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Computational techniques can speed up the identification of hits and accelerate the devel-

opment of candidate molecules for drug discovery. Among techniques for predicting relative

binding affinities, the most consistently accurate is free energy perturbation (FEP), a class of

rigorous physics-based methods. However, uncertainty remains about how accurate FEP is

and can ever be. Here, we present what we believe to be the largest publicly available dataset

of proteins and congeneric series of small molecules, and assess the accuracy of the leading

FEP workflow. To ascertain the limit of achievable accuracy, we also survey the reproducibility

of experimental relative affinity measurements. We find a wide variability in experimental

accuracy and a correspondence between binding and functional assays. When careful pre-

paration of protein and ligand structures is undertaken, FEP can achieve accuracy comparable

to experimental reproducibility. Throughout, we highlight reliable protocols that can help

maximize the accuracy of FEP in prospective studies.
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Two critical objectives in drug discovery are developing
molecules that bind tightly to a target protein and weakly -
or not at all - to off-target proteins. There is a growing

consensus that computational methods can help identify early
promising compounds and aid the otherwise slow and expensive
stage of lead development. In recent years, alchemical free energy
calculations1 – a family of rigorous, physics-based methods –
have emerged as the most consistently accurate method
available2–4. The purpose of this work is to quantify how accurate
these types of method has become and to ascertain how close the
predictions currently are to experimental accuracy.

Relative alchemical binding free energy calculations consist of a
series of simulations in which the interaction and internal ener-
gies of pairs of molecules are interpolated. Statistics collected
during the course of these simulations are used to produce esti-
mates of the difference in binding free energy between the two
molecules. While robust methods for computing absolute binding
free energies are emerging, these also produce relative binding
free energies if the free energy difference between the apo and
holo protein conformations is unknown5,6. The term free energy
perturbation (FEP) often refers to a particular class of alchemical
method7 but has in recent years been applied to alchemical
binding free energy methods more generally; henceforth, we will
refer to all alchemical binding free energy methods, including
thermodynamic integration, as FEP. Out of all the software
programs that can perform FEP8–15, the FEP+ computational
workflow has seen the widest adoption in industry3,16. Although
FEP+ is one program, the accuracy that it can achieve is fre-
quently taken as an indication of what FEP methods can achieve
as a whole2.

There are numerous studies that report the successful appli-
cation of FEP+ in live drug discovery projects17–25. Although
physics-based affinity prediction methods are intrinsically com-
putationally expensive, large clusters of graphical processing units
and cloud computing enable the evaluation of relative binding
free energies for potentially thousands of pairs of compounds
within the typical time-constraints of medicinal chemistry
deadlines. The accuracy of FEP methods have been steadily
increasing due to force field improvements26,27 and the applica-
tion of enhanced sampling techniques28,29. Along with the
increase in accuracy there has been an increase in the domain of
applicability. While FEP methods are more often associated with
R-group modifications16,30, advances in methodology have meant
these methods, particularly FEP+, can be applied to chemical
modifications involving macrocyclization31, scaffold-hopping32,
covalent inhibitors33, and buried water displacement34.

As input, FEP requires the three-dimensional structures of the
protein and the putative binding geometries of the chemical series
of whose absolute or relative binding free energy will be assessed.
A historically difficult aspect of preparing structures has been the
determination of the protonation and tautomeric states of the
ligands and the protein binding residues35. Ambiguities in the
protein structure, such as missing loops and flexible regions also
pose a challenge and require careful consideration by users as to
how they will be modeled. Because of these uncertainties, prac-
titioners commonly perform a retrospective study of FEP on
previously assayed compounds to test the reliability of the
structural models before moving on to prospective predictions36.

Although the main utility of FEP lies in its ability to aid live
drug discovery projects, retrospective assessment studies of
accuracy are, in general, vital to help identify how accurate an
FEP method is and to highlight methodological aspects that
require further improvement. The two largest protein-ligand
benchmark data sets for FEP are the set assembled for the OPLS4
force field by Lu et al. (with a total of 512 protein-ligand pairs)27

and the set by Hahn et al. (with 599 protein-ligand pairs)37; the

latter of which was designed to be the community standard and
has been used in the validation of the Open Force Field 2.0.038.
Unlike data sets such as PDBbind39, these data sets do not con-
tain only experimentally determined structures, and instead
consist of congeneric series of ligands where all ligand binding
modes and protonation states have been modeled. While these
benchmarks have proved to be very useful, they currently do not
cover the domain of applicability of FEP, lacking, for instance,
any membrane proteins, scaffold hopping transformations, and
macrocyclic transformations to name a few deficiencies. Although
the OPLS4 benchmark set includes charge-charging and buried
water displacing transformations, the benchmark set by Hahn
et al. does not. With the benchmark set by Hahn et al., the
omission of certain data sets may be by design, as only data sets
that met certain quality standards were included.

The apparent accuracy of FEP is fundamentally limited by the
accuracy of experimental affinity measurements. The most
appropriate observables with which to compare FEP predictions
against are in vitro measurements of dissociation constants (Kds),
inhibition constants (Kis), or ligand concentrations that achieve
50% inhibition (IC50s). While FEP predictions can be used to
complement other experimental measurements that are not
directly relatable to binding free energy, such as temperature
shifts and percent inhibitions values, these can cloud the apparent
accuracy of the predictions. By definition, the Ki is the Kd of an
enzyme inhibitor. However, these quantities differ subtly in the
way they are measured; Kis are typically measured in functional
enzymatic inhibition assays whereas Kds come from experiments
that more directly measure binding40. Although IC50s are
dependent on the concentrations of the protein and ligand as well
as the reaction Michaelis constant, under common assay condi-
tions and reaction mechanisms (but not all), the ratio of the IC50s
of two ligands is equivalent to the ratios of the Kis41.

There is a ladder of meaning associated with experimental
accuracy that has informed prior studies on this topic. At the two
lowest rungs of this ladder, one can consider accuracy as being
tied to the ‘repeatability’ of a measurement (i.e. the same assay
under the same conditions with the same equipment, usually
conducted by the same team), or the reproducibility of the assay
itself (i.e. the same assay set up and run by different
experimenters42,43). After reviewing an internal repository of
protein-ligand activities that had been measured multiple times,
Brown et al. reported a median standard deviation between
measurements of 0.3 pKi units (0.41 kcal mol)44. Studies have
consistently found that the variance between affinity measure-
ments made by different teams is higher compared to the variance
encountered when the same team repeats the assay45. At the
highest rung of the ladder of experimental error is the reprodu-
cibility of an affinity measurement, which is what - ideally -
independent experiments could observe using different assays. To
quantify the reproducibility of binding affinity measurements,
Kramer et al. previously surveyed the ChEMBL database for
protein-ligand complexes that had affinities measured at least
twice by different groups46. They found that the root-mean-
square difference between these independent measurements
ranged from 0.56 pKi units (0.77 kcal mol−1) to 0.69 pKi units
(0.95 kcal mol−1) depending on how the data was curated.

There are numerous factors that drive the observed differences
in measured binding affinities between laboratories. These can
range from concentration errors in, for instance, the reagents
used in isothermal titration calorimetry experiments47, to the
difference in material of the assay containers; one study reported
that a particular compound was absorbed by glass and not plastic,
which artificially reduced the apparent Ki of one compound48.
Significant differences in measured binding affinities can also
occur when assays are repeated with alternate instruments or
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when data are reanalyzed with different software49. Data fitting
methods can be made more robust when using analysis methods
that explicitly model uncertainties in the experiment50,51.

While the efforts of by Brown et al. and Kramer et al. to
quantify experimental error are informative, of particular interest
to FEP is the reproducibility of relative binding affinities: the
difference in absolute binding free energy between two molecules.
One could produce such an estimate from the error from absolute
affinity measurements by assuming every experimental mea-
surement is unbiased with a Gaussian error distribution. These
assumptions are significant, and, ideally, one would estimate
the experimental uncertainty of relative affinities using mea-
surements of series of compounds binding to the same protein –
not single ligands – from different and independent assays. To
date, no such study has been conducted despite a notable pre-
vious attempt52.

In this study, we conduct two surveys to ascertain the accuracy
of FEP. The first of these two surveys is concerned with the
reproducibility of relative (as opposed to absolute) binding affi-
nity measurements. We collect binding data from studies where
the affinity of a series of compounds was measured in at least two
different assays. The deviation between the relative binding affi-
nities sets a lower bound to the error we can expect from any
prediction method on large and diverse data sets. In the second
survey, we collect protein-ligand structures and binding data
from as many previous FEP validation studies as possible. In the
assembly of this benchmark data set, we sought to include sys-
tems that cover the current domain of applicability of FEP
methods. We re-assess the quality of many of the modeled
structures and simulation inputs to quantify the best possible
accuracy that could be achieved with the FEP+ program on these
data. Presented together, we hope that both surveys provide a
comprehensive picture of the maximal accuracy one could expect
from FEP, the current state of accuracy of FEP, and what kinds of
setup procedures are robust in prospective drug discovery
settings.

Methods
Experimental reproducibility survey. We set out to quantify the
maximal accuracy that a relative affinity prediction method could
achieve on large and diverse data sets that comprise many assay
types. To do so, we searched for studies where at least two dif-
ferent assays were used to measure the binding affinities of the
same set of compounds to the same protein. We are not con-
cerned with the difference in the absolute binding free energies as
these can include systematic errors that are ultimately irrelevant
for determining which ligands bind stronger than the others.
Instead, we evaluated how well pairs of assays agreed in terms of
relative binding free energies and rank ordering of the
compounds.

Preferably, each chemical series would be evaluated in different
assays conducted by independent groups. However, as this data is

hard to come by, we collected comparative assay data where the
measurements formed part of a single study. Table 1 summarizes
the publicly available data that we analyzed which compared the
affinity of the same compounds in at least two different assays.
Expanded versions of this table, which include more assay
information, are in the Supplementary Methods section of
the Supplementary Information (SI), Supplementary Tables 1–3.
To compliment this survey, we also collected comparative assay
data from our own internal drug discovery projects. This data is
summarized in Supplementary Table 4 of the SI.

We were interested to see whether binding assays, such as those
that directly measure dissociation constants were, on average
more or less reproducible with another binding assay compared
to a functional assay, such as those that measure inhibition
constants.

We only considered assays that reported the affinity of ligands
using dissociation constants (Kd), inhibition constants (Ki) or the
ligand concentration that achieve fifty percent inhibition (IC50).
Between any two ligands a and b, we assumed that

ICa
50

ICb
50

¼ Ka
i

Kb
i

¼ Ka
d

Kb
d

; ð1Þ

which is true for a wide variety, but not all, inhibitory
mechanisms and assay conditions41,53. To aid the comparison
with predictions from FEP, the pairwise error between the relative
binding free energies in the different assays was also calculated. If
X is either an IC50, Kd, or Ki from the same assay, the relative
binding free energy between two ligands a and b is given by

ΔΔGab ¼ �kT ln
Xb

Xa

� �
; ð2Þ

where k is the Boltzmann constant and T is temperature, assumed
throughout to be 300K. To compare two assays with affinity data
on the same protein and set of ligands, the relative binding free
energies (i.e. ΔΔGs) were computed between all pairs of ligands
within each assay, creating two sets of relative binding free
energies. The root-mean-square error or mean unsigned error
between these two sets of relative binding free energies provides a
measure of the reproducibility of the assays. The comparison was
performed for all pairs of ligands sets shown in Table 1 and
Supplementary Tables 1–4.

To quantify the agreement between the rank ordering of
chemical series between two different assays, we calculated the
coefficient of determination (R2) and the Kendall rank correlation
coefficient (Kendall’s τ) of absolute binding free energies
ΔGa ¼ kT lnðXaÞ. When X is an IC50, these absolute binding
free energies include an unknown additive constant that has no
effect on rank and correlation measures.

FEP accuracy benchmark. We aimed to establish the most
comprehensive publicly available FEP data set to date by col-
lecting congeneric series from as many previously published FEP

Table 1 The proteins where the same set of ligands had binding affinities measured in at least two different assays from our
survey of publicly available data.

Comparison type Proteins in set No. compounds

Binding vs binding SH2, Herg, CaI, CaII, Lectin, HCV polymerase, FAK, trypsin, DPPIV,
bromodomains, BPTF, galectin 3

250

Binding vs functional Xiap, thrombin, HCV polymerase, Hsp90, FAK, DPPIV, MAPK13, AChE 1207
Functional vs functional COT kinase, ACE, SARS-Cov2 main protease 410

Total 1867

Targets from our own drug discovery efforts are not listed but contribute to the total number of compounds in each category. The assays are categorized in terms of being ‘binding’ or ‘functional’. In some
cases, like CaII, there are multiple studies that compare different series of ligands. The number of compounds includes duplicates in the sense that the same compounds can appear in multiple assay
comparisons. More details on the provenance of these data can be found in the Supplementary Methods.
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studies as possible. Two aims for this benchmark data set were to
include as many ligands as possible and to cover the range
of targets and ligand perturbations that occur in drug discovery,
such as charge changing and/or buried water displacing pertur-
bations. By meeting these aims, we hoped that the resultant
benchmark would provide a thorough test for current and future
FEP methodologies. While the majority of the systems in this
benchmark come from previous FEP studies, additional data sets
with well-resolved protein structures and ligand binding affinities
that were encountered during the assembly of this data set were
also included.

For inclusion in this study, we required that an X-ray structure
of the protein-ligand complex exists for at least one ligand in the
congeneric series, there were no significant structural ambiguities
in the protein structure, and the binding data for the congeneric
series was measured as Kds, Kis, or IC50s. Unlike Hahn et al.37, we
did not omit chemical series on the grounds of having too few
compounds or too small a dynamic range of the experimental
binding free energies. While having such requirements leads to
tighter prediction error and correlation metric confidence
intervals on individual chemical series, we are primarily
concerned with the aggregated performance of FEP on the whole
data set. Metrics such as overall RMSE or Kendall’s tau can be
calculated with high confidence even if the data sets they
aggregate over are small or have a narrow dynamics range. We
were motivated to include some of the smaller data sets because
they covered specific chemical types or transformations that are
not present in other larger benchmark data sets. Examples of
these data sets include those focused on macrocycles31,54, charge
changing transformations55, and buried water displacement34.

Table 2 lists the protein-ligand data sets that were collected in
this study along with the publications where they first appeared.
The name given to each data set is the same as used in
the Supplementary Results.

As the accuracy of FEP is dependent on the input protein and
ligand structures, we endeavored to ensure all of the structures
were of a consistently high quality. For the majority of systems,
we reviewed the ligand binding geometries, the protonation states
of ligand and binding site protein residues, the structure of the
flexible regions of the protein, as well as the protein crystal
structures themselves. Examples of where we changed the protein
crystal structure include the CKD8 and SYK systems from
Schindler et al.56 and the JAK2 fragment set from Steinbrecher
et al.57. The Supplementary Results details in-depth the
modifications we made to the original inputs. We note that the

work by Hahn et al.37 lists alternative crystal structures for many
of the systems used in this benchmark which could be considered
in future development of our benchmark set.

Where possible, modifications were made to systems that
would be plausible in a prospective setting. For instance, if it was
unknown which protonation or tautomeric state the ligand was
in, all states were added to the FEP map so that the relative free
energies could be calculated and accounted for using our pKa
correction protocol55,58. Similarly, if the rotameric state of a
ligand chemical group was unknown, either the chemical group
was decoupled in the calculations to facilitate sampling or
multiple rotameric states were added to the FEP map and
corrected for as described in the Supplementary Methods,
section 1.2. Examples of the kinds of changes and modifications
we made to the systems are shown in Fig. 1.

Simulation details. All simulations were conducted using FEP+
within the Schrödinger software suite (versions 21-3 and 21-4)
with the OPLS4 force field and the SPC water model27. FEP+
uses replica exchange with solute tempering28 where exchanges
between neighboring replicas are attempted every 1.2 ps. By
default in FEP+, the number of lambda windows in a calculation
depends on the type of perturbation; charge-changing perturba-
tion use 24 lambda windows, scaffold hopping and macro-
cyclization perturbations use 16 lambda windows, and all others
use 12 lambda windows. In some cases from our benchmark (see
the SI) more lambda windows were used.

For alchemical transformations that changed the charge of the
ligands, the total charge of the simulation box was kept constant
by transmuting a Na+ or Cl- ion either to water or vice versa,
depending on the charge difference and perturbation direction
using the scheme previously described55. Neutralizing counter-
ions and a 0.15 M concentration of NaCl were added to the
simulation box for charge-changing perturbations; all other
perturbation types had no counterions or salt added. Unless
otherwise stated, each lambda window was simulated for 20 ns.
Integration was performed using the multiple time-stepping
RESPA integrator59 and hydrogen mass repartitioning using the
following time steps: 4 fs for bonded interactions, 4 fs for
nonbonded interactions within the distance cutoff, and 8 fs for
electrostatic interaction in reciprocal space.

For all simulations, the temperature was maintained at 300 K
using the Nose-Hoover chains thermostat60. All complex leg
simulations were run in the μVT ensemble whereby water
molecules were sampled with grand canonical Monte Carlo; all

Table 2 The data sets where the initial structures and affinities were based on.

Data set name Proteins in data set No. compounds

FEP+ R-group set16 BACE1, CDK2, JNK1, Mcl1, p38, PTP1B, thrombin, TYK2 199
FEP+ charge-change55 CDK2, DLK, EGFR, EPHX2, IRAK4, ITK, JAK1, JNK1, PTP1B, TYK2 53
OPLS stress set27 BACE1, CHK1, Factor Xa 114
OPLS drug discovery27 A, B, C, D, E 93
Water displacement34 BRD4(1), CHK1, Hsp90, scytalone dehydratase, TAF1(2), thrombin, urokinase 76
FEP+ Fragments57 T4 lysozyme, LigA, Mcl1, MUP-1, JAK-2, hsp90, p38 79
FEP+ macrocycles31 BACE1, CHK1, CK2, MHT1, HSP90 34
FEP+ scaffold-hopping32 BACE1, β-tryptase, CHK1, ERα, Factor Xa, 17
Merck sets56 CDK8, cMet, Eg5, HIF-2α, PFKFB3, SHP-2, SYK, TNKS2 264
GPCRs74,75 A2A, OX2, P2Y1 98
Bayer macrocycles54 Ftase, BRD4 8
Janssen BACE136,76 BACE1 74
MCS docking77 HNE, Renin 49
Miscellaneous CDK878, Galectin10,79, BTK80, HIV1 protease81, FAAH82 79

Total 1237

The proteins and number of ligands are shown. The citations on the data set names show the study where the initial protein and ligand structures were taken from.
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solvent simulations were run in NPT using the Martyna-Tobias-
Klein barostat61 to maintain the pressure at 1 atm. The use of this
enhanced water sampling procedure in the complex legs negated
the need to assess the sensitivity of the predictions on the starting
positions of water molecules34.

When preparing proteins and ligands for FEP+, the Schrö-
dinger protein preparation wizard was used. All crystallographic
water molecules were retained and missing side chains or loops
were added with Prime. Protonation state assignment was carried
out with PROPKA62 and manual inspection. A detailed
description is provided in the SI for systems that required more
involved preparation and analysis.

Metrics used for analysis. Relative FEP methods calculate the
binding free energy difference (ΔΔG) between pairs of structu-
rally similar ligands. For a series of N ligands binding to the same
receptor, in principle, simulations can be performed for all of the

N × (N− 1)/2 pairs of ligands. However, this is prohibitively
expensive when N is large. Instead, it is standard practice to
calculate the ΔΔGs for a small subset of the possible pairings. The
set of perturbation pairs and ligands makes a graph with each
perturbation pair forming an edge. Many previous studies have
reported FEP accuracy using either the mean unsigned error
(MUE) or root-mean-square error (RMSE) between the calcu-
lated and experimental ΔΔGs for each edge. However, these so-
called edgewise errors are dependent on the topology of the
perturbation graph. As perturbation graphs are usually con-
structed to have edges between similar ligands, edgewise errors
are correspondingly limited to quantifying FEP accuracy for
similar ligands. A more robust alternative is to instead report the
inferred predicted ΔΔG between every pair of ligands in the
graph. To ensure a consistent set of ΔΔGs between all pairs of
ligands, FEP+ uses the cycle closure correction algorithm63; there
exist other methods for doing so64,65. In addition to the edgewise

Fig. 1 Examples from the FEP benchmark where the calculations were augmented. Where possible, FEP was used to automatically determine the (a)
preferred rotamer state of R-group modifications (like with MCL1), b protonation state of the ligand (like with TNKS2), and (c) the protonation state of side
chain residues (like with PTP1B). d In some cases, (like CK2), atom mappings were altered to enhanced conformation sampling. MCL1 exemplifies cases
where multiple orientations of R-groups were added to the FEP map and post-processed based on Supplementary Eq. 2 in the SI. TNKS2 exemplifies cases
where multiple protonation states were post processed based on our pKa correction workflow55. In PTP1B, the sulfur atom is in close proximity to a number
of backbone NH groups (not shown) which are likely to be the the main drivers of the predicted negatively charged protonation state.
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RMSE, we also calculated these pairwise RMSEs for every FEP
map in our benchmark. For a collection of M FEP graphs, we
calculated the weighted average of the RMSEs using the following
formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

∑M
i wi

∑
M

i
wiRMSE2

i

s
; ð3Þ

where wi was the weight applied to the ith graph RMSE. For
edgewise RMSEs, wi was set equal to the number of edges in each
graph and for pairwise RMSEs wi was set equal to the number of
compounds in the graph. The latter weighting was also used when
computing the aggregate RMSE in the experimental survey. We
note that this weighting scheme, along with the use of pairwise
errors, was used in the FEP assessment by Schindler et al.56.

Using the cycle closure correction algorithm, the absolute
binding free energies (ΔGs) - up to an unknown constant - for the
ligands in each graph were determined. Metrics such as the R2 or
Kendall’s τ of these ΔGs do not depend on this unknown
constant. Unlike correlation statistics for the predicted ΔΔGs,
correlation statistics for ΔGs provide a direct measure of the rank
order ability of FEP. We do not report the correlation statistics for
the predicted ΔΔGs because, as illustrated by Hahn et al.37, these
statistics are dependent on the arbitrary sign of the ΔΔGs. A
weighted average of R2 or Kendall’s τ of the ΔGs was calculated
across every graph in our data set, where the weight was equal to
the number of ligands in the graph.

Results
Using FEP to resolve ambiguities in the structural inputs.
During the course of our FEP benchmarking exercise, we found
that significant gains in accuracy could be made when different
structural inputs could be all treated within the FEP workflow.
The Supplementary Results in the SI, including Supplementary
Tables 6–34 and Supplementary Figs. 1–21, provides extensive
details of structural modifications and additional FEP calculations
that were applied to each system. Figure 1 shows four examples
where FEP was used to resolve ambiguities in the input structures.
The top of Fig. 1 shows MCL1, where several ligands (such as
ligand 35 in the Figure) had additional rotamers added to the
map. Other groups have also considered alternate rotamer states
for this ligand series66. Augmenting the map with additional
rotamer states in MCL1 and applying the binding mode correc-
tion, as detailed in section 2 of the SI, reduced the pairwise RMSE
from 1.41 kcal mol−1 to 1.24 kcal mol−1. In cases such as this,
replica exchange solute tempering was not sufficient to lower the
sampling barriers enough to facilitate complete rotamer sampling;
extra rotamers were added to the perturbation map when poor
rotamer sampling was observed in prior simulations using the
automatically generated FEP+ analysis panel. Second from the
top of Fig. 1 shows TNKS2, where a subset of the ligands had
titratable amines (such as ligand 8a in the Figure). Adding both
the protonated and deprotonated forms of these ligands to the
map reduced the pairwise RMSE from 2.10 kcal mol−1 to
1.60 kcal mol−1.

The protonation states of side chains were also validated using
the protein residue mutation functionality of FEP+. This
approach is exemplified by PTP1B (second from bottom in
Fig. 1). In this system, the sulfur atom of a cysteine residue sits
within a bowl of backbone NH groups but it is also in close
proximity to the carboxylic acid group of the ligands; this mixed
electrostatic environment makes the determination of the cysteine
protonation state nontrivial. In our previous FEP+ validation
studies, we treated this binding site cysteine as being deproto-
nated (i.e. negatively charged). This decision has since been called
into question10. Rather than choosing a particular protonation

state for CYS 215, we calculated its pKa using FEP+ in the
presence of 4 representative ligands. The pKa of CYS 215 ranged
from 0.92 to 1.66 across the four ligands so we continued to treat
it as deprotonated in our calculations (the pairwise RMSE of the
map was 0.74 kcal mol−1).

As previously noted by Paulsen et al.67, perturbations involving
macrocyclization can benefit from reducing torsion barriers to
enhance sampling and thereby more fully predict strain energy
differences. We also observed such benefits in our macrocycliza-
tion calculations, such as CK2 shown at the bottom of Fig. 1. The
acyclic ligand binds with an amine bond in the relatively high
energy cis conformation, but the high torsional barrier height
prevents the switching between cis and trans conformations in
solvent. An atom mapping was chosen to place the amine in the
alchemical region and torsion energies in the alchemical region
were scaled to zero in the intermediate λ windows. Without this
particular atom mapping, the error between the acylic ligand and
macrocycle was 3.4 kcal mol−1. With the scaled torsion angle, the
error reduced to 1.25 kcal mol−1. The improvement in error
comes from better capturing the relative strain energy between
the acyclic and macrocyclic ligands. While the changes described
here came from visual inspection and manual intervention, an
automated approach for these kinds of perturbations would be
preferable.

Comparing the accuracy of FEP+ with experimental repro-
ducibility. To evaluate the maximal accuracy one could ever
expect from relative binding free energy prediction methods, we
conducted a survey on the reproducibility of experimental affinity
assays using publicly available data as well as data from our own
drug discovery projects. This survey focused on how well different
assays agreed with regards to rank ordering and relative binding
free energies (i.e. how much stronger one compound bound
compared to another). Assay comparisons involved both binding
assays and functional assays. Table 3 summarizes the reprodu-
cibility in terms of root-mean-square error (RMSE) and mean
unsigned error (MUE) of the relative measurements, as well as
with the coefficient of determination (R2) and Kendall rank
coefficient (Kendall’s τ). These metrics were aggregated by
weighting each assay comparison by the number of compounds;
confidence intervals were calculated by bootstrap sampling over
each assay comparison.

Table 3 also shows the aggregated statistics from our large FEP
benchmark after curation. The pairwise errors and correlation
metrics of the experimental survey and FEP+ benchmark are
directly comparable. whereas the edgewise errors only apply to
the FEP predictions as they are dependent on the topology of the
perturbation graphs. Given the sampling noise, uncertainty in the
structural inputs, and force field error, the pairwise RMSE and
MUE of FEP+ is, perhaps surprisingly, close to the experimental
survey-weighted average. The weighted experimental error values
are more uncertain, however, which are indicated by the larger
range in the bootstrap confidence intervals. The correlation and
rank statistics are higher by a statistically significant degree in the
experiment survey than in the FEP+ benchmark. Figure 2 shows
correlation plots from the experimental assay comparisons and
FEP+ predictions against experiment that are representative of
the best, average, and worst RMSE.

In both the experimental survey and FEP benchmark, we
endeavored to remove measurements that were clearly below or
above the assay detection limits. These kinds of data points were
identifiable as vertical or horizontal lines in scatter plots. In the
Covid Moonshot study68, the largest publicly available data set in
the experimental survey, this removal only modestly reduced the
calculated pairwise RMSE from 0.85 kcal mol−1 (using all 528
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pairs of measurements) to 0.79 kcal mol−1 (using 324 pairs of
measurements). Although measurement accuracy is generally
lower close to, but not beyond, assay detection limits, we did not
try to correct for these more subtle cases as we expect these will
affect both the experimental survey and FEP benchmark
similarly.

FEP accuracy varies depending on the method used for the
calculation. To quantify this variability and the degree to which
this is affected by the size and heterogeneity of the data set, we re-

analysed the predictions from FEP+ predictions from 2015 up to
2021, which encompasses sampling and force field improvements.
The results, in section 2.3 of the Supplementary Results, indicate
that larger, more diverse data sets are more able to discriminate
between the accuracy of different approaches.

The distribution of errors. Figure 3 shows boxplots of the RMSEs
from each assay comparison in the experimental survey and each
FEP graph from the benchmark. Notably, the experimental survey

Fig. 2 Scatter plots showing the range of agreement of ΔGs between different experimental assays and FEP+ predictions. Panels a–c compare
measured affinities between two different experiments and panels d–f compare FEP+ predictions (y-axis) against experimental measurements (x-axis).
Panels a and d show examples where the pairwise RMSE of relative binding free energies was much better than average, panels b and e show examples
where the RMSE was close to the average, and panels c and f show examples where the RMSE was worse than average. The top left of each plot shows
Kendall τ and pairwise RMSE for each data set. Points in the dark gray area are measurements or predictions that are within 1 kcal mol−1 of each other, and
points in the light gray area agree within 2 kcal mol−1. a Shows that isothermal titration calorimetry (ITC) and fluorescence polarization (FP) binding free
energy measurements of galectin ligands are offset by ~1 kcal mol−1 - this offset is irrelevant for rank ordering and does not affect the correlation or the
pairwise RMSE metric. The offset of the FEP+ ΔG predictions was determined by ensuring the mean of the ΔGs was equal to the mean of experimental
ΔGs on the x-axis. Where the data was available, we included the reported standard error of the experimental measurements; the standard errors from FEP
+ as calculated with the cycle-closure algorithm are also indicated on the bottom row of plots.

Table 3 Summarizing the reproducibility of the experimental relative binding free energies and the accuracy of FEP+.

Accuracy metric Experimental survey FEP+ benchmark

Pairwise RMSE (kcal mol−1) 0.91 [0.83, 1.11] 1.25 [1.17, 1.33]
Pairwise MUE (kcal mol−1) 0.67 [0.61, 0.83] 0.98 [0.91, 1.05]
Edgewise RMSE (kcal mol−1) N/A 1.17 [1.08, 1.25]
Edgewise MUE (kcal mol−1) N/A 0.91 [0.84, 0.98]
R2 0.79 [0.75, 0.82] 0.56 [0.51, 0.60]
Kendall τ 0.71 [0.65, 0.74] 0.51 [0.48, 0.55]

The value of every metric, such as RMSE or R2, is a weighted average. For the pairwise, R2, and Kendall τ metrics, the weighting is equal to the number of compounds in the assay (in the experimental
survey) or FEP graph. For the edgewise errors, the weighting is equal to the number of edges in each FEP graph. Square brackets encompass 95% confidence intervals that have been calculated by
bootstrap sampling over the pairs of experimental series or FEP+ graphs. As the edgewise error is dependent on the topology of an FEP+ graph, there is no equivalent metric in the experimental survey.
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contains one assay comparison that has an RMSE
>2.5 kcal mol−1, which is larger than any of the errors encoun-
tered in the FEP benchmark. This data point is a comparison
between surface plasmon resonance (SPR) and mass spectrometry
on a series of carbonic anhydrase I ligands. Clearly, some assays
can differ widely in their measured relative affinities, and so, one
should expect some FEP graphs to have a large apparent error
based on experimental error alone. While some graphs have
RMSEs near 2 kcal mol−1 in our FEP benchmark (see Fig. 2),
none approach 2.5 kcal mol−1 as in the experimental survey. The
boxplots show that, while Table 3 states that the mean pairwise
error of FEP+ across the whole benchmark data set is
1.26 kcal mol−1, the error of FEP+ on individual graphs may be
lower or higher than this value.

The right panel of Fig. 3 shows the histograms of all pairwise
(not edgewise) errors from both the experimental survey and the
FEP benchmark. In all 13,732 FEP+ relative binding free energy
predictions, 57.5% were within 1 kcal mol−1 of the experimental
value and 12.9% differed by more than 2 kcal mol−1, which are
close – but not equal to – the percentages one would expect from
a Gaussian distribution that has a standard deviation equal to the
pairwise RMSE of FEP+. Out of 314,535 relative binding free
energies in the experimental survey, 83.0% were within
1 kcal mol−1 of each other and 2.1% differed by more than
2 kcal mol−1; there are almost twice as many errors above
2 kcal mol−1 than would be expected from a Gaussian distribu-
tion. The experimental error distribution therefore has a “fatter”
tail than a Gaussian distribution that is better modeled using a
t-distribution. The maximum likelihood estimate of the degrees of
freedom parameter of the t-distribution for the experimental data
was 6.0, which was lower than the estimated value of 25.7 for FEP
+ errors. A smaller degrees of freedom value implies fatter tails,
meaning that, although the experimental error distribution is
tighter than the FEP+ error distribution, there was a higher
propensity for significant, non-Gaussian differences in the
experimental survey.

Validation of the experimental error estimates. It is worth quan-
tifying how our aggregated experimental RMSE compares to

previous estimates. After trawling the ChEMBL database for
binding affinities that had been measured by at least two different
groups, Kramer et al. arrived at two estimates for experimental
error46. When all pairs of measurements were included in their
estimate, they calculated the reproducibility error of absolute
binding free energies to be 0.69 pKi (0.95 kcal mol−1). Their
second error estimate of 0.56 pKi (0.77 kcal mol−1) was arrived at
by discarding all differences that were >2.5 pKi units. If one
assumes experimental error to be unbiased (i.e. there is no offset
between two sets of ΔGs) and Gaussian distributed, then the
estimates of Kramer et al. imply pairwise RMSEs of
1.34 kcal mol−1 and 1.09 kcal mol−1, which are arrived at by
multiplying their estimates by the square root of 2. The second of
these estimates is in close agreement with our estimated value in
Table 3 but the first is above our upper 95% confidence limit.
Nevertheless, these assumptions used to derive pairwise RMSEs
from Kramer’s estimates should be viewed cautiously as we have
found that in some of our assay comparisons, such as in top-left
scatter plot in Fig. 2, one set of experimental ΔGs can be offset
from the other. Also, as described above, we have found our
pairwise error distribution is better modeled as t-distribution
rather than a Gaussian. Indeed, Kramer et al. originally noted that
the absolute ΔG error distribution from the ChEMBL set was
poorly approximated by a single Gaussian distribution.

Our publicly available experimental survey contains compara-
tive assay studies from a wide range of academic and industrial
laboratories, all of which may have different levels of quality
control. On the other hand, data from our own drug discovery
projects should be more consistent in terms of quality control. To
see whether this is reflected in the experimental error estimates,
we can split the data sets and calculate the experimental error
separately. Using only the data from our internal projects, we
calculate the weighted RMSE to be 0.88 [0.80, 1.13] kcal mol−1,
compared to 0.96 [0.83, 1.24] kcal mol−1 from the publicly
available data. As the bootstrap confidence intervals overlap
substantially, we cannot distinguish between the quality of the
data sources. The broad consistency of these estimates suggest
that experimental error values shown in Table 3 are generally
representative.

Fig. 3 Summarizing the error distributions in the experimental survey and FEP benchmark. a Boxplots comparing the root-mean-square error (RMSE)
between relative binding free energies from different experimental assays (purple) and the FEP+ predictions against experimental data (green). The top
and bottom of the boxes represent the 25th and 75th percentiles and the dark line represents the median. The whiskers extend to a maximum of 1.5 times
the interquartile range. Circles are the RMSEs from comparing two experimental assays (green) or the RMSEs of a FEP+ perturbation graph (purple). The
size of each circle is proportional to the number of ligands in the series in either an assay comparison or perturbation graph. The two largest data points in
the experimental survey are from the COVID moonshot project68 and project A from Supplementary Table 4. The median RMSE in the experimental survey
is 0.85 kcal mol−1 and the median in the FEP+ benchmark is 1.08 kcal mol−1. b All pairwise relative binding free energy differences from the experimental
survey and all pairwise FEP+ errors. The histograms were symmetrized about the x=0 line in the sense that all N × (N− 1) pairs of compounds were used.
The error distributions are bell-shaped and can be approximated by t-distributions.
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The primary interest of our experimental survey is to quantify
the reproducibility of experimental binding affinities, which we
have approached by quantifying the difference of (relative)
binding affinity measurements from different experiments.
Nevertheless, it is of interest to place the experimental RMSEs
in context of the uncertainty that arises from multiple repeats of
the same experiment. In Supplementary Table 5 of the SI, we
collect the reported standard deviations from repeats from a total
of 350 compounds spread over 15 experimental assays. The
overall root-mean-square of these reported standard deviations is
0.23 [0.18, 0.33] kcal mol−1, where the square brackets denote
95% confidence intervals that have been calculated with bootstrap
sampling over the different assays. The uncertainty from the
repeats of a single experiment contributes to RMSE when
comparing different experiments. Assuming the repeatability
error we have calculated is Gaussian distributed and applies to all
experiments, the RMSE from taking the difference from two
measurements is approximately 0.33 kcal mol−1 (from the square
root of 2 times 0.23 kcal mol−1). This value is roughly a third of
the 0.91 kcal mol−1 reproducibility RMSE from Table 2, which
implies that two thirds of the reproducibility RMSE comes from
intrinsic differences from the different experiments.

The variability between different assay types. Our experimental
survey also permitted an assessment on the agreement between
binding assays, such as surface plasmon resonance (SPR), and
functional assays, such as enzymatic activity assays. As FEP
predicts relative binding free energies, one could expect a better
apparent accuracy with binding assays than with functional
assays. Previously, Schindler et al. found that with one protein
and chemical series, the predictions from FEP+ were in closer
agreement to the measurements from SPR than from a functional
assay56.

Table 4 compares the experimental reproducibility between
binding and functional assays and combines the data from our
experimental error survey (Supplementary Tables 1-3) and from
our internal program analysis (Supplementary Table 4). When
ignoring the confidence intervals, the pairwise RMSE between
binding assay derived ΔΔGs and functional assay derived ΔΔGs
appears lower than the pairwise RMSE between two binding
assays. This is a result of project A from Supplementary Table 4
dominating the weighted mean because of its large number of
compounds. The confidence intervals, as with all others in this
study, have been calculated by bootstrap sampling over each assay
comparison and minimize the effect of any one comparison.
Clearly, there is substantial overlap between the confidence
intervals between the ‘binding vs binding’ and ’binding vs
functional’ comparisons. Thus, these data support the hypothesis
– summarized in Equation (1)– that ΔΔGs from binding assays
are consistent with ΔΔGs from functional assays when consider-
ing a diverse range of experiments and targets. With regards to
what data is best for validating relative binding free energies
predictions from FEP, these results show that, in the main,
functional measurements of affinity are as appropriate as binding
measurements. Having more comparative assay data may change

these conclusions, and these results do not preclude the existence
of large differences between binding and functional assays that
occur on a case-by-case basis, such as with project B in
Supplementary Table 4.

Table 4 suggests that functional assays are more consistent with
each other than they are with binding assays. However, there are
far fewer comparisons in the “functional vs functional” category,
which makes these weighted means and confidence intervals less
meaningful than the others.

Discussion
We have assembled what is to our knowledge the largest
benchmark dataset for free energy perturbation (FEP) calcula-
tions of relative binding free energies to date. As prediction
accuracy is only meaningful in the context of experimental
accuracy, we conducted a survey of experimental reproducibility
alongside our FEP benchmark. While other studies have looked at
the experimental differences in absolute binding free
energies44,46, our survey focused on reproducing rank ordering
and relative binding free energy measurements. Our survey used
sets of ligands that had binding affinities determined in at least
two different assays.

We found that the accuracy of FEP+ was close to experimental
accuracy in terms of relative binding free energies while experi-
mental rank ordering ability was found to be markedly higher
than FEP+. As extensively detailed in the Supplementary Infor-
mation and summarized in Fig. 1, our FEP+ results were
obtained by preparing and studying the systems as thoroughly as
time constraints allowed. These involved augmenting the FEP
graphs with additional protomeric and tautomeric states, as well
as with adding additional rotamer states of R-groups, or choosing
perturbation mappings that enhanced sampling. Other changes
involved improving the binding modes or protein structure.
These kinds of treatments, while sometimes straightforward in
retrospect, can be difficult to tease out in drug discovery pro-
grams with time constraints, where predictions must come out in
a timely fashion for synthesis and assaying. However, FEP is an
“all-in-one" method that can predict protonation states, ligand
poses, and binding affinities, so a strategy that is appropriate for
drug discovery is to enumerate FEP maps with all likely states and
use post-processing, as we have here, to correct for the different
protonation and rotamer states.

For our FEP benchmark, we primarily collected data sets from
previous publications on FEP. This potentially biases our esti-
mates of FEP error as prior publications are more likely to con-
tain systems where a particular FEP method appeared at least
satisfactory in terms of accuracy. It should also be noted that our
estimate for the error of FEP+ with respect to experiment was
estimated retrospectively and that reported errors are typically
higher in prospective applications56. These biases may partly
reflect the results in Fig. 3, where the largest pairwise error was
found in a comparison of different experimental assays and not
FEP graphs. Our experimental survey clearly demonstrates that
some experimental affinity measurements can differ substantially

Table 4 Comparing the agreement between binding and functional assay measurements of relative binding free energies.

No. comparisons Pairwise RMSE (kcal mol−1) R2 Kendall τ

Binding vs binding 26 1.10 [0.85, 1.34] 0.76 [0.65, 0.84] 0.69 [0.61, 0.76]
Binding vs functional 30 0.93 [0.82, 1.21] 0.81 [0.73, 0.83] 0.76 [0.62, 0.75]
Functional vs functional 6 0.75 [0.53, 0.79] 0.78 [0.75, 0.91] 0.70 [0.58, 0.81]

As each assay type differs in what is measured, in the sense that binding may not always result in inhibition, one may expect a larger disagreement between the two types than within the types. The
confidence intervals, calculated by bootstrap sampling over the different assay comparisons, show that the differences we have obtained are not statistically significant. The “No. comparisons” column
shows how many assays were compared to estimate the reproducibility and bootstrapped over to estimate the confidence intervals.
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from others. FEP will have an apparently high error if compared
against irreproducible experimental affinity measurements, and
these cases will surely be encountered by increasing the amount
of data in the FEP benchmark. It should also be noted that given
the heterogeneity of the assay quality used both in the experi-
mental survey and FEP benchmark, our estimates of the maximal
and current accuracy primarily apply to this same regime of assay
quality. While our benchmark is the largest to date, we will
continue our efforts to improve its size and representation of drug
discovery targets.

FEP is most useful when it can be applied to the kinds of
designs that are made by medicinal chemists, which is why we
have included a wide variety of transformation types in our
benchmark, such as those involving fragments, scaffold-hopping,
charge-change, macrocyclization, and water displacement. The
range of systems and transformations contained in our bench-
mark covers a wider domain of applicability than previous
benchmark sets, namely the OPLS4 set27 and the set by Hahn
et al.37. Our FEP benchmark set also contains over twice as many
ligands as either of these data sets. With these considerations in
mind, we hope our benchmark dataset provides the most com-
prehensive test of an FEP method to date. It is also our hope that
FEP benchmark datasets will continue to grow in size, ligand
diversity, and target coverage. The benchmark data set we present
here is a step forward in this respect, although there remain areas
for improvement. The number of membrane proteins in this
benchmark set could be increased in future iterations to better
reflect the distribution of drug targets, but we note that the
aforementioned prior benchmark sets did not contain any
membrane proteins. Other types of ligand transformations, such
as those involving transition-metal complexes which are actively
being developed were omitted from this dataset69 and should be
included in future efforts. Although we reviewed the quality of
many of the protein and ligand structures in this work, this aspect
of the data is an evolutionary process and the structures should
remain under review in future versions of this benchmark.

While the focus of this work has been on the analysis of
binding free energies for protein-ligand complexes, it is important
to acknowledge that these free energy calculations have a wide
range of other applications, such as estimating covalent reaction
kinetics33, small molecule solubilities70, protein and ligand
pKas58,71, and the stability of protein mutations13,72,73. In each
application, we believe it is important to frame reported accura-
cies in the context of experimental uncertainty. To help encou-
rage more complete validations of free energy methods in future,
as part of this manuscript, we are releasing the publicly available
protein and ligand structures that were used in this benchmark as
well as the data from our experimental accuracy survey.

As our experimental reproducibility survey indicated that
experimental RMSE is on average ~1 kcal mol−1, it would be an
extraordinary challenge to ever have an FEP method that achieves
an error truly statistically indistinguishable from the experimental
error on a large and diverse data set, such as we have produced
here. However, given the continual development of new methods
and protocols, it is an open question as to how close predictions
could ever get to the limits set by the inconsistent quality of the
target experimental data. In the meantime, given our experiences
in assembling and curating this benchmark, the greatest gains in
accuracy that present day users can achieve will come from fol-
lowing the best practices that we have attempted to further
codify here.

Data availability
The assembled FEP benchmark data set and the publicly available experimental survey
data are freely available on the Github repository github.com/schrodinger/public_

binding_free_energy_benchmark. The results in this manuscript use v1.0 of the
repository. The Supplementary Information contains many details relating to the
experimental error survey and FEP benchmark. The experimental survey data in
the Supplementary Methods section includes tables for each assay comparison time that
state the source, protein, and assay types for the publicly available data. Summary tables
of Schrödinger’s in-house drug discovery experimental error data are also summarized in
Supplementary Table 4, although the raw data itself has not been made available on the
Github repository. The Supplementary Results of the FEP benchmark contains
discussions and validation results on all systems and chemical series that were modified
relative to the original publication. The SI contains figures that summarize our work on
each system, tables that summarize the accuracy of FEP+ on each series, and tables that
contain additional analyses, such as ligand and protein pKa calculations.

Code availability
The code to perform the error analysis as described herein is freely available on the
Github repository github.com/schrodinger/public_binding_free_energy_benchmark. The
results in this manuscript use v1.0 of the repository.
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