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Accelerating the prediction of CO2 capture at low
partial pressures in metal-organic frameworks
using new machine learning descriptors
Ibrahim B. Orhan1,2, Tu C. Le 3,4✉, Ravichandar Babarao 1,2,4✉ & Aaron W. Thornton 2,4✉

Metal-Organic frameworks (MOFs) have been considered for various gas storage and

separation applications. Theoretically, there are an infinite number of MOFs that can be created;

however, a finite amount of resources are available to evaluate each one. Computational

methods can be adapted to expedite the process of evaluation. In the context of CO2 capture,

this paper investigates the method of screening MOFs using machine learning trained on

molecular simulation data. New descriptors are introduced to aid this process. Using all

descriptors, it is shown that machine learning can predict the CO2 adsorption, with an R2 of

above 0.9. The introduced Effective Point Charge (EPoCh) descriptors, which assign values to

frameworks’ partial charges based on the expected CO2 uptake of an equivalent point charge in

isolation, are shown to be the second most important group of descriptors, behind the Henry

coefficient. Furthermore, the EPoCh descriptors are hundreds of thousands of times faster to

obtain compared with the Henry coefficient, and they achieve similar results when identifying

top candidates for CO2 capture using pseudo-classification predictions.
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S ince the industrial revolution, atmospheric CO2 levels have
risen more than 140 ppm, recording measurements above
420 ppm as of June 20221. This increase in CO2 concentration

in the atmosphere has raised questions regarding the ramifications
of such a drastic change; it was found that ~60% of the global
warming effects being attributable to CO2 emissions2. Not only has
the increase in CO2 concentrations been proven to have impacts on
the climate, but it also has potentially negative effects on mam-
malian physiology3. Carbon capture and storage (CCS) technologies
will play a role in offsetting the accumulation of this gas and thus
negate the drawbacks of using carbon-intensive technologies.

Similar to other pollutants, the key advances in CO2 capture
technology will likely stem from the adoption of CCS as a standard
practice for all large stationary fossil fuel installations4; however,
the cost of CCS currently remains a major consideration. Finding
commercially viable end-use opportunities for the captured CO2 is
still a growing interest as it is expected that CCS will mitigate
14–20% of total anthropogenic CO2 emissions by 20505. Therefore,
for CCS to be economically viable, either the cost of implementing
the technology must be minimized, or the captured CO2 must be
commercially useful.

In the context of CO2 capture, alongside zeolites, activated
carbon, and others, metal-organic frameworks (MOFs), which are
structures composed of metal oxide clusters connected through
organic linkers, are gaining traction as candidate materials6; it has
been demonstrated that MOFs can be adapted to pellet or film
forms without losing their sorption properties7 and can therefore
be more readily adapted to CO2 capture from flue gases. The
malleability of MOFs while retaining their sorption properties is
an advantage for configuring them into forms that can be better
suited for large-scale CCS8. Beyond their malleability, MOFs have
been extensively studied in pre- and post-combustion CO2 cap-
ture applications9 as well as being studied for direct air capture
(DAC)10.

Unlike the CCS options that require access to the source of CO2,
DAC does not require direct access to the CO2 source. However,
this method faces its own set of challenges. The reduced con-
centration of CO2 compared to the concentrations at point sources
of CO2, as well as H2O having a greater partial pressure at atmo-
spheric conditions result in many adsorbents preferentially
adsorbing H2O over CO2

11. To improve the performance of these
materials, new configurations of MOFs such as multivariate MOFs
are being developed for enhancing the separation of CO2 from
various gases12. With endless new variations to the MOF family of
materials being added, it would be nearly impossible to evaluate the
entire MOF-space for their CO2 capacity. As a method of faster
evaluation, machine learning (ML) models trained on high-
throughput molecular simulation data can be used.

As ML becomes an increasingly popular tool in various scientific
fields13–17, its applications with respect to predicting gas adsorption
and separation properties in MOFs continue to expand18–20. Using
a classification model, Aghaji et al. rapidly identified MOFs for
methane purification with high CO2 uptake and high selectivity21.
The ML model was built using geometrical descriptors and the aim
was to determine MOFs with CO2/CH4 selectivity higher than 5 or
higher than 10 and to determine MOFs with 2 or 4 mmol g−1

working capacity or greater. Evaluating their model through a
receiver-operator curve, the area under the curve was shown to
reach 0.95 with the missed true-positives appearing at the lower-
performance end of the spectrum.

Using the Topologically Based Crystal Constructor22, Ander-
son et al., computationally constructed 400 MOF crystals. Density
functional theory (DFT) calculations were performed to optimize
the adsorbate binding configurations; then grand canonical
Monte Carlo (GCMC) simulations were run using the RASPA
package23. Unlike the low partial pressure in DAC conditions, the

authors simulated the adsorption of CO2 both as mixtures (with
H2 and N2) and in pure form. Using six ML learning models they
were able to obtain the coefficient of determination, R2, as high as
0.905 and gain insight into the importance of descriptors used in
the models. Expanding on the computational methods utilized,
they also demonstrated that genetic algorithms could search for
characteristics that correlate to the highest predicted uptakes and
selectivities in the ML model. Their work demonstrated that
machine learning based on simple descriptors can be an effective
simulation-free tool to predict CO2 capture metrics while high-
lighting the need for different design strategies to optimize var-
ious MOF metrics.

As ML applications related to CO2 capture in MOFs are proving
to be plausible, the question of whether they will be effective in
predicting CO2 capture in DAC conditions remains. In this paper,
descriptors are developed to better model MOFs and train ML
models. Using various combinations of these features, the ML
algorithms were used to identify the most influential descriptors in
yielding accurate predictions to find the best candidate for CO2

capture. Consideration of hydrophobicity must be given because
the partial pressure of H2O in air is typically much greater than that
of CO2 in DAC conditions. In this study, three concentrations of
CO2 were considered: 40 Pa, 1 and 4 kPa. These values correlate
with the concentrations in air and indoor settings, manned
spacecraft, submarines, and emergency rebreathers for diving and
mining applications24–29. Danaci et al. highlight the limitation of
looking only at the capacity and selectivity of MOFs. They
emphasize the necessity of also investigating the rate of mass
transfer and the ease at which the adsorbent can be regenerated
under moderate conditions30. While the rate of mass transfer and
regeneration conditions of adsorbents were not studied in this
paper, future research may build on the findings of this paper and
utilize the new descriptors to predict these aspects of MOFs.

Methodology
Dataset curation. In this study, MOFs from the CoRE MOF
dataset (3378 structures) and the Anion-pillared MOF dataset
(936 structures) were used, where partial charges on the atom sites
had been calculated based on DFT using the DDEC method31,32.
While both datasets were used in the ML model, only the Anion-
pillared MOFs were used to estimate the necessary time for gath-
ering descriptors. To allow the ML model to be fitted to a wider
range of MOF structures, screening based on features was not
conducted. Typically, descriptors of a dataset in ML are multi-
dimensional and can be separated into distinct groups based on the
nature of their measurement. In this dataset, the descriptors
(Table 1) are categorized into atom type (A), geometric (B), che-
mical (C), effective point charge (D), and energy (E). Each category
of descriptor carries multiple dimensions relating to measurements
taken on MOFs, such as the number of specific atoms found in a
unit cell or the size of pores. The atom type, geometric, and che-
mical descriptors have already been shown to be effective in
building ML for predicting other gas-related properties of MOFs20.
The dataset can be found in Supplementary Data 1.

Monte Carlo simulations. The machine learning was built to
predict a target variable (CO2 uptake) that was simulated using
the grand canonical Monte-Carlo (GCMC) method. Separate ML
models were built for each partial pressure of interest. For each
ML model, the target variable (CO2 uptake) was gathered through
GCMC simulations using the RASPA package33. The GCMC
simulations were run such with the cutoff distance for interac-
tions set to 12.5 Å, for 20,000 cycles, at a temperature of 298 K.
The universal forcefield (UFF)34 was used for the van der Waals
(VDW) parameter of the framework atoms. The CO2 molecule35
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was assigned translation, rotation, reinsertion, and swap prob-
abilities of 0.5, 0.5, 0.5, and 1, respectively. Partial charges cal-
culated previously using DFT based on DDEC methods were used
to compute the Coulomb interactions32. Any simulations that
exceeded 24 h or that yielded errors were discarded. The same
CO2 molecule parameters were used when running simulations to
gather the Henry coefficients. The parameters used to define the
H2O molecule36 and CO2 molecule are presented in Supplemen-
tary Notes 1, 2.

Machine learning models. The random forest (RF) algorithm,
which dates back to 1995, has been proven successful in various
contexts and has seen various changes since its first proposal37.

The algorithm, which utilizes numerous decision trees, is able to
divide the search space at the nodes of trees. A drop in infor-
mation entropy at each traversed node of the decision tree can
provide insight into which descriptors are most important in
their respective context. The bagging method allows the algo-
rithm to further capture nuances by using different samples of
the data to build the trees that make up the forest. The
robustness that has been proven successful and the ability to
gather insight into the features were the rationale for the
decision to use RF as the algorithm for the model. The SciKit-
Learn module38 was used to access this algorithm. The coeffi-
cient of determination r2_score (R2) and the root of the
mean_square_error function (RMSE), present in the same
module, were used to evaluate the mode

Geometric and energy descriptors. The Henry coefficient (KH)
represents how strongly a gas molecule interacts with an
adsorbent. As such, an ML model could significantly benefit
from including the Henry coefficient as a descriptor. The
calculations are similar to the GCMC simulations described
above. However, instead of specifying a specific pressure,
the simulation is run by setting the Widom probability to 1
and by including the ideal gas Rosenbluth weight in the RASPA
simulation parameters.

The Henry coefficient was calculated for two gases: H2O and
CO2. The results from the CO2 simulations were directly included
in the ML model, while the H2O results were used to evaluate the
hydrophobicity of the candidate materials. The H2O model was
derived from TIP4P.

The geometric descriptors are gathered using Zeo++39, while
the energy descriptors are gathered through additional mole-
cular simulation. The probe radius in Zeo++ was set to be
approximately the size of CO2 at 1.5 Å. Pore volumes were
calculated using 50,000 sample points, while surface areas were
calculated using 2000 sample points. The energy descriptor was
calculated using a molecular simulation package RASPA33.
20,000 cycles were simulated at a temperature of 298 K with a
Widom probability of 1 to determine the Henry coefficients.
The remaining categories of descriptors were gathered through
in-house developed scripts (outlined in the Supplementary
Discussion).

Effective Point Charge (EPoCh) descriptors. The EPoCh
descriptors aim to quantify the effects of atomic partial charges
found within the MOF structure. In order to quantify the influence
of partial charges in the absence of VDW interactions, the descriptor
represents the equivalent uptake with respect to equivalent point
charges.

By constructing a single hypothetical atom in RASPA, which
contains no VDW interactions and no mass, CO2 uptake was
simulated at various pressures and charges. See Fig. 1 depicting
the snapshots from simulations with varying pressure and
charges. The atom was assigned values ranging between −5e to
+5e and the pressures simulated were primarily below 0.1 bar.
For a negatively charged atom, the positively charged carbon
atoms in the CO2 molecule are attracted to the site. For a
positively charged atom, the negatively charged oxygen atoms
in the CO2 molecule are attracted to the site. The stronger the
charge, the higher the CO2 uptake. CO2 uptake also increases
with pressure, though at different rates for the different charges.

By gathering sampled simulation data of the search space, a 2D
surface indicating the resulting adsorption in a 3D space could be
plotted where the remaining two axes are the corresponding
pressure and charge of the atom in the simulation (demonstrated
in Supplementary Fig. 1). The surface was fitted to the simulation

Table 1 Descriptor groups in the dataset.

Group Descriptor

Dataframe skeleton MOF name
Target variable CO2 uptake (mmol g−1)
Pressure

Atom type (A) Number of H atoms per unit volume
Number of C atoms per unit volume
Number of N atoms per unit volume
Number of F atoms per unit volume
Number of Cl atoms per unit volume
Number of Br atoms per unit volume
Number of V atoms per unit volume
Number of Cu atoms per unit volume
Number of Zn atoms per unit volume
Number of Zr atoms per unit volume

Geometric (B) Accessible surface area
Non-accessible surface area
Accessible volume
Non-accessible volume
Accessible probe-occupiable volume
Non-accessible probe-occupiable volume
Pore limiting diameter
Largest cavity diameter
Largest free path diameter
Density
Volume

Chemical (C) Total degree of unsaturation
Metallic percentage
Oxygen to metal ratio
Electronegative to total ratio
Weighted electronegativity per atom
Nitrogen to oxygen ratio

Effective point charge (D) Charge-based uptake at 40 Pa
Charge-based uptake at 1 kPa
Charge-based uptake at 4 kPa
Charge-based uptake at 40 Pa averaged
per atom
Charge-based uptake at 1 kPa averaged
per atom
Charge-based uptake at 4 kPa averaged
per atom
Charge-based uptake at 40 Pa per unit
volume
Charge-based uptake at 1 kPa per unit
volume
Charge-based uptake at 4 kPa per unit
volume

Energy descriptor (E) Henry coefficient

Descriptors groups in the dataset where features are grouped based on similarities into atom
type (A), geometric (B), chemical (C), effective point charge (D), and the energy descriptor (E).
The dataset is curated by MOF name and the pressure at which the simulation was performed.
The corresponding CO2 adsorption is recorded for the simulation result of each MOF and
pressure combination.
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results using the following equation:

f Q; p
� � ¼ α1Qþ α2Q

2 þ α3Q
3 þ α4Q

4 þ α5Q
5 þ α6Q

6 þ α7Q
7

þ α8pþ α9p
2 þ α10p

3 þ α11
ð1Þ

where Q is the partial charge, p is the partial pressure and α are
the fitted coefficients (listed in SI1.1–SI1.2). To calculate the
descriptor of a framework, f is calculated for every atom, i, within
the framework and averaged, as follows:

Ei ¼ maxð0; f iðQi; pÞÞ

Eave ¼ ∑
N

i¼1

Ei

N
;

ð2Þ

where Ei is the estimated uptake (mol cm−3) for a charged atom i,
and Eave is the averaged uptake over N atoms within a framework.
To prevent values below zero from being included, any evaluation
of parameters that yield a subzero output from f is set to zero. The
partial charges on the atoms are unique to each framework and
by evaluating each charge of a framework through Eq. (2), their
isolated effects are estimated. The results are averaged both
volumetrically and atom-wise, to determine a suite of EPoCh
descriptors for each MOF structure.

Results and discussion
The complete dataset yielded 12,637 simulation results for the
three pressures simulated; 4243 of the simulation results were at
0.4 mbar, 4186 at 0.1 mbar, and 4208 at 0.04 mbar. The differ-
ences between the number of datapoints for the different pressure
settings are a result of the simulations which were terminated
after 24 h.

Figure 2 depicts the correlations between the descriptors and the
target variable, CO2 uptake. An inspection of the gathered data
indicates that a number of the EPoCh descriptors have the highest
correlation with uptake. This is closely followed by a number of
chemical descriptors, after which the descriptors are either no
longer correlated with the target variable or the correlation (r)
becomes negative. No descriptor displayed a significant negative
correlation with the target variable. Intuitively, there are highly
positive and highly negative correlations between descriptors of the
various categories. For example, the various correlations between

pore diameters and the averaged EPoCh descriptors are observed.
Interestingly, the EPoCh descriptors show highly positive or highly
negative correlations with a number of atom types and chemical
descriptors. This is likely a result of the partial charges that arise
from certain atoms in the framework.

Henry’s law. Henry’s law is used to estimate the uptake of gases at
low partial pressures where uptake, U, is calculated as the product
of Henry coefficient and pressure, KHp. If the computationally
intensive Henry coefficient has already been obtained, it is possible
that Henry’s Law would negate any need for machine learning. The
distribution shown in Fig. 3a of Henry’s coefficient values indicates
that there is a wide range of values in the dataset. While some
MOFs with exceptionally high Henry’s coefficient values could
clearly be considered outliers, there are, however, some MOFs that
show high uptake and should not be ignored. The histogram shows
the distribution of Henry’s coefficient values after taking the nat-
ural log, and the distribution of values closely resembles a bell curve
with a slight right skewness. The skewness following the log-
transformation is 1.21 compared to 97.54 prior. The range of
Henry’s coefficient values can be highlighted by the maximum
value being 1030 times greater than the minimum value, leading to
a dataset where the mean Henry coefficient is 1.46 × 103 while the
median Henry coefficient is 2.64 × 10−4, indicating a significant
range of values present in the dataset. The presence of high Henry
coefficient values would signal that those MOFs demonstrate a
sharp increase in adsorbed CO2 at low pressures. Figure 3b shows
the simulated isotherms of the MOFs with the highest uptake along
with the Henry Law prediction. There is some agreement at ultra-
low pressures of around 10 Pa, however, the simulated isotherms
quickly move outside the linear region of Henry’s Law. Considering
that this study is focused on uptakes above 40 Pa, the Henry Law
may not be applicable.

Figure 4 presents the performance of the Henry Law model for
MOFs with Henry’s coefficients below or equal to 0.001 (Fig. 4a),
and MOFs with Henry’s coefficients between 0.001 and 1 (Fig. 4b).
Using the full dataset there is an unacceptable R2 of −9.807 × 1015.
At high pressures and high Henry’s coefficient values, there is no
observable trend (Fig. 4b). By looking at lower Henry coefficient
values, the trend becomes more observable (Fig. 4a). Limiting the
dataset to MOFs below 0.001 Henry’s coefficient, at 40 Pa there is

Fig. 1 Pressure–charge effects in the Effective Point Charge (EPoCh) simulations. Snapshots from the molecular simulations of CO2 uptake around a
single hypothetical atom with varying pressures and charges.
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good agreement between the GCMC uptake and the Henry’s Law
uptake. For this case, the correlation obtains a R2 of 0.98. Similarly,
for 1000 Pa, there is a good correlation with an R2 of 0.924;
however, there is negligible uptake at 40 Pa and low uptake
(<1mmol g−1) at 1000 Pa. At 4000 Pa, MOFs display reasonably
high uptakes (up to 4 mmol g−1), however, the agreement between
GCMC results and Henry’s Law diminishes with an R2 of 0.206. As
Henry’s coefficient value increases, the adherence to Henry’s Law
diminishes due to the MOFs reaching their saturation points at
lower pressures. Therefore, Henry’s Law is a poor physical model
for identifying candidates with high uptakes (>1mmol g−1) at low
partial pressures (<4000 Pa).

While the Henry coefficient is an influential descriptor for
building accurate machine learning models, the direct calculation
of uptake does not appear to be possible through Henry’s Law
alone. The correlation between uptake calculated through Henry’s
Law and uptake simulated in GCMC diminishes as the pressure
and/or Henry’s coefficient value increases. This means that it is
possible to predict, with high accuracy, the MOFs that have lower

uptake, while the MOFs that have significantly greater Henry
coefficient values do not fit the law at the pressures considered.
This suggests that those MOFs have such a high proclivity to
capturing CO2 that they have already surpassed the linear region
of the isotherm where Henry’s Law holds true. These are the exact
MOFs that are of most interest for CO2 capture and thus
resorting to other methods, such as ML, are worthwhile pursuit.

Machine learning models. By splitting the dataset into 80%
training and 20% testing, the model is evaluated (Fig. 5). The
combination of feature groups A, B, and C acted as a benchmark
model with an R2 of 0.541 for 40 Pa. The influence of the additional
descriptors on the model’s performance was evaluated. At each
pressure, the model with EPoCh descriptors (D) combined with the
benchmark descriptors outperformed the benchmark model, e.g.,
R2 of 0.715 for 40 Pa. An increase in performance, R2 of 0.916 for
40 Pa, is observed when including the Henry coefficient energy
descriptors (E). The ML model incorporating all descriptors in

Fig. 2 Correlation within the dataset visualized in a heatmap. Pearson correlation (r) heat-map of descriptors and target variable where the correlation
between each pair of features can be found at the intersection of their respective column–row intersection. The values of the correlation are color-coded
according to the scale shown to the right of the heat-map.
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unison, was able to yield predictions where the R2 surpasses 0.9 for
all pressures. Root mean squared errors (RMSE) reveal the same
trends and can be found in Supplementary Table 1.

As the computational expense of obtaining the Henry
coefficients of MOFs is non-negligible, there are benefits to
analyzing the ML model without these descriptors. When energy
descriptors are not included, there is a decrease in the performance
of the model. However, the trends between predictions and their
corresponding simulation values are still observable with R2 values
ranging between 0.69 and 0.742 (see Figs. 6 and 7).

For a MOF to be considered successful in DAC, an uptake
criterion of at least 1 mmol g−1 was set. Using this as a criterion for
classification, the ML model can ultimately act as a screening
method to determine which candidates require in-depth analysis.
Here a pseudo-classification method is introduced, where MOFs
that are predicted to have an uptake above a certain threshold would
either be simulated in detail or synthesized experimentally, while
the rest are discarded. Setting this threshold value to 1mmol g−1, a

positive label would be given to MOFs that are predicted to have
CO2 adsorption equal to or greater than this value. Through such a
method, the regression model ML algorithm can be turned into a
pseudo-classification method. The predicted versus simulated plots
can then be separated into quadrants divided by vertical and
horizontal lines at the threshold values (see Figs. 6 and 7). These
quadrants would correspond to the true negative predictions
(bottom-left), true positives (top-right), false negatives (bottom-
right), and false positives (top-left).

From this information, the metric can be calculated to assess
the performance of the ML models. For example, the recall metric
can be calculated, which is the number of true positives divided
by the addition of false negatives and true positives. This is a
measure of sensitivity where a higher recall means that the model
is capturing the relevant information. In other words, a higher
recall means that the model is good at determining the number of
positive candidates. Additionally, the precision metric can be
calculated, which is the number of true positives divided by the

Fig. 3 Overview of Henry coefficient values in the dataset and isotherm–Henry’s law comparison for MOFs with greatest CO2 adsorption.
a Distribution of Henry coefficient values for the MOF dataset. b Uptake versus pressure for the MOFs with the highest adsorption, highlighting the non-
linearity that Henry’s Law does not model.

Fig. 4 Henry’s Law applied to the dataset. GCMC uptake versus Henry’s Law uptake for a MOFs with Henry’s coefficients below or equal to 0.001, and
b MOFs with Henry’s coefficients between 0.001 and 1. The dashed black lines indicate perfect agreement between GCMC and Henry’s Law.
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addition of false positives and true positives. Precision indicates a
level of accuracy such that the model should minimize the
number of false positives. A high precision means that resources
are not unnecessarily wasted on candidates that have low uptakes.

Using all descriptors, the model displayed recalls of 0.969,
0.975, and 0.983 at 40 Pa, 1, and 4 kPa, respectively. The
corresponding precisions were 0.849, 0.914, and 0.952, respec-
tively, for 40 Pa, 1, and 4 kPa. The recall rates indicate that at all

pressures, more than 95% of candidates with a simulated uptake
above the 1 mmol g−1 threshold were correctly predicted by the
ML model. While the precisions indicate that at all pressures,
more than 84% of the ML predictions above the 1 mmol g−1

threshold were true positives.
In comparison, the ML model that does not incorporate the

Henry coefficient is assessed. At 40 Pa, 1, and 4 kPa the recalls
were 0.719, 0.838, and 0.883, respectively. The precisions were

Fig. 5 Performance metrics of feature group combinations. Coefficient of determination R2 for the ML models. A+ B+C is the benchmark model using
conventional descriptors. The addition of the EPoCh descriptors (D) and the Henry coefficient energy descriptors (E) shows an improvement in the model.

Fig. 6 Performance of the ML model using descriptors excluding the Henry Coefficient. Predictions from a model built without energy descriptors of CO2

uptake at a 40 Pa, b 1 kPa, c 4 kPa where the x-axis corresponds with the simulated values and the y-axis is the predicted adsorption; the dashed line
indicates a perfect coefficient of determination (R2= 1). The green regions demonstrate correct pseudo-classification results, while the red regions
demonstrate predictions that would be misclassified.
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0.807, 0.778, and 0.791, respectively, for 40 Pa, 1 and 4 kPa.
Despite requiring significantly fewer computational resources to
obtain the descriptors of this ML model, the recalls and precisions
are similar to those of the ML model using the Henry coefficient
descriptor. The precisions did not vary significantly between the
ML models and there was only a 4 percentage points difference
between the two models at 40 Pa. Therefore, despite the lower R2

values of the EPoCh-based ML model, there is excellent
performance in the classification of top candidates with uptakes
above 1 mmol g−1

At 40 Pa (Fig. 6a), the largest root mean squared errors in the
training set and test set predictions were 1.42 and 3.48mmol g−1,
respectively; there were 64 MOFs with a CO2 adsorption
≥1mmol g−1 in this set and the ML model predicted 73 to have
an uptake greater than this value. At 1 kPa (Fig. 6b), 1.99 and
3.8 mmol g−1 were the largest discrepancies between simulated and
predicted values for the training set and test set respectively. At
1 kPa, 197 MOFs had a simulated CO2 adsorption ≥1mmol g;−1

the ML model predicted there to be 209. Similarly, at 4 kPa
(Fig. 6c), the largest differences between simulated and predicted
values in the training set and test set were 2.03 and 3.96mmol g−1,
respectively. There were 403 MOFs with simulated adsorption
≥1mmol g;−1 the ML model predicted there to be 418. In all
pressures considered, the number of MOFs predicted to have CO2

adsorption above the 1 mmol g−1 threshold was greater than the
true number above this threshold.

Since finding candidate materials to further analyze in a timely
manner is the ultimate goal, the time necessary to gather each
descriptor is also an important factor. Especially as the number of
hypothetical MOFs continues to grow indefinitely. Figure 8
demonstrates the average necessary time (on a log scale) for
gathering descriptors in each group. Starting with the brute-force
approach where every candidate is subject to a complete GCMC
simulation at the pressures of interest, the estimated time to
assess 10,000 MOFs is 1.09 × 108 s (3.45 years). Clearly, this is not
feasible when considering millions of candidates. The Henry
coefficient is capable of improving the accuracy of the ML model,
however, the time required to assess 10,000 MOFs is 3.27 × 107 s
(~1 year). The approach is also not feasible. Fortunately, there is a
significant reduction in computational time by orders of
magnitude for the remaining descriptors. For example, the
geometric descriptors would require 54,000 s (15 h) to assess
10,000 MOFs, followed by the EPoCh descriptors at 20 s and

finally the atom type descriptors at 3.7 s. Therefore, there are
enormous benefits of accelerating the screening process by using
the EPoCh descriptors in combination with atom type and
geometric descriptors.

To further emphasize the advantage of the EPoCh descriptors,
the R2 and RMSE values are weighted according to the average
time required to gather each descriptor. The model with EPoCh
descriptors outperforms the models containing the Henry
coefficient by a magnitude of over 450, shown in the adjusted
R2 in Supplementary Fig. 2. Displaying a similar performance for
the time-weighted RMSE, the EPoCh descriptor again outper-
forms any other feature combination considered. This means if
speed and accuracy are equally important, the ML model with
EPoCh is ~30,000% better than the ML with Henry’s coefficient.

In comparison with the Henry coefficient, the EPoCh descriptors
provide additional information about the adsorption behavior
specifically around charged atoms. The Henry coefficient gives an
overall picture of the interactions for CO2 uptake in the isotherm’s
linear region at infinite dilution. All interactions are captured in a
single number KH, and by multiplying it by the pressure, we can
obtain the uptake. However, some high-uptake MOFs quickly
(almost immediately) fall outside the linear region. The EPoCh
descriptor, on the other hand, is indifferent to which region of the
MOF’s isotherm it falls, as it is calculated at different pressures.
Unlike KH, it does not capture all interactions; it captures only the
electrostatic interactions at the pressures considered, ignoring
the VDW interactions. Overall, the ML model is improved by
the charged atoms’ electrostatic interactions being modeled more
precisely.

For both the evaluation of CO2 uptake through GCMC and the
calculation of KH, the computational time necessary depends on
the length of simulations run, the pressure considered (where
applicable), and the size of the MOF; these simulations were
conducted according to the specifications detailed in the
“Methodology” section. While the energy grids are particularly
beneficial when evaluating full isotherms, the decision regarding
their use is another factor that influences the computational time.
The calculation of energy grids, being computationally non-
negligible, was not used in this study which considered only three
pressure settings. The time requirements for the descriptors and
target variable indicated in this section are based on the means of
elapsed times while compiling the Anion-Pillared MOFs dataset
on the Gadi High-Performance Computing Cluster of the

Fig. 7 Performance of the ML model using all descriptors including the Henry Coefficient. Predictions from a model built using all descriptors of CO2

uptake at a 40 Pa, b 1 kPa, c 4 kPa where the x-axis corresponds with the simulated values and the y-axis is the predicted adsorption; the dashed line
indicates a perfect coefficient of determination (R2= 1). The green regions demonstrate correct pseudo-classification results, while the red regions
demonstrate predictions that would be misclassified.
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National Computational Infrastructure of Australia for GCMC,
Widom Insertion, and Zeo++, and a PC with a 2.9 GHz 6-Core
Intel Core i9 processor for the calculation of EPoCh, Chemical,
and atom type descriptors.

Feature importance. When the Henry coefficient is used to build
the ML model, the relative importance of the Henry coefficient in
making predictions outweighs the relative importance of all
remaining descriptors. Where the sum of relative importance for
descriptors in groups A–D, on average, yields 0.17, the Henry
coefficient yields a relative importance of 0.83 (where all features
sum to 1). The influence this descriptor has can be further
highlighted by comparing the performance of models where this
descriptor is included to those where it is excluded. Keeping in
mind that the models that incorporated this descriptor had R2

values near 0.95, while those that did not incorporate this
descriptor had R2 values around 0.7.

It is evident, both through the performance of the models and
through the ranking of feature importance, that the Henry
coefficient displays the greatest influence on predicting CO2

adsorption capacity. Though, it is not always possible or practical
to run simulations to gather this group of descriptors, it is clear that
the EPoCh descriptors would play a pivotal role in the absence of
the Henry coefficient (see Fig. 9). Both the EPoCh and Henry
coefficient descriptors have a drawback of requiring the charges of
atomic sites. If these are readily available and are known to be
accurate, the EPoCh descriptors could save considerable computa-
tional power.

So far, separate ML models have been created for each pressure
considered. While this is beneficial for evaluating MOFs where
there is already data available, the capacity of MOFs at pressures
unseen by the model is not predictable through separate models.
By adding pressure as a descriptor and combining all the
datapoints to a single ML model, predictions were made on
MOFs at pressures where there were previously no data. Two
pressures were selected for testing predictions by interpolation
(400 Pa) and extrapolation (10,000 Pa). 400 Pa was selected so
that the model could make predictions between pressures on
which it has been trained (40 and 1000 Pa). To see how it
performs when considering pressures beyond the maximum

(4000 Pa), 10,000 Pa was selected. At 400 Pa the model yielded an
R2 of 0.54 while at 10,000 Pa the R2 was 0.72 when the Henry
coefficient was excluded from the dataset (shown in Supplemen-
tary Fig. 3). Applying the same pseudo-classification threshold of
1 mmol g−1, the precision (ratio of true positives to predicted
positives) is high for both models at 0.99 for both, while the
recalls were lower for the 400 Pa predictions at 0.42, and 0.74 at
10,000 Pa. Therefore, the model, despite showing some robust-
ness, should be built for specific pressures in the absence of the
Henry coefficient.

Effects of humidity. As is the case with other adsorbents40, the
influence of moisture should also be considered in MOFs.
Although there are strategies to remove the negative effects of
humidity including pre-treatment of feed gas, surface treatment of
sorbent, and binder selection, a successful candidate that is inher-
ently not affected by moisture is ideal. As had been highlighted by
Kumar et al., the electrostatic interaction under atmospheric con-
ditions, due to a higher partial pressure of H2O, may result in it
being preferentially adsorbed over CO2

11. For the MOFs analyzed
in this paper, where the influence of electrostatic interactions
clearly plays a significant role (as highlighted in EPoCh descrip-
tors), this will act as an additional challenge when searching for
MOF candidates that capture CO2.

Although in this dataset, descriptors regarding the presence of
functional groups were not included, it is not unreasonable to
suggest that future datasets could include this. Studying MOFs
with unusual CO2 affinity at low pressure, Burtch et al.
determined that the increase of non-polar functional groups on
the benzene dicarboxylate linker of pillared DMOF-1 structure
can effectively tune the CO2 Henry coefficient. Particularly, the
methyl groups provided the greatest CO2 selectivity over N2, CH4,
and CO in relation to other functional groups41.

Using the threshold of 1.0 × 10−5 for the H2O Henry coefficient
for classifying hydrophobicMOFs, suggested by Gulcay et al.42, 249
MOFs are identified that could be considered hydrophobic (see
Fig. 10a). In the reduced dataset, the atom-wise averaged EPoCh
descriptors at 40 Pa had a median value of zero and a maximum
value below 0.4. This is in contrast to the full dataset where
the median value was 0.034 and the maximum was as high as 1.22.

Fig. 8 Time requirements of each descriptor group. Estimated times necessary to gather descriptors of a 10,000 MOF dataset (based on timings gathered
from the Anion-Pillared MOFs).
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The Henry coefficient of CO2 for this subset of MOFs was similarly
lower, obtaining a median of 2.43 × 10−5 with a maximum of
9.56 × 10−4; while the complete dataset had a median Henry
coefficient of CO2 of 2.64 × 10−4 with a maximum of 1.175 × 107.
These characteristics correlated with lower uptakes of 0.04, 0.62,
and 1.77mmol g−1 in this subset of hydrophobic MOFs at 40 Pa, 1,
and 4 kPa, respectively. Using a stricter threshold of 2.6 × 10−7, as
proposed by Qiao et al.43, only 71 MOFs met the desired
hydrophobicity criterion. The maximum uptakes were obtained
at 4 kPa with values reaching 0.411mmol g−1. When compared to
the 7.93mmol g−1 adsorption obtained in the complete dataset, the
challenges caused by H2O interactions in limiting MOF candidates
for CO2 capture become evident.

Comparing purely the Henry coefficient values of CO2 and H2O,
and selecting those that have a greater Henry coefficient for CO2

than H2O (Fig. 10b), the list of candidate MOFs grows to more than
600. For this set of MOFs the median and 75th percentile uptakes
are still lower than those of the remaining dataset; 0.075 and
0.395mmol g−1 compared to 0.229 and 1.211mmol g−1, respec-
tively, for the dataset combining all pressures considered. 206
datapoints in this subset displayed uptakes >1mmol g;−1 only 7 of
which were at 40 Pa. Four of these seven belonged to the SIFSIX
family of MOFs, where SIFSIX-3-Cu displayed the greatest
adsorption of 2.49 mmol g−1. This uptake value at 40 Pa value
corresponds closely with experimental CO2 uptake at 0.1 bar

reported in the literature44. Displaying adsorption only 10% lower
than SIFSIX-3-Cu was the BUSQIQ MOF from the CoRE MOF
dataset. At 1 kPa, the number of MOFs with a CO2 uptake
>1mmol g−1 grew to 32 and at 4 kPa this number had reached 167.
At 1 and 4 kPa, the CO2 adsorptions had maximums of
4.841mmol g−1 (LOGBEO) and 5.332mmol g−1 (SIHLUQ),
respectively. An expanded list of these MOFs can be found in
Supplementary Tables 2.1–2.3.

While ML has been shown effective for predicting CO2 uptake,
it is evident that the interactions with moisture are another aspect
that would eliminate candidate materials based on whether CO2

is being captured through DAC. The ML algorithm has not been
directly applied for the purposes of predicting H2O uptake due to
a lack of data pertaining directly to the uptake of H2O. Such a
model, if developed, would allow a multi-faceted approach to the
screening of MOFs. The combined screening method, using ML
for both H2O and CO2, would then accelerate the screening
process even further.

Conclusions
Looking beyond the conventional descriptors such as those in
geometrical and atom-type groups, it was shown that the pre-
dictive capabilities could be significantly improved by broadening
the scope of descriptors used. In particular, the Henry coefficient

Fig. 9 Relative importance of descriptors in the model excluding the Henry coefficient of CO2. Relative importance of descriptors used to build the ML
model based on the mean decrease in impurity while traversing nodes of trees in the random forest.
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was the most influential descriptor in predicting absolute CO2

adsorption; while the EPoCh descriptors could be useful additions
for other ML models as they carry information that has not been
captured in the benchmark descriptors. The adsorption capacity
for CO2 from DAC was shown to be reliably predicted using the
features discussed.

Since the equation for gathering EPoCh descriptors for CO2

has been completed, gathering the descriptors for additional
MOFs is an expedient process. It is as simple as iterating through
each atom’s charges in a CIF file and summing the results of the
function (Eq. (2)) at the desired pressure. As both the Henry
coefficient and EPoCh descriptors require the partial charges on
atom sites, the EPoCh descriptors have the benefit of not
requiring additional simulations, as opposed to the Henry coef-
ficient which requires each MOF to be run through a Widom
insertion simulation.

The hydrophobicity of MOFs remains an important considera-
tion. By comparing the Henry coefficients between CO2 and H2O,
14% of theMOF candidates have a higher affinity for CO2 compared
with H2O. Strategies to reduce the effects of humidity are highly
encouraged. Alternatively, future ML models could incorporate the
effects of humidity to help identify hydrophobic candidates.

In the context of accelerating the discovery of candidate
materials, the EPoCh descriptor provides models with significant
information while being orders of magnitude faster than gath-
ering the Henry coefficient of the same MOFs. The use of the
EPoCh descriptors can therefore accelerate the discovery of new
MOFs for DAC and other low partial pressure applications.s

Data availability
The CO2 uptake of the MOFs used in this paper and their descriptors are available on
accessible on GitHub (https://github.com/ibarisorhan/MOF-CO2) and in Supplementary
Data 1. The details of the EPoCh descriptor, additional ML performance metrics, relevant
MOFs post-screening for hydrophobicity, and gas molecule parameters for RASPA are
available in the Supplementary Information.

Code availability
Jupyter Notebooks, Python scripts, and RASPA simulation input templates used are
readily available at: github.com/ibarisorhan/Epoch-Descriptors. github.com/ibarisorhan/
MOF-CO2.
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