig. 2c),
alternative methodologies for improving the radicalization effi-
ciency or luminescence efficiency, such as polymerization of
preradicalized monomers, will lead to the birth of further
sophisticated luminescent polymers in combination with the
expansion of available monomers and host molecules to replace
CBP. Until a decade ago, it was common for radicals not to emit
light and could not be applied in OLEDs; however, the recent
developments of OPRs overturned this common sense. The future
emergence of green- and blue-emitting OPRs with improved
stability will open up possibilities for multicolor display
applications.
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Fig. 2 Organic π-conjugated radicals improved in luminous efficiency by symmetry breaking and polymerization as tools for shifting luminescent
properties. a Chemical structures of M3TTM, M2TTM-3PCz, and PFMTTM radicals. b Computationally optimized geometries of the M3TTM radical at
vertical and adiabatic excited states. D1 emission is enhanced by excited-state symmetry breaking. c Normalized PL spectra of M3TTM, M2TTM-3PCz, and
PFMTTM. Copyright: Modified from ref. 10 used under CC BY.
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