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Practical N-to-C peptide synthesis with minimal
protecting groups
Toshifumi Tatsumi1, Koki Sasamoto1, Takuya Matsumoto 1, Ryo Hirano1, Kazuki Oikawa1, Masato Nakano2,

Masaru Yoshida2, Kounosuke Oisaki 1,2✉ & Motomu Kanai 1✉

Accessible drug modalities have continued to increase in number in recent years. Peptides

play a central role as pharmaceuticals and biomaterials in these new drug modalities.

Although traditional peptide synthesis using chain-elongation from C- to N-terminus is

reliable, it produces large quantities of chemical waste derived from protecting groups and

condensation reagents, which place a heavy burden on the environment. Here we report an

alternative N-to-C elongation strategy utilizing catalytic peptide thioacid formation and oxi-

dative peptide bond formation with main chain-unprotected amino acids under aerobic

conditions. This method is applicable to both iterative peptide couplings and convergent

fragment couplings without requiring elaborate condensation reagents and protecting group

manipulations. A recyclable N-hydroxy pyridone additive effectively suppresses epimeriza-

tion at the elongating chain. We demonstrate the practicality of this method by showcasing a

straightforward synthesis of the nonapeptide DSIP. This method further opens the door to

clean and atom-efficient peptide synthesis.
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Amide bonds are a recurring structural motif found in both
naturally occurring and man-made molecules, as ubiqui-
tously observed in the backbone of proteins/peptides,

drugs, and functional materials. Amide bond formation is the
most frequently used chemical reaction in medicinal chemistry;
approximately 50% of drug discovery papers contain amide bond
formation, twice as many as 30 years prior1,2. In recent years,
efficient amide bond formations are especially important due to
the emergence of medium-sized peptide drugs, which frequently
exhibit unique characteristics and advantages over small molecule
drugs and antibodies3,4.

The traditional peptide synthesis iteratively elongates the chain
from the C-terminus to N-terminus (C-to-N) using excess
N-carbamate-protected amino acids and condensation reagents
to minimize epimerization (Fig. 1a)5. Combined with solid-phase
synthesis, the C-to-N elongation method has enabled facile
construction of peptides of up to ca. 50 amino acid residues, and
the introduction of revolutionary automated flow systems pro-
mises to increase this number6. Further, combined with native
chemical ligation methods, synthesis of proteins with even 400
or more amino acid residues is also possible7. The maximum
size of peptides/proteins that can be produced by chemical
synthesis is rapidly increasing. Despite high fidelity and reliability,
every C-to-N peptide bond formation requires multiple
protecting-group manipulations and non-recoverable condensa-
tion reagents that produce waste. For example, the average
molecular weight of an amino acid is ca. 110, but the molecular
weights of commonly used protecting groups (Cbz: 135, Boc: 101,
Fmoc: 223) or condensation reagents (EDC-HCl: 191, HATU:
380, COMU: 428, BOP: 442) are comparable to or much greater
than the substrate. Furthermore, C-to-N elongation of anything
longer than dipeptides often suffers from diketopiperadine for-
mation, when a simple C-terminus ester protecting group is
used8. Therefore, traditional peptide synthesis is of low atom
efficiency and high environmental impact9–12. In an era more
conscious of environmental preservation and sustainability,
greener peptide synthesis is in high demand. Pursuing this,
nonclassical amide bond formations13,14 have been extensively
studied, and some of them have been applied to C-to-N oligo-
peptide synthesis15–23. However, many protocols still require
harsh conditions (high temperatures for azeotropic removal of
water), super-stoichiometric reagents of sometimes poor acces-
sibility, and protecting groups.

N-to-C peptide elongation (Fig. 1b) is less explored than C-to-N
elongation due to difficulty in suppressing epimerization of the
C-terminus amino acid residue’s stereocenter24–32. Because the two
amino groups, one in the elongating peptide strand and the other in
the amino acid to be introduced, are already differentiated as amide
and amine groups, respectively, this strategy is potentially advan-
tageous in improving both atom and step efficiency by minimizing
protecting group manipulations. Here we report an iterative and
practical N-to-C peptide synthesis in liquid phase, in which epi-
merization is minimal. This method enables the use of unprotected
amino acids and does not require elaborate condensation reagents,
thus markedly improving the atom and step efficiency of liquid-
phase peptide synthesis. Moreover, this method is applicable to
convergent fragment coupling, as demonstrated in the short and
scalable synthesis of a bioactive nonapeptide.

Results and discussion
Optimization of conditions. To realize N-to-C peptide synthesis,
we employed the peptide thiocarboxylic acid (PTC) platform
(Fig. 1b)33. Amide bond formation using PTC under various con-
ditions has been reported34–43, but PTCs have never been used
in iterative N-to-C peptide synthesis. Based on our previous

development of a general, one-step PTC synthesis from peptides
using a catalytic diacetyl sulfide (Ac2S) and potassium thioacetate
(AcSK)44, we envisioned the scheme shown in Fig. 1b. Converting
the C-terminus carboxylic acid to PTC differentiates the elongating
peptide strand from the amino acid to be introduced without pro-
tecting groups. After peptide bond formation, the new C-terminus
carboxylic acid can be directly used for the PTC formation to start
the next elongation cycle. Elemental sulfur and water are the only
waste produced in this peptide bond formation step.

We started optimizing the PTC-based N-to-C elongation using
1a to produce tripeptide 2aa (Table 1). Although PTC is inert to
amide formation by itself, oxidatively dimerized diacyl disulfide is
the active acylating species45. We first searched for aerobic
conditions to convert 1a to diacyl disulfides in situ, which would
be captured by alanine calcium salt (Ca(Ala)2)46. Using an
iron(II) phthalocyanine (FePc) catalyst in open-air DMF,
tripeptide 2aa was obtained in 22% yield (entry 1). Next,
N-hydroxy amine/amide/imide additives were screened to
improve the reactivity while maintaining the low epimerization
level (entries 2–6)37. Among the additives tested, 3-hydroxy-
1,2,3-benzotriazin-4(3H)-one (HOObt) afforded acceptable
results, producing 2aa in 33% yield and <1% epimerization
(entry 6). When the concentration was increased to 100 mM,
yield improved to 68%, while epimerization remained suppressed
(<1% epi. level, entry 7). Then, the same conditions as in entry 7
were applied to the more sterically hindered dipeptide 1b.
Product tripeptide 2ba, however, was produced only in a low
yield (35%) with an increased epimerization level (6.1% epi. level,
entry 8). HPLC analysis revealed that FcPc degraded the diacyl
disulfide intermediate derived from 1b prior to condensation.
Therefore, we eliminated FePc, resulting in improved yield (64%,
entry 9), although the reaction was sluggish (22 h) and the
epimerization level was still high (4.9% epi. level). When alanine
(H-Ala-OH), instead of Ca(Ala)2, was used to mitigate basicity of
the reaction system, the epimerization level was reduced to 1.3%
(entry 10). Using DMSO as a solvent to promote diacyl disulfide
formation47, yield improved (70%) but the epimerization level
increased (4.5% epi. level, entry 11). The epimerization level was
decreased when the reaction was performed in a less-polar
DMSO/toluene mixed solvent system (1.8% epi. level, entry 12;
Table S1). Further investigation for N-hydroxy amide additives
led us to identify that N-hydroxy-2-pyridinone methyl ester
(HOPOMe)48,49 improved yield while reducing the epimerization
level to <1% (entry 13). Increasing the amounts of alanine (2.0
equiv) and HOPOMe (2.0 equiv) enhanced the reactivity to give
86% yield of 2ba after 6 hours (entry 14). However, separation of
the crystalline HOPOMe from the tripeptide product was difficult.
Further structural tuning afforded the optimal additive,
HOPOPhy (entry 15), which could be easily recovered by a
simple hexane washing and reused (Table S2).

Scope and limitations. After developing a practical isolation
protocol of the products (recrystallization or flash chromato-
graphy, see the Method section), the optimized conditions were
used to survey substrate generality (Fig. 2).

First, we investigated the generality of amino acids to be
introduced using 1b as a peptide substrate (Fig. 2a). The reaction
proceeded in high yield (78–99%) with <1−1.8% epimerization
for amino acids bearing hydrophobic (Val: 2bb, Phe: 2bd, Ile:
2be, Met: 2bf, Trp: 2bg, tLeu: 2bp) or protected (Cys: 2bh, Lys:
2bn, Arg: 2bo) side chains, due to their acceptable solubility in
the optimized solvent. Specifically, the sterically hindered amino
acid, tLeu, was introduced to 1b to produce tripeptide 2bp
containing a highly congested sequence (Phe-Val-tLeu) in high
yield (93%) with <1% epimerization. Ala and Gly were barely
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soluble in the solvent and produced slightly higher epimerization
levels (ca. 2.1% for: 2ba and 1.0% for 2bc). For relatively less
soluble amino acids bearing polar side chains (Thr, Tyr, Asp,
Asn), however, the reaction under the above optimized condi-
tions resulted in low yield (9–48%), likely due to insufficient
concentration of the amino acids. In these cases, PTC hydrolysis
preceded the desired peptide coupling. Further modifying the
reaction conditions, we found that by using DMSO solvent

without added toluene, the HOPOMe additive which is more
active than HOPOPhy, a desiccant (MgSO4), and/or microwave
irradiation (40 °C, see section 1-1 in Supplementary Methods for
detailed parameters), the desired tripeptides were obtained in
high yield (67–94%) with <1% epimerization. Side chain
protection was not necessary for amino acids containing
functional groups of moderate nucleophilicity (Trp: 2bg, Ser:
2bi, Thr: 2bj, Tyr: 2bk, Asn: 2bl, and Asp: 2bm).

a C-to-N Method

b This work (PTC-based N-to-C Method)
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Fig. 1 C-to-N and N-to-C peptide syntheses. a Traditional peptide synthesis elongates the peptide chain from C-terminus to N-terminus. Protecting groups
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Fig. 2 Substrate scope. a Scope of main-chain unprotected amino acids to be introduced. b Scope of N-terminus protecting groups. c Scope of
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Regarding the N-terminus protecting group on the PTC, Fmoc
and Boc groups were also compatible with the current protocol
(Fig. 2b: 2cb and 2db). As for the C-terminus amino acids of the
elongating peptides, the reaction proceeded without any detect-
able epimerization at Phe (2ab) and Pro (2gb) residues (Fig. 2c).
Furthermore, this method can be expanded to the convergent
couplings of two peptide fragments. After liberation of the
N-terminus amine from trifluoroacetic acid (TFA) salt of the
peptide to be introduced with N,N-diisopropylethylamine
(iPr2NEt), the fragment coupling between dipeptides proceeded
affording tetrapeptide 2br in 99% yield without epimerization
(Fig. 2d, see Fig. 3b for more examples of fragment coupling).
Due to the higher solubility of peptide fragments compared to
unprotected monoamino acids, only a slight excess (1.2 equiv) of
C-terminus fragments was necessary. A preliminary application

of this method to solid-phase peptide synthesis (SPPS), however,
resulted in only low-yield product formation (Table S3).

Scalable, convergent liquid-phase synthesis of bioactive pep-
tide. We applied our method to the synthesis of a bioactive
nonapeptide, delta-sleep-inducing peptide (DSIP) (Fig. 3). DSIP
was retrosynthesized to three tripeptides, Fragments 1–3. As the
starting amino acids for each fragment, we selected Boc-Trp for
Fragment 1 aiming at global deprotection under acidic condi-
tions at the final step, and Fmoc-Gly and Fmoc-Ser for Fragment
2 and Fragment 3, respectively, for selective deprotection prior to
two fragment couplings.

After converting a C-terminus carboxylic acid to PTC, an
unprotected amino acid was coupled under the conditions
described above (Fig. 3a). The crude product obtained after

Fig. 3 Scalable and convergent liquid-phase synthesis of DSIP. a Synthesis of Fragments 1–3 by iterative N-to-C peptide elongation. b Coupling of
fragments and global deprotection leading to DSIP. c 130mg of DSIP isolated as white powder. d Purity of DSIP was confirmed as >90% by LC-MS analysis.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01030-0

6 COMMUNICATIONS CHEMISTRY |           (2023) 6:231 | https://doi.org/10.1038/s42004-023-01030-0 | www.nature.com/commschem

www.nature.com/commschem


extraction with ethyl acetate (AcOEt) and evaporation of the
solvent, was washed with hexane to extract HOPOPhy (75–95%
recovery). The recovered and purified HOPOPhy was reusable
without any loss of its activity. Then, the residue containing
the product peptide was dissolved in AcOEt or MeOH, and the
solution was treated with activated carbon. This process
efficiently eliminated residual sulfur compounds, which were
often problematic for the next peptide coupling and purification.
The subsequent simple purification by silica gel column
chromatography afforded the desired di- and tripeptides in good
yield with sufficient purity for the next iteration or fragment
coupling. For the removal of Fmoc group, we used triethylamine
as a base. After evaporation, the crude mixture was dissolved in a
biphasic solvent comprised of water and ether, which contained
the product peptides and Fmoc-derived side products, respec-
tively. The water phase was separated and freeze dried.
Consequently, Fragments 1–3 were synthesized in pure forms
in a scalable manner (>300 mg prepared for each).

Then, fragment couplings were performed (Fig. 3b). After
converting Fragment 1 to PTC, the reaction with Fragment 2
yielded hexapeptide 3 in 66% yield (2 steps) without column
chromatography. Hexapeptide 3 was further converted to PTC
and coupled with Fragment 3 to yield protected DSIP 4 in 56%
yield (2 steps) without column chromatography. Finally, global
deprotection and purification by reverse-phase column chroma-
tography afforded 130 mg of DSIP in 62% yield (Fig. 3c, d),
showcasing that the current protocol is practical in supplying
middle-sized bioactive peptides.

Mechanistic studies. To gain insight into the mechanism of the
peptide coupling, the reaction was monitored over time by HPLC.
When PTC 1b was stirred under air without a coupling partner,
1b was oxidatively dimerized to 5 within 1 h (Fig. 4a). Under the
indicated conditions in the presence of HOPOPhy, PTC 1b was
consumed in 1 h, producing tripeptide 2ba in 81% yield. The
formation of elemental sulfur (S8) was confirmed by HPLC
during the reaction. Dimer 5 was observed at the initial stage of

the reaction (t < 30 min) but was consumed within 3 h and con-
verted to active ester 6. Then, 6 gradually reacted with alanine
and was fully converted to the tripeptide after 4.5 h (Fig. 4b, c).
From these reaction profiles, the rate-limiting step is likely the
peptide bond-forming step between active ester 6 and the amino
acid (Figs. S1‒S3).

Based on the above observations, a plausible reaction
mechanism is proposed as shown in Fig. 5. First, PTC 1
dimerizes under aerobic conditions to form diacyl disulfide 7.
DMSO solvent accelerates this oxidation step47. Diacyl disulfide 7
then reacts with the additive HOPOR to produce active ester 8,
thus suppressing undesired epimerization through oxazolidine
formation. The liberated acyl disulfide 9 reacts with 1 to generate
7 and H2S, or with HOPOR to generate active ester 8 and H2S2.
Active ester 8 gradually reacts with an unprotected amino acid or
peptide fragment to produce elongated peptide 2. H2S and H2S2
undergo oxidation to release stable S8 and water as the only
byproducts.

Conclusion
In this study, we developed an iterative, liquid-phase N-to-C
peptide synthesis relying on the PTC platform, which enabled the
use of unprotected amino acids as starting materials50. Only a one
atom difference (O vs. S) distinguished the C-termini of elon-
gating peptides and the unprotected amino acids being intro-
duced. Therefore, protecting group manipulations and the
number of synthetic steps were minimal compared with con-
ventional C-to-N synthesis. A reusable additive (HOPOPhy)
bearing a long-alkyl chain allowed for coupling of amino acids or
peptide fragments in high yield with minimal epimerization (<1%
in most cases). The only waste byproducts were water and ele-
mental sulfur, making the current process highly atom efficient. A
straightforward workup (extraction, hexane washing, activated
carbon treatment, and/or chromatography/recrystallization) after
the coupling reaction provided peptides with sufficient purity for
the next iteration. This method was applicable not only to
sequential elongation of single amino acids but also to convergent

30 oC, air

Cbz-Phe-Val-SCbz-Phe-Val-SH
2

DMSO/tol (1:1, 100 mM)
5
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40 oC (µW), air

H-Ala-OH (2.0 equiv)
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Fig. 4 Reaction profile. a Oxidative dimerization of PTC 1b under air. b Analysis of reaction intermediates during the N-to-C peptide coupling between PTC
1b and H-Ala-OH. c Time course tracking of the amounts of reaction intermediates by LC-MS.
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fragment couplings, which allowed for the rapid increase in
molecular complexity. Taking advantage of the characteristics of
this method, a practical synthesis of a bioactive nonapeptide was
demonstrated in a sub-gram scale. Although there are several
previous examples of N-to-C peptide elongation, their scopes
were limited or not thoroughly studied. Furthermore, these earlier
works require protecting groups or activating groups at the N- or
C-terminus, which diminished the potential advantages of N-to-C
elongation regarding atom efficiency. Our achievement will open
a green route to practically supplying peptides of ca. 10 residues
in length, a common size for synthetic peptide drugs. Further
studies investigating ways to accelerate the reaction rate while
reducing epimerization, as well as the applicability to late-stage
peptide functionalization, lateral coupling, cyclic peptide synth-
esis, and SPPS, are ongoing.

Methods
Procedure for gram-scale N-to-C peptide coupling (repre-
sented by the synthesis of Fragment 1). To a solution of Boc-WA
(1.18 g, 3.14mmol) and potassium thioacetate (3.59 g, 31.4 mmol,
10 equiv) in DMF (31.4 mL), diacetyl sulfide (65.7 μL, 0.628mmol,
0.2 equiv) was added dropwise at 0 °C and the mixture was stirred
for 3.5 hours at 0 °C under an argon atmosphere. Ethyl acetate,
water, and 1M HCl aq. were added to the reaction mixture to stop
the reaction. The products were extracted with ethyl acetate. The
combined organic layers were washed with water, 1 M HCl aq., and
brine, dried over Na2SO4, and filtered. Volatiles were removed
under reduced pressure to afford the crude PTC (Boc-WA-SH).
This crude product was used for the peptide coupling reaction
without further purification.

Boc-WA-SH. (estimated as 3.14mmol) dissolved in DMSO
(6.5mL) was added to a mixture of glycine (471mg, 6.18 mmol, 2.0
equiv), HOPOPhy (2.05 g, 4.71mmol, 1.5 equiv), and toluene
(6.5 mL) in a test tube for a microwave apparatus. The mixture was
stirred under microwave irradiation at 40 °C for 3 hours. Ethyl
acetate, water, and 1MHCl aq. were added to the reaction mixture.
The mixture was extracted with ethyl acetate. The combined
organic layers were washed with brine, dried over Na2SO4, filtered,
and volatiles were removed under reduced pressure. Hexane
(150mL) was added to the residue and the mixture was sonicated
to precipitate out the peptide product. The precipitates were col-
lected by filtration and washed with hexane. Then, the filtrate was
evaporated under reduced pressure for recovering HOPOPhy. The
resulting residue from hexane was purified by column chromato-
graphy (neutral silica gel, hexane/ethyl acetate= 80:20→ 50:50) to
afford HOPOPhy, which was reusable for another peptide coupling
reaction (1.95 g, 95% recovery).

Meanwhile, the sticky precipitate on the filter containing
tripeptide was once dissolved into a large amount of methanol
and ethyl acetate. Then, the solvent was removed under reduced
pressure. Ethyl acetate (50 mL) and activated carbon (400 mg)
were added to the mixture. This suspension was stirred at 80 °C
for 10 min under an argon atmosphere and then cooled to room
temperature. Activated carbon was filtered over Celite and
washed with ethyl acetate. The filtrate was evaporated under
reduced pressure to afford the tripeptide product, Fragment 1.
This crude product was purified by column chromatography
(silica gel, hexane/ethyl acetate = 70:30→ 0:100 then ethyl
acetate/methanol = 90:10→ 80:20) to afford pure Fragment 1
(931 mg, 69%).

Procedure for peptide fragment coupling (represented by the
synthesis of 2br). To a solution containing Cbz-Phe-Val-SH (1b,
50 mg, 0.12 mmol), H-Ala-Pro-OH TFA salt (43 mg, 0.144 mmol,
1.2 equiv), and HOPOPhy (78.4 mg, 0.18 mmol, 1.5 equiv) in
DMSO (600 μL) and toluene (600 μL), iPr2NEt (25 μL,
0.144 mmol, 1.2 equiv) was added. After stirring at 30 °C for
6 hours, a HPLC sample was prepared (12 μL of the reaction
mixture was picked up into 68 μL of 1% TFA/DMSO) for yield
determination. HPLC yield was determined as 99% (method B
in ESI).

TFA (68 μL) was added to the reaction mixture to quench the
reaction. After transferring the reaction mixture into a separatory
funnel, ethyl acetate and 1M HCl aq. were added. Organic
compounds were extracted with ethyl acetate (three times). The
combined organic layers were washed with brine and dried over
Na2SO4. After filtration, volatiles were removed under reduced
pressure. The crude mixture was purified by column chromato-
graphy (silica gel, hexane/ethyl acetate = 80:20, then chloroform/
methanol = 100:0→ 80:20). The obtained material was further
purified by reverse-phase preparative HPLC (method D in section
1-4 of Supplementary Methods, tR= 52.0 min). Fractions con-
taining the pure desired product were combined and lyophilized
to afford analytically pure 2br (43.3 mg, 64% isolated yield). For
NMR data of isolated new compounds, see Supplementary
Data 1.

Data availability
All relevant data are presented in the main article or the supporting information.
Detailed experimental procedures for the syntheses and characterizations of new
compounds, mechanistic studies, and HPLC analysis are available in Electronic
Supplementary Information. 1H and 13C NMR charts of isolated new compounds can be
found in the Supplementary Data 1.
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Fig. 5 Plausible reaction mechanism. PTC 1 is oxidatively dimerized to produce diacyl disulfide 7, which immediately forms active ester 8 by the reaction
with HOPOR, entering the N-to-C peptide coupling process to afford 2.
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