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Peptide binder design with inverse folding and
protein structure prediction
Patrick Bryant 1,2 & Arne Elofsson 1,2✉

The computational design of peptide binders towards a specific protein interface can aid

diagnostic and therapeutic efforts. Here, we design peptide binders by combining the known

structural space searched with Foldseek, the protein design method ESM-IF1, and AlphaFold2

(AF) in a joint framework. Foldseek generates backbone seeds for a modified version of ESM-

IF1 adapted to protein complexes. The resulting sequences are evaluated with AF using an

MSA representation for the receptor structure and a single sequence for the binder. We show

that AF can accurately evaluate protein binders and that our bind score can select these

(ROC AUC= 0.96 for the heterodimeric case). We find that designs created from seeds with

more contacts per residue are more successful and tend to be short. There is a relationship

between the sequence recovery in interface positions and the plDDT of the designs, where

designs with ≥80% recovery have an average plDDT of 84 compared to 55 at 0%. Designed

sequences have 60% higher median plDDT values towards intended receptors than non-

intended ones. Successful binders (predicted interface RMSD≤ 2 Å) are designed towards

185 (6.5%) heteromeric and 42 (3.6%) homomeric protein interfaces with ESM-IF1 com-

pared with 18 (1.5%) using ProteinMPNN from 100 samples.

https://doi.org/10.1038/s42004-023-01029-7 OPEN

1 Science for Life Laboratory, 172 21 Solna, Sweden. 2 Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
✉email: arne@bioinfo.se

COMMUNICATIONS CHEMISTRY |           (2023) 6:229 | https://doi.org/10.1038/s42004-023-01029-7 |www.nature.com/commschem 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-01029-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-01029-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-01029-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-01029-7&domain=pdf
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0003-3439-1866
http://orcid.org/0000-0002-7115-9751
http://orcid.org/0000-0002-7115-9751
http://orcid.org/0000-0002-7115-9751
http://orcid.org/0000-0002-7115-9751
http://orcid.org/0000-0002-7115-9751
mailto:arne@bioinfo.se
www.nature.com/commschem
www.nature.com/commschem


Designing peptide binders towards specified protein inter-
faces is a highly coveted goal with major impacts on
pharmaceutical development1. Over the past six decades,

there has been an 8% average annual increase in approved peptide
drugs, and global sales exceed $50 billion yearly2. Previously, the
state-of-the-art for computer-aided binder design3 relied on
docking scoring programs which are now significantly out-
performed by AlphaFold2 (AF)4–6. The resulting outcome of
these classical methods is that 1/100,000 designed sequences bind
to their target structures3. Alternatively, experimental techniques
such as directed evolution can be used together with classical
machine learning7,8 to improve the outcome coupled with phage
display9. However, none of the experimental methods can be used
to design a binder towards a certain interface region, potentially
resulting in binding optimisation towards unintended protein
regions.

Recent developments in deep learning, mainly based on AF,
have shown great promise for structure prediction of protein-
protein4,5 and protein-peptide10 interactions, as well as protein
design11,12. A recent protein design method, ProteinMPNN13,
further improved these achievements and created proteins with
significantly higher solubility than AF alone.

Protein design methods are evaluated in terms of overall
sequence recovery, which is arguably a bad measure if one wants
to design binders. The informative metric of binder sequences is
the recovery of interacting residues. A shift of only one residue
may result in 0% sequence recovery, but the interacting residues
may stay intact. The only possibility to evaluate this aspect, short
of obtaining experimental structures, is through structure
prediction.

Reevaluating previous designs3 using AF as a scoring function
reports experimental success rates of close to 90% in some cases
compared to only 0–5% using physics-based calculations14. These
methods have been applied to design binders with and without
scaffolds and known binding motifs15. Other methods, such as
MaSIF, utilise learned interaction potentials and protein scaffold
search to design binders16.

By inverting the structure prediction process, ESM-IF112, just
like ProteinMPNN, designs sequences that fit certain backbone
traces with a sequence recovery of 51% (52.4% for Pro-
teinMPNN). This model generalises to protein complexes despite
not being trained using this information, although the perfor-
mance for recovering interface residues is not known.

Here, we explore the possibility of designing peptide binders
towards 2843 heterodimeric protein interfaces and 1172 homo-
dimeric interfaces using ESM-IF1 generated sequences evaluated
with AF. We utilise available structures to generate seed struc-
tures with Foldseek17. Together, our approach results in an
automatic pipeline for designing peptide binders with the possi-
bility to scale to a large number of different target proteins.

Results
We begin with analysing the optimal way to predict the structure
of protein–peptide complexes and how to select the binders
which can be predicted with high accuracy. We find that
AlphaFold2 can distinguish true binding residues and create a
loss function that can select true binders from experimental data.
We consider binders to be successful when predicted and native
peptides have an interface RMSD ≤ 2 Å. This same loss function
(Eq. 1) is used throughout the study to evaluate binders. We
outline a procedure for binder design and evaluate it on all het-
eromeric interfaces in the PDB in a zero-shot approach. We
continue investigating the criteria for successful binder design,
representing highly confident predicted binders, convergence, and
off-target effects, and compare the performance with other

protein design methods. Notably, we apply methods developed
only for single-chain applications enabling large-scale evaluations
of generalisation abilities across known protein complexes.

Determining and validating a loss function for protein-peptide
design
Optimal protein–peptide structure prediction. AlphaFold2 (AF)
can predict the structure of protein–peptide complexes using a
multiple sequence alignment (MSA) to represent the target
structure and the single sequence for the peptide representation10.
The performance of this approach was reported using an
increased number of recycles (nine) and as the best of ten dif-
ferent models. If one aims to search for a sequence using AF as a
target function, having many recycles is ineffective, and a top-10
approach is unrealistic.

We evaluated the performance of AF on a set of 96 non-
redundant peptides10 using 1–10 recycles on top-1 predictions.
Fig. 1a shows the cumulative fraction of peptides below a certain
threshold in the average interface RMSD for different numbers of
recycles. The interface is defined to contain all beta carbons (Cβs)
within 8 Å between the peptide and its receptor protein. The
interface RMSD was calculated after aligning the alpha carbons
(Cαs) between the predicted and native structures. The same
definition is used throughout the analyses here. We find that at
above eight recycles, no improvement is observed, and 12.5% of
the models (n= 12 out of 96) are within 2 Å RMSD. At one
recycle, only six models are correct at 2 Å.

Since not all peptide sequences can be predicted accurately at
their true locations, we analyse if we can distinguish when
predictions are accurate. We analyse the predicted lDDT score
(plDDT), a measure of how accurately AF predicts each protein
residue and the distance to the target interface residues. The
interface distance is calculated by taking the shortest distance
from each atom in the target interface residues toward any atom
in the peptide and then averaging.

Figure 1b (data in supplementary data) shows a ROC-curve
where positives (n= 12; negatives, n= 84) have an RMSD below
2 Å towards the true peptide structure interface. The plDDT of
the peptide results in the highest AUC (0.94), and combining the
plDDT with the receptor interface dist results in a slightly higher
true positive rate (TPR) at a low false positive rate (FPR) with no
reduction in AUC, although many positives are missed (84 out of
96). Together, this suggests that although AF is largely inaccurate
at predicting protein-peptide interactions, when it does so
accurately the peptide will be situated close to the target interface
and have a high plDDT score.

AlphaFold2 can distinguish true binders from mutated ones. AF
may have learned certain binding pockets or potential interface
regions, which would result in any sequence that could be pre-
dicted to interact with these regions. To analyse if it is possible to
distinguish between potential peptide sequences to bind to a
certain target interface, we mutate the 12 peptides that AF can
predict at 2 Å RMSD (see above).

We randomly alter amino acids in contact with the receptor in
the native peptide sequences and predict the structure with AF
(using 8 recycles). For each number of contact residues, we
introduce 10 additional sequences, resulting in 10⋅L combinations
for each peptide (1160 sequences in total for the 12 peptides with
an average length of 12 residues).

The peptides with low mutation fraction have high plDDT
(Fig. 1c) with a strong concentration of samples at above 80
plDDT and below 20% mutations. The receptor IF distance tends
to increase with the mutation fraction (Supplementary Figs. 1 and
2). The peptides with low mutation fraction and low average
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distance to the receptor interface have high plDDT. It is also
possible that the mutated peptides can still bind to the target
interfaces, at least to some degree, which may explain why some
mutated peptides are predicted close to the target interface.

However, AF seems to be less sure of the placement of these
sequences, indicated by the lower plDDT (Supplementary Fig. 1).
By selecting peptide sequences with a low average distance to
specified target residues and high plDDT, it may be possible to
retrieve true binders. Based on these criteria, we create a loss
function (Eq. 1) to evaluate binders in subsequent analyses.

Loss ¼ binderplDDT�1 � 1
m
∑m

i¼1di þ
1
n
∑n

j¼1dj �
1
2
� ΔCOM

� �

ð1Þ
The loss is calculated after structural alignment on the target

receptor protein. The binder plDDT is the average plDDT from
AF over the binder, di is the shortest distance between all atoms
in the receptor target atoms and any atom in the binder (m pairs
in total), dj is the shortest distance between all atoms in the binder
and any atom in the receptor target atoms (n pairs in total), and
ΔCOM is the Cα centre of the mass-weighted distance between
the native and predicted binders. The ΔCOM is taken towards the
seed structure and added here to ensure the designs target the
desired area and not its mirror image. Obtaining the same loss on
the opposite side of a protein is possible without it.

Selecting true binders from experimental data. Miniproteins are
small protein scaffolds with sizes of up to 70 residues. Such

proteins have been designed to bind target interfaces with limited
success3. To see if the modification of the AF protocol described
here can distinguish these binders, we analyse sequences tested
against four different receptor proteins with solved receptor-
binder structures (FGFR2: https://www.rcsb.org/structure/7N1J,
TrkA: https://www.rcsb.org/3d-view/7N3T/1, IL7Ra: https://
www.rcsb.org/structure/7OPB and VirB8:https://www.rcsb.org/
structure/7SH3)3.

These binders were evaluated by counting the number of times
they were detected to interact on yeast cell surfaces by
Fluorescence-activated Cell Sorting (FACS), so-called Next-
Generation Sequencing (NGS counts). We sampled
1000 sequences below 1000 NGS counts (to reduce the
computational cost, Methods) and all above and predicted the
receptor-miniprotein structures with AF using the same protocol
described above.

Fig. 2 displays the relationship between the loss function and
the normalised NGS counts (data in supplementary data). At
NGS counts of zero, there is a higher tendency to obtain a high
loss than compared to at 0.04, where the loss is close to 0. As a
result, 20% of binders can be selected at an FPR of 10% using a
success cutoff of 0.01 in normalised NGS counts (Supplementary
Fig. 3). We note that this is not a very good ratio, although it does
increase the likelihood of successful binder selection. N410mpg

Compared to the mutated peptide binders, the average plDDT
is higher (84 vs 58), suggesting that AF is unsure about the
residue locations of unbound peptides but not of unbound
miniproteins. This corresponds well to the higher flexibility of

Fig. 1 Overview of the AF prediction accuracy. a Analysis of the effect of the number of recycles on the outcome, measured by the average peptide
interface (IF) RMSD. The IF is defined as Cβs within 8 Å between the peptide and its receptor protein. The IF RMSD was calculated after aligning the Cαs
between the predicted and native receptor structures. The cumulative fraction vs the RMSD threshold (cut at 5 Å) is shown. At 8 recycles and above, no
improvement at 2 Å (grey dotted line) is found, although the difference between 1 and 8 recycles is 12.5% vs 6.25%. b ROC curve where positives (n= 12;
negatives, n= 84) are predictions with an RMSD≤ 2 Å using 8 recycles. The plDDT of the peptide (plDDT) results in the highest AUC (0.94), and
combining the plDDT with the distance from the receptor target residues to the peptide results in a slightly higher TPR at low FPR with no reduction in
AUC. c plDDT vs the fraction of mutated IF residues compared to the total peptide length using the peptides that could be predicted at 2 Å RMSD (n= 12).
In total, there are 1160 samples, 10 for each interface residue in the peptides. An illustrative example for PDB ID 3c3o (grey) is shown to provide intuition
for this principle, where the peptide with a low mutation fraction (cyan, top) is highly ordered and close to the interface (orange). In contrast, the peptide
with the high mutation fraction is disordered and further away (bottom). For data, see supplementary data 1.
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peptides which likely only achieve their native configuration upon
binding, highlighting that the plDDT alone is not enough to
evaluate binders and the necessity for the loss function (Eq. 1).

Experimental validation of the loss function. The loss function
developed here (Eq. 1) has been independently evaluated18–20 for
the target with PDB ID 1ssc [https://www.rcsb.org/structure/
1ssc]. The study showed that the loss function is highly accurate
for selecting true binders and compared Markov chain Monte
Carlo (MCMC) search with Monte Carlo tree search (MCTS) for
designing sequences. This provides support for the utility of the
loss function and underlines that the problem of binder design is
to find sequences that generate low losses, as suggested in Fig. 1c.
Using MCMC search, two out of three designs have μM affinity
and the best design out of three reported a KD of 2.5 μM
(Table 1). With MCTS the best design had a KD of 0.08 μM and
all selections had μM affinity.

Binder design. In total, there are 200,000 structures in the PDB21.
We create a joint framework (Fig. 3) by searching all known
structural information with Foldseek to generate seeds for the
protein design method ESM-IF1 adapted to design receptor-
binder sequences evaluated with AF. For data, see supplementary
data 3. We evaluate our pipeline on 1463 nonredundant protein
complexes corresponding to all (2926) unique heteromeric pro-
tein interfaces in the PDB. One seed per target is evaluated here,
although many more seeds can be used. Importantly, ESM-IF1
and AF have not seen any of these complexes before, as they are
trained only on single-chain proteins.

We select continuous crops of 10–50 residues from each
interaction partner, analogous to search results from Foldseek
across the PDB (Methods). These crops are concatenated with the
target proteins, adding a mask of 10 residues in between, and the
backbones are used to design sequences with ESM-IF1. Only one
sequence per target interface is generated to evaluate the capacity of
the ‘zero-shot’ design. Fig. 4a shows the results evaluated with AF.

Our custom loss function, acting as a bind score (Eq. 1), can
select binders with low interface RMSD and these have high
contact recovery (>80%), suggesting highly successful designs. If
AF was not a good evaluator, all sequences would end up at the
interface (or none), and any residues could be put together,
resulting in low contact recovery. That AF can distinguish
between true binding sequences (proven experimentally13–15) is a
remarkable generalisation capability resulting from the ability to
predict protein complexes4,6.

Fig. 2 Loss and normalised NGS counts for the four tested systems of designed miniprotein binders with resolved structures (n= 5578 of which 2782
have NGS count 0). An illustrative example of high and low loss for IL7Ra is shown with the resolved structures (native grey, design blue). The NGS counts
are normalised by dividing with the highest count. The axis limits have been cut at 13 and 0.13 for the loss and normalised counts, respectively. For the full
range, see Supplementary Fig. 4; for an ROC curve for selecting binders using the loss, see Supplementary Fig. 3. For data, see supplementary data 2.

Table 1 Affinity (KD) for three different sequence selections
designed towards PDB ID 1ssc [https://www.rcsb.org/
structure/1ssc] using the loss function (Eq. 1) from another
study18.

Sequence selection MCMC affinity (KD) MCTS affinity (KD)

1 2.5 μM 0.08 μM
2 8.7 μM 0.12 μM
3 NA 1.2 μM

The sequences were designed with MCMC and MCTS, respectively.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01029-7

4 COMMUNICATIONS CHEMISTRY |           (2023) 6:229 | https://doi.org/10.1038/s42004-023-01029-7 | www.nature.com/commschem

https://www.rcsb.org/structure/1ssc
https://www.rcsb.org/structure/1ssc
https://www.rcsb.org/structure/1ssc
https://www.rcsb.org/structure/1ssc
www.nature.com/commschem


The AUC ROC for selecting designs at 2 Å RMSD is 0.96 using
the loss (Fig. 4b). At an FPR of 10%, 87% of successful designs
(RMSD ≤ 2 Å) can be selected. The success rate is the highest
(1.9%) for zero-shot designs using a length of 10 residues and
decreases somewhat with length (Fig. 4c). This is likely due to the
relative strength of the binding signal in shorter sequences
(Fig. 4d).

Shorter sequences will depend more on inter-chain interactions
to obtain their final folds, as many short peptides likely only
adopt their structures upon interaction with their target receptors.
Shorter designs have lower interface sequence recovery than
longer ones (Fig. 4e). This indicates the importance of the
evaluator function and the ability of AF to predict the designs
with sufficient accuracy, something we analyse further below. In
total, 205 successful designs were created towards 137 unique
target interfaces.

Binder design convergence. The zero-shot analysis (Fig. 4)
determined that a length of 10 residues is most likely to produce
successful designs. Usually, more than one sequence is evaluated
in protein design to improve performance. The sequence design’s
temperature (or noise) regulates the sampling, with low tem-
peratures resulting in more deterministic behaviour. For the zero-
shot analysis, a sampling temperature of 10−6 was used, resulting
in almost deterministic sampling. We find that temperatures
below 1 result in repeated designs using a sample size of
10 sequences, while at 1, there is an almost complete divergence
for 100 sequences (Methods).

To analyse how many examples need to be generated to reach
successful designs (binder interface RMSD ≤ 2 Å), we generate
100 diverse samples for each seed using a length of 10 residues

and sampling temperature 1. The average success rate plateaus
at around 6.4% for 80 samples (Fig. 5a and Supplementary
Data). The overall success rate using all designs is 6.5 %,
resulting in successful designs towards 185 out of 2843
interfaces, a 3.4-fold improvement compared to the zero-shot
approach (1.9%).

Using a loss cutoff of 1 with plDDT>80, 131 successful designs
can be selected with a TPR of 95%. The relationship between the
loss, RMSD, and fraction of recovered contacts is similar to that
observed in Fig. 4a (see Supplementary Fig. 5). The Spearman
correlation between the binder interface RMSD and the loss is
0.87. Sampling more sequences results in an improved success
rate, and the accurate designs can be distinguished from the loss,
just like for the zero-shot evaluation.

To see if AF can distinguish the interface contacts for these
designs, we compare the sequence recovery in the interface
residues of successful and unsuccessful designs for the same ids
(n= 185). We find that the average plDDT increases with the
binder interface sequence recovery (Fig. 5b) and that at sequence
recoveries above 80%, the average plDDT is 84 and the average
binder interface RMSD 0.43. This is consistent with the findings
regarding the peptides with known structures in Fig. 1c,
indicating that obtaining high plDDT values equals designs with
low interface RMSD and high sequence recovery.

Designed binder specificity. When designing binders, binding
only to a target interface and not to other proteins is desirable. To
evaluate the specificity, we predict the interaction of the best-
designed sequences from the convergence analysis that can be
predicted at 2 Å RMSD (n= 185) with a set of 100 randomly
selected receptor proteins from the remainder of the

Fig. 3 Outline of the design procedure. A target structure (predicted/experimental) is taken as input and searched with Foldseek to produce hits. The hit
with the highest contact density to the target interface is then selected, and inverse folding with ESM-IF1 generates a binder sequence. The target structure
sequence is searched against Uniclust30 with HHblits, and the resulting MSA is used together with the designed sequence to predict a protein complex
structure. The design is evaluated using the custom loss based on the interface distances, the centre of mass and the plDDT of the design. An example for
2RF4_A-2RF4_B is shown, with the final design towards 2RF4_A in structural superposition with the native seed. The RMSD in the interface positions is
1.2 Å between the native and designed binder. For data, see supplementary data 3.
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nonredundant heterodimeric protein complexes. Even though the
randomly selected proteins are dissimilar to the target proteins,
the analysis helps to assess the specificity towards a certain class
of interfaces.

Figure 5c shows the plDDT distribution for the true receptors
(on-target) vs the random selection (off-target). The plDDT of
the binders predicted in complex with the off-target receptors is
consistently lower with values between 30 and 60, while the on-

Fig. 5 Overview of success rate and sequence recovery. a Success rate (having one design ≤2 Å interface RMSD) vs the number of designs for a total of
2843 interfaces and 1–100 designs. The total success rate is 6.5 %, resulting in successful designs towards 185 unique interfaces (see Supplementary
Table 1 for the number of successful runs out of the number of possible runs). b Sequence recovery (step size= 0.1) in the binder interface vs the average
plDDT for the successful designs (n= 18,500). At low sequence recoveries, the plDDT is likely to be low (around 50). The average sequence recovery
increases with the plDDT and at sequence recoveries above 80%, the average plDDT is 84. (see Supplementary Table 1 for the number of successful runs
out of the number of possible runs). c Specificity analysis of the 185 successful binder designs towards 100 randomly selected receptor proteins
(n= 18,500). The plDDT is consistently lower when predicting the binder in complex towards a random set of 100 receptor proteins than towards the
intended receptor (On-target median plDDT= 72, Off-target median plDDT= 45). For data, see supplementary data 4.

Fig. 4 Analysis of zero-shot (ZS) designs using only one generated sequence per target interface-binder pair. a Loss vs the RMSD in the interface
between the designs predicted with AlphaFold2 and native binders (n= 13,216, Spearman R= 0.81). The points are coloured by the fraction of recovered
interface contacts. When the loss is low, the RMSD of the design is low, and the fraction of recovered contacts is high (>80%). b TPR vs FPR for selecting
designed binders with less than 2 Å difference in the interface compared to the native structures. Using the loss function, the ROC AUC= 0.96. At an FPR
of 10%, 87% of successful designs can be selected (loss threshold= 0.11). c Success rate (binder interface RMSD≤ 2) vs the length of each design
(n= 13,156, n10= 2895, n20= 2805, n30= 2672, n40= 2451, n50= 2333). The highest success rate is obtained for the shortest (10 residues, 1.9%)
designs and the lowest for the longest (50 residues, 1.1%). In total, 205 successful designs are created for 136 unique target interfaces (see Supplementary
Table 1 for the number of successful runs out of the number of possible runs). d Contact density vs length of the native binder crops. The shorter sequences
have a higher number of contacts per position. This likely makes the interactions easier to predict, explaining the higher success rate. The black boxes
encompass data quartiles and the white dots mark the medians. e Interface sequence recovery vs length. The shortest sequences have the lowest median
sequence recovery, although the differences are only a few percent. The black boxes encompass data quartiles and the white dots mark the medians.
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target plDDT values are between 60–90. The median plDDT
value is 45 for the off-target and 72 (60% higher) for the on-target
binders. As observed in Fig. 1c, AF does not predict high plDDT
values for interactions that are not intended. The binding to the
intended target receptors can be selected with an ROC AUC of
0.96 using higher plDDT as the discriminator (TPR= 100% at
FPR= 10%, see Supplementary Fig. 6).

Analysis of failed designs. We have shown that AF can evaluate
binder sequences that can be predicted with high accuracy in
previous sections. Therefore, the task of binder design is to
generate a sequence that AF can predict. Successful designs can be
generated towards 6.5% of the heterodimeric interfaces. To ana-
lyse what causes the failures (93.5%), we investigate if AF is better
at understanding regions with defined secondary structures.
Fig. 6a shows the fraction of secondary structure in the target
receptor interface positions and the binder interface RMSD−1.
For data see supplementary data. There is no relationship
between the interface and the RMSD, suggesting that there is no
preference for designing a particular interface.

Other important aspects are the contact density in the
interactions and the available evolutionary information in the
target protein MSAs measured by the number of effective
sequences (Neff, Methods). At high contact densities, the success

rate is high (Spearman R= 0.93). This suggests that obtaining
suitable seeds for the design process is the most important and is
more likely for shorter sequences (Fig. 4d). At a contact density of
8.8, the success rate is 67% compared to <1% at a contact density
of 1. We find no relationship between Neff and the RMSD,
indicating that successful designs can be generated at high and
low Neff values.

Comparison with other protein design methods. We compare
the design success rate with the recent method ProteinMPNN13,
proven to substantially outperform one of the foundational
methods for protein design, Rosetta22. So far, ESM-IF1 has been
evaluated on the harder problem of heteromeric interfaces (as
homomeric sequences may be inferred from the receptor target
proteins).

Most of the examples in the test set of ProteinMPNN are
homomeric (99.3%, n= 677, Methods). These are used to
compare 100 sequences sampled for each method using a seed
length of 10 (Fig. 6f). In total, 100 designs, each towards 1172
interfaces were evaluated. The success rate (interface RMSD ≤ 2
Å) is 3.6% for ESM-IF1 and 1.5% for ProteinMPNN, resulting in
42 and 18 accurate designs, respectively. ESM-IF1 thereby
outperforms ProteinMPNN by a factor of 2.3 in success rate.

Fig. 6 Overview of success rate for different structural groups. a–c Receptor interface type fraction vs the interface RMSD-1 compared with the native
structures. High values mean low RMSD here since the RMSD is inverted. There is no relationship between the interface and the RMSD, suggesting that
there is no preference for designing a particular interface. d Contact density (number of contacts per residue) and success rate using all designs
(n= 280,553, SpearmanR= 0.93). The data was divided into 30 even partitions (n= 9345 per partition) after sorting on contact density, and the average
contact density vs the success rate was taken for each partition. At the highest contact density (8.8), the success rate is 67%. See Supplementary Table 1
for the number of successful runs out of the number of possible runs. e Number of effective sequences (Neff) of the MSAs and the RMSD of the designs.
There is no relationship between Neff and RMSD. f Comparison of the number of successful designs (binder interface RMSD≤ 2) from ProteinMPNN
compared to ESM-IF1 using 1–100 generated sequences per target interface (n= 1172 interfaces). The success rate is 3.6% for ESM-IF1 and 1.5% for
ProteinMPNN resulting in 42 and 18 accurate designs, respectively. For data, see supplementary data 5.
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Conclusions
We have shown that AlphaFold2 can distinguish true binders
from mutated ones and created a loss function that can select true
miniprotein binders from experimental data consistent with
recent findings10,13–15. Evaluating against all nonredundant het-
eromeric protein interfaces in the PDB, successful binders (≤2Å
interface RMSD) can be selected with an AUC ROC of 0.96 in a
zero-shot approach (one design per target).

With 100 generated sequences per target, ESM-IF1 can design
successful binders (≤2 Å interface RMSD) towards 185 (6.5%) of
all known heteromeric protein interfaces. We find that the
designed sequences are specific toward the classes of receptor
interfaces, represented by median plDDT values of 72 vs 45
towards unintended targets. When generating designs, we find no
preference for interface types or the MSA depth (Neff). The
contact density is the determining feature for the design success
rate, and if one can obtain scaffolds with high density, the design
success rate can increase from below 1% to 67%.

ESM-IF1 reports a success rate of 3.6% vs 1.5% (42 and
18 successful designs, respectively) for ProteinMPNN on 1172
homomeric interfaces (ProteinMPNN’s test set). The expected
performance across heterodimeric binder domains is thereby
almost double of that on homomeric ones.

The rapid increase of AI technology has led to a revolution in
the field of structural biology and protein design. Still, many
challenging tasks remain as accurate binders are not produced for
most interfaces here (93.5% and 96.4% failure rates for hetero-
dimeric and homodimeric interfaces, respectively). This issue
may be addressed by obtaining better scaffolds, as we have shown
that if scaffolds with high contact densities can be generated,
designs are more likely to be successful.

We expect that if a scaffold with a high contact density and low
loss is obtained, accurate designs can be generated with ESM-IF1,
and these can be selected with high confidence. A factor that may
impede the design is the possibility of predicting unintended
conformations, which depends on the ability of AlphaFold2. As
more structures are being solved at an accelerated pace, we do
expect that better scaffolds will be available in the future,
including for multiple conformations.

Methods
Peptide structural data. The peptide dataset was taken from a
recent study10 where 96 non-redundant protein-peptide struc-
tures were extracted from the PDB and manually analysed to
ensure structural divergence (each involves a distinct fold). The
details for creating this dataset can be found in the original
publication10. The binders designed here have a maximum length
of 50 residues.

Miniprotein binders. Four different designed miniprotein bin-
ders that had resolved structures towards single-chain proteins
were selected from a recent study (FGFR2: https://www.rcsb.org/
structure/7N1J, TrkA: https://www.rcsb.org/3d-view/7N3T/1,
IL7Ra: https://www.rcsb.org/structure/7OPB and VirB8: https://
www.rcsb.org/structure/7SH3)3. These binders were evaluated by
counting the number of times they were detected to interact on
yeast cell surfaces by Next-Generation Sequencing (NGS counts)
in subsequent pools obtained from Fluorescence-activated Cell
Sorting (FACS). We used the final pools for each of the four
receptors as the designs there will represent the strongest binders.
In total, there were 172,581 sequences available in this study and
to limit the computational requirements, we sampled up to
1000 sequences below 1000 NGS counts and all above and pre-
dicted the receptor-miniprotein structures with AF as described
above. In total, 5578 receptor-miniprotein structures were

evaluated, 2013 for FGFR2, 1099 for TrkA, 1249 for IL7Ra, and
1217 for VirB8 (see Supplementary Fig. 7 for the NGS count
distributions). For more details, see Supplementary Notes.

Structure prediction with AlphaFold. A modification of
AlphaFold (v2.0)23 (AF) based on the FoldDock protocol4 and a
recent study for protein-peptide structure prediction10 was run,
where the receptor is represented as an MSA and the peptide as a
single sequence. The MSA was constructed from a single search
with HHblits24 version 3.1.0 against uniclust30_2018_0825 using
the options:

hhblits -E 0 001 -all -oa3m -n 2
The MSA of the receptor was input together with the single

sequence representation of the peptide (binder) to the AF folding
pipeline, using model_1, one ensemble and between 1 and 10
recycles (8 were found to be optimal, see Fig. 1a). In model_1, no
predicted TM-score or predicted aligned error is available, only
the predicted lDDT (plDDT) for each residue. We used
model_1 since this has been found to be optimal for predicting
heterodimeric complexes, which is a highly related task4.

The structural prediction was performed on one NVIDIA A100
Tensor Core GPUs with 40 Gb of RAM. On average, compiling
the folding pipeline took 144 s and each iteration took 46 s,
resulting in an average total time of 144+ 46⋅number of designed
sequences. The designed sequences were evaluated using AF by
predicting the interaction with the receptor structure and
calculating the loss (Eq. 1).

For the zero-shot designs, 13,156/13,893 designs (95%) could
be predicted successfully and for the convergence analysis,
282,853/292,600 (97%). The failed ones were due to incon-
sistencies in the input pipeline generated by MSA sampling
leading to shape mismatches. We deem the failed examples too
few to impact the overall results.

For the ProteinMPNN set (see below), predictions were
produced towards 1172 interfaces with 115,855/117,200 designs
for ESM-IF1 and 116,334/117,200 for ProteinMPNN. The
missing examples were due to time limitations running 8-h jobs
with resources as specified above. See Supplementary Table 1 for
the number of successful runs out of the number of possible runs.

Unique pairs of Pfam domains (heteromeric set). The main
dataset for evaluation was taken from a recent study26. This set
consists of 1661 protein complexes that have a resolution <5 Å,
constitute a unique set of interacting Pfam domains, and share
<30% sequence identity. This dataset has been used previously4 to
evaluate AF and AFM for protein-structure prediction of com-
plexes, where some structures were removed for various reasons
(some lack beta carbons, backbone atoms or are large assemblies),
resulting in a total of 1463 structures.

Seed generation. To generate backbone seeds for ESM-IF1, we
select continuous regions of 10–50 residues with steps of ten
residues where the contact density of the continuous region is the
highest.

For some structures, crops of 50 cannot be selected (they are
too short). In these cases, we use as many residues as possible.
Since Foldseek will return the nonredundant set from the PDB
(or complexes with very high similarity), we skipped this step in
the design evaluation here. The principle applies to any interface
region:

1. Search PDB using the target structure with Foldseek
(default settings).

2. Parse all results and select those with contacts to the defined
interface area.
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3. Rank the hits by the number of contacts within a
continuous segment of length L corresponding to the
desired design length.

4. Select the highest-scoring hit and extract (crop) the
backbone of the interface segment to be used as a seed in
ESM-IF1.

ESM-IF1. In the ESM-IF1 preprint, complex prediction is sug-
gested as follows:

“Although the training data only consists of single chains, we
find that models generalise to multi-chain protein complexes. We
represent complexes by concatenating the chains together with 10
mask tokens between chains and place the target chain for
sequence design at the beginning during concatenation”

Placing the target chain first (being the binder in this case)
results in a high bias for putting a Methionine in the first sequence
position. Out of 13893 designs in total with the zero-shot approach,
6700 have M in pos 1 (48%). ESM-IF1 has thereby learned to putM
in pos 1, due to this being the most abundant starting position in
proteins. The corresponding Methioinine frequency for the true
sequences is 3%. When designing binders, the seed backbone for
the binder should thereby not be concatenated first. Instead, we
concatenate the target receptor backbone, followed by a masked
region (np.inf) of 10 residues followed by the binder seed. This
reduces the Methionine frequency to 0.1%.

We find that when analysing the temperature, a temperature of
0.1 generates 66% unique sequences, 0.5 99%, and 1 99.99%
across ten different sequences. We use a temperature of 10−6 for
zero-shot designs (deterministic) and 1 for the convergence
analysis (100 different sequences per seed, 99.9% diversity). For
some sequences, ESM-IF1 produces the character <eos>. The
cases for which this occurred were disregarded.

In total, 13,156/13,893 designs were generated for the zero-shot
evaluation and 282,853/292,600 for the convergence analysis (100
per unique interface) using the heteromeric set. For the
ProteinMPNN test set of homologous proteins (see below),
65,400/67,700 designs were generated. The failed designs were
either due to missing backbone coordinates or due to generating
the character <eos>.

Contact recovery. To analyse how similar the designed binders are
to the native ones, we compare the contacts (defined as beta car-
bons (Cβs) within 8 Å from each other) between the receptor and
the native binders and of the receptor and the design. We group
amino acids into five different categories (see below) depending on
their physical characteristics to capture the fact that many different
amino acids may interact with receptor interface residues equally
well (e.g., different positive residues). From these groupings, we
calculate the fraction of interactions in the native binder that is
preserved in the design, which we call contact recovery.

What matters most are the residues in contact with the target
interface, not sequence recovery, as the order of residues can
differ by one position and still interact with the target interface.
For each position in the native receptor interface, the interacting
residues are extracted, and the unique groupings are annotated.
This means that repeat contacts are not counted, e.g. if residue
one interacts with A, F, and R, this translates to Hydrophobic and
Positive. The two counts of hydrophobic residues (A and F) are
not considered. This is because contacts may vary, and it may be
sufficient to have one stronger hydrophobic interaction as
compared to two weaker ones.

Amino acid categories. Hydrophobic: A, F, I, L, M, P, V, W, Y
Small: G
Polar: N, C, Q, S, T

Positive: R, H, K
Negative: D, E

Interface sequence recovery. To analyse the sequence recovery of
the designs, we focus on the interface residues according to Fig. 1c.
We extract the interface residues in the native sequences and cal-
culate the identity in the same positions in the designs, assuming a
linear sequence of residues from 1 to N (the number of native
interface residues). The interface sequence recovery is the number
of identical residue-position combinations divided by N.

Contact density. To calculate the contact density, we start by
extracting all beta carbons between a target receptor protein and a
binder within 8 Å in a given seed. The total number of contacts is
then divided by the length of the binder itself, resulting in a
measure of the number of contacts per amino acid in the binder,
which we name the contact density.

Number of effective sequences. To calculate the number of
effective sequences (Neff), we cluster the MSAs from HHblits
(above) at 62% sequence identity with MMseqs (version
fcf52600801a73e95fd74068e1bb1afb437d719d)27 with the
options:

mmseqs easy-cluster --min-seq-id 0.62 -c 0.8
--cov-mode 1

The Neff values were calculated by taking the number of
clusters at 62% sequence identity. In total, 2636/2645 alignments
were clustered successfully.

DSSP secondary structure annotation. DSSP (version 2.0)28 was
run on all 1463 extracted pairs in the Pfam set. The secondary
structure annotations were parsed into their respective classes
(Helix, Sheet or Loop) and mapped to the interfaces of the target
receptor-binder complexes. The states of all interface residues
were counted to obtain the fraction of each secondary structure
state in each interface.

ProteinMPNN. ProteinMPNN was trained on assemblies in the
PDB downloaded on Aug 02 2021. These had resolutions below
3.5 Å and were determined by X-ray crystallography. The
sequences were clustered at 30% identity, and 1539 clusters were
saved for testing. The test data can be downloaded from: https://
files.ipd.uw.edu/pub/training_sets/pdb_2021aug02_sample.tar.gz.
When mapping these to unique PDB IDS, one finds 4086 PDB
IDS in total. These contain 4019 chains mapping to 1117 unique
cluster combinations, of which 1109 are homomeric and 8 het-
eromeric. Many of these complexes are not real interactions but
only inferred from asymmetric units. Therefore, we fetched the
first biological assemblies from all PDB IDs and extracted inter-
acting pairs (one per PDB ID) based on having at least ten
contacts (beta carbons <8 Å), resulting in a total of 677 pairwise
interactions. For ESM-IF1, 654 of these produced designs (the
rest contained missing regions in the backbone) leading to a total
of 1308 possible target interfaces.

ProteinMPNN was run using its backbone weights (--ca_only)
with a temperature of 1 (the default of 0.1 gave little sequence
diversity) to generate an unbiased comparison with ESM-IF1, as
there is also an option to use beta carbons and oxygens to design
sequences with ProteinMPNN. 100 sequences were designed per
interface, selecting the interface regions as target positions for the
design according to the example provided in the ProteinMPNN
GitHub repository: https://github.com/dauparas/ProteinMPNN/
blob/main/examples/submit_example_4_non_fixed.sh
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Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All results and information required to reproduce this study are available from: https://
gitlab.com/patrickbryant1/binder_design. All predictions are available from https://
zenodo.org/record/8408449 (https://doi.org/10.5281/zenodo.8408449). Data for Figs. 1–5
is available as supplementary data.

Code availability
All code required to reproduce this study are available from: https://gitlab.com/
patrickbryant1/binder_design and a snapshot of the code used is uploaded as
Supplementary Software. This is a pipeline for designing peptide binders- Binder design
using a combination of [Foldseek](https://search), [ESM-IF1](https://www.biorxiv) and
[AlphaFold](https://www). Foldseek is available under [GNU GPL-3.0](https://www.gnu.
org/). ESM-IF1 is available under the [MIT license](https://opensource). AlphaFold2 is
available under the [Apache License, Version 2.0](http://www.apache.org/). The
AlphaFold2 parameters are made available under the terms of the [CC BY 4.0 license]
and have not been modified. The binder design pipeline here is available under the same
licences as a derivative of these methods.

Received: 25 April 2023; Accepted: 13 October 2023;

References
1. Peptide therapeutics: current status and future directions. Drug Discov. Today

20:122–128 (2015).
2. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide

drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
3. Cao L., et al. Design of protein binding proteins from target structure alone.

Nature. 1–1 (2022).
4. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein

interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).
5. Evans R., et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv.

p. 2021.10.04.463034. https://doi.org/10.1101/2021.10.04.463034 (2022).
6. Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts

direct physical interactions in multimeric proteins with deep learning. Nat.
Commun. 13, 1–13 (2022).

7. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed
evolution for protein engineering. Nat. Methods 16, 687–694 (2019).

8. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine
learning-assisted directed protein evolution with combinatorial libraries. Proc.
Natl Acad. Sci. USA 116, 8852–8858 (2019).

9. Wu, C.-H., Liu, I.-J., Lu, R.-M. & Wu, H.-C. Advancement and applications of
peptide phage display technology in biomedical science. J. Biomed. Sci. 23,
1–14 (2016).

10. Tsaban, T. et al. Harnessing protein folding neural networks for
peptide–protein docking. Nat. Commun. 13, 1–12 (2022).

11. Jendrusch M., Korbel J. O., Kashif Sadiq S. AlphaDesign: a de novo protein
design framework based on AlphaFold. bioRxiv. p. 2021.10.11.463937. https://
doi.org/10.1101/2021.10.11.463937 (2021).

12. Hsu C., et al. Learning inverse folding from millions of predicted structures.
bioRxiv. p. 2022.04.10.487779.https://doi.org/10.1101/2022.04.10.487779 (2022).

13. Dauparas, J. et al. Robust deep learning-based protein sequence design using
ProteinMPNN. Science 378, 49–56 (2022).

14. Bennett, N. et al. Improving de novo Protein Binder Design with Deep
Learning. Nat. Commun. 14, 2625 (2023).

15. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science
377, 387–394 (2022).

16. Gainza, P. et al. De novo design of site-specific protein interactions with
learned surface fingerprints. Nature 617, 176–184 (2023).

17. van Kempen, M. et al. Foldseek: fast and accurate protein structure search.
Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 (2023).

18. Wang Y., et al. Self-play reinforcement learning guides protein engineering.
Nature Machine Intelligence. 1–16. (2023).

19. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding
the structural coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Res. 50, D439–D444 (2022).

20. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure
with a language model. Science 379, 1123–1130 (2023).

21. wwPDB consortium. Protein Data Bank: the single global archive for 3D
macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).

22. Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent
methods and frameworks. Nat. Methods 17, 665–680 (2020).

23. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).

24. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep
protein annotation. BMC Bioinform. 20, 473 (2019).

25. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein
sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

26. Green, A. G. et al. Large-scale discovery of protein interactions at residue
resolution using co-evolution calculated from genomic sequences. Nat.
Commun. 12, 1–12 (2021).

27. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028
(2017).

28. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22,
2577–2637 (1983).

Acknowledgements
All protein structures were visualised using Blender (https://www.blender.org/). Financial
support: Swedish Research Council for Natural Science, grant No. VR-2016-06301 and
Swedish E-science Research Centre and from Knut and Alice Wallenberg Foundation.
Computational resources: Swedish National Infrastructure for Computing, grants: SNIC
2021/5-297, SNIC 2021/6-197, Berzelius-2021-29 and Berzelius-2022-106. A.E. received
all financial support and computational resources.

Author contributions
P.B. designed and performed the studies and analyses. P.B. wrote the first draft of the
manuscript and prepared all figures, which were later edited and improved by A.E. and
P.B. A.E. obtained funding.

Funding
Open access funding provided by Stockholm University.

Competing interests
P.B. is the CEO of Urgenta Labs, a startup that develops targeted peptide binders. A.E.
does not declare any competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42004-023-01029-7.

Correspondence and requests for materials should be addressed to Arne Elofsson.

Peer review information Communications Chemistry thanks the anonymous reviewers
for their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01029-7

10 COMMUNICATIONS CHEMISTRY |           (2023) 6:229 | https://doi.org/10.1038/s42004-023-01029-7 | www.nature.com/commschem

https://gitlab.com/patrickbryant1/binder_design
https://gitlab.com/patrickbryant1/binder_design
https://zenodo.org/record/8408449
https://zenodo.org/record/8408449
https://doi.org/10.5281/zenodo.8408449
https://gitlab.com/patrickbryant1/binder_design
https://gitlab.com/patrickbryant1/binder_design
https://search.foldseek.com/
https://www.biorxiv.org/content/10.1101/2022.04.10.487779v2
https://www.gnu.org/
https://www.gnu.org/
https://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1101/2021.10.11.463937
https://doi.org/10.1101/2021.10.11.463937
https://doi.org/10.1101/2022.04.10.487779
https://doi.org/10.1038/s41587-023-01773-0
https://www.blender.org/
https://doi.org/10.1038/s42004-023-01029-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commschem

	Peptide binder design with inverse folding and protein structure prediction
	Results
	Determining and validating a loss function for protein-peptide design
	Optimal protein–peptide structure prediction
	AlphaFold2 can distinguish true binders from mutated�ones
	Selecting true binders from experimental�data
	Experimental validation of the loss function
	Binder�design
	Binder design convergence
	Designed binder specificity
	Analysis of failed designs
	Comparison with other protein design methods

	Conclusions
	Methods
	Peptide structural�data
	Miniprotein binders
	Structure prediction with AlphaFold
	Unique pairs of Pfam domains (heteromeric�set)
	Seed generation
	ESM-IF1
	Contact recovery
	Amino acid categories
	Interface sequence recovery
	Contact density
	Number of effective sequences
	DSSP secondary structure annotation
	ProteinMPNN
	Reporting summary

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




