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Chemo-enzymatic total synthesis of the
spirosorbicillinols
Tobias M. Milzarek 1,4 & Tobias A. M. Gulder 1,2,3✉

The natural product class of the sorbicillinoids is composed of structurally diverse molecules

with many strong, biomedically relevant biological activities. Owing to their complex struc-

tures, the synthesis of sorbicillinoids is a challenging task. Here we show the first total

synthesis of the fungal sorbicillinoids spirosorbicillinols A–C. The convergent route comprises

the chemo-enzymatic transformation of sorbicillin to the highly reactive sorbicillinol and the

assembly of scytolide and isomers starting from shikimic and quinic acid analogs. The key

step in the total synthesis is the fusion of both building blocks in a Diels-Alder cycloaddition

leading to the straightforward formation of the characteristic sorbicillinoid bicyclo[2.2.2]

octane backbone. This work provides unifying access to all natural spirosorbicillinols and

unnatural diastereomers.
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The sorbicillinoids are a class of structurally highly diverse
natural products with multiple biological activities1.
Among the best-known representatives are bisorbicillinol

(1) and trichodimerol (2) derived of Diels-Alder cycloaddition
(red bonds) or Michael addition (blue bonds) reactions, respec-
tively, of two sorbicillinol units (Fig. 1a). In terms of biological
activity, 1 acts as a DPPH radical scavenger, whereas 2 inhibits
the production of the inflammatory mediator tumor necrosis
factor (TNF-α) by targeting cyclooxygenase-22,3. Bio-synthetically
and total synthetically, all such dimeric sorbicillinoids can be
deduced from oxidative dearomatization of sorbicillin to the
reactive intermediate sorbicillinol, either by the natural oxidor-
eductase SorbC4–7 or by oxidizing reagents, such as lead tetra-
acetate or (bis(trifluoroacetoxy)iodo)benzene8–10.

In addition to dimeric sorbicillinoids, hybrid derivatives, which
consist of one sorbicillin moiety and an additional molecular
building block, are also present in nature. Examples are the chloc-
tanspirones A (3) and B (4) and the spirosorbicillinols A–C (5–7), all
including a spiro-cyclic quaternary carbon at position C-8 (Fig. 1a).
The chlorinated sorbicillinoids 3 and 4 possess cytotoxic effects
against leukemic (HL-60, 3: IC50= 9.20 μM, 4: IC50= 37.8 μM) and
human adenocarcinoma cells (A-549, 3: IC50= 39.7 μM)11. In
analogy to bisorbicillinol (1), the spirosorbicillinols A–C (5–7) show
weak DPPH radical scavenging activities12. From a retrosynthetic
perspective, spirosorbicillinols are assembled from a shikimic acid-
derived secondary metabolite acting as a dienophile in the
Diels–Alder cycloaddition with sorbicillinol. Fungal shikimate
metabolites are a natural product family with diverse functionalities,
such as a typical allylic methyl ester and a vicinal triol. Examples of
this structural class are the cyathiformines (8, 9)15, phyllostin (10)14,
and scytolide (11)14,15 (Fig. 1b). These compounds have an addi-
tional methyl acrylate or propanoate group, respectively, which in
some congeners forms a six-membered lactone with the alcohol at
position C-1. Scytolide (11) is a key building block for the chemo-
enzymatic synthesis of spirosorbicillinols A (5) and B (6), since it
represents the dienophile for the Diels–Alder cycloaddition with
sorbicillinol5,6,16,17. We thus set out to develop chemical routes to
access scytolide (11) and various isomers to enable their straight-
forward conversion into the desired products spirosorbicillinols A–C
(5–7).

Results and discussion
Synthesis of scytolides. Due to identical stereochemistry, the
enantioselective assembly of scytolide (11) and further isomers
can be established by starting from chiral-pool biogenic pre-
cursors (–)-shikimic acid (12) or (–)-quinic acid (14) (Fig. 2). In
the first steps, both natural building blocks were protected by
esterification and cyclic acetal formation18,19. (–)-Shikimic acid
(12) was converted into the protected species 17a (98% yield over
2 steps) with thionyl chloride in methanol and acid-catalyzed
cyclization with 2,2-dimethoxypropane. (–)-Quinic acid (14) was
treated analogously with 2,2-dimethoxypropane leading to the
lactonized isopropylidene acetal 15 in 98% yield. Ring opening of
the lactone was achieved by the addition of sodium methanolate
(80% yield). Subsequent oxidative β-elimination20 using pyr-
idinium chlorochromate (PCC) and pyridine led to a keto
intermediate, which was selectively reduced with sodium triace-
toxyborohydride (47% yield over 2 steps) to compound 17b, the
C-5/C-6-double-bond isomer of 17a. The attachment and lacto-
nization of the methyl acrylate moiety were performed in analogy
to previous work by Chouinard and Bartlett on shikimate
metabolite synthesis21,22. The condensation of the
isopropylidene-protected shikimic acid methyl esters 17a/b with
dimethyl diazomalonate was catalyzed by rhodium acetate (yields
—18a: 65%, 18b: 53%)23. The obtained malonates 18a/b were
methenylated using Eschenmoser’s salt, followed by alkylation
with iodomethane and Hofmann-type elimination (yields over
2 steps—19a: 96%, 19b: 71%). Before final cyclization, the iso-
propylidene protecting group of compounds 19a/b was removed
under acidic conditions (acetic acid/water/tetrahydrofuran, yields
—9: 86%, 20: 87%). Subsequently, the synthesized cyathiformine
D (9)24 and its double bond regioisomer 20 were lactonized with
potassium carbonate (yields—21a/b: 93%). Thus, as essential
intermediates, two diastereomeric (8R)-scytolide isomers were
prepared over seven (21a) or nine (21b) synthetic steps, respec-
tively, in total yields of 49% and 11%. The yield-determining step
in both cases was the rhodium-catalyzed condensation reaction
(53–65%), in addition to the PCC-promoted β-elimination (60%)
for (8R)-epi-scytolide (21b). For the inversion of the stereocenter
at C-8, compounds 21a/b were oxidized with Dess–Martin per-
iodinane (DMP) to give the corresponding ketones 22a/b. Ana-
lysis by high-performance liquid chromatography indicated a
quantitative conversion in each case. Due to the observed
instability of the oxidized species 22a/b, the subsequent reduc-
tions were carried out directly with the crude intermediates. The
use of sodium borohydride25 as a reducing agent at 0 °C provided
a diastereomeric mixture of 11 and 21a in a 3:1 ratio with an
overall yield of 70% (Fig. 2, Table, entry a). The milder sodium
triacetoxyborohydride showed lower conversion (27%,
11:21a= 2:1) at room temperature (b), whereas at 0 °C (c), the
yield (90%) and the diastereomeric ratio (11:21a= 5:1) were
improved. Under the same conditions (c), crude epi-scytolide
(23) was prepared via ketone 22b in 21% yield (23:21b= 4:1).
Due to the small amount isolated and the sensitivity to poly-
merization, the crude product 23 was used directly without fur-
ther purification in subsequent reactions (see below). In
summary, four different scytolide isomers 11, 21a/b, 23 were
produced over 7–11 synthetic steps in yields between 2 and 49%.
To the best of our knowledge, the natural product scytolide (11)
was synthesized for the first time, in nine steps in a total yield of
35%.

Synthesis of spirosorbicillinols. Having scytolide (11) and epi-
scytolide (23) in hands, their use as dienophiles in Diels–Alder
reactions with chemo-enzymatically prepared sorbicillinol5,6

(enophile) gave direct access to the entire class of

Fig. 1 Natural product structures of this work. a Diverse sorbicillinoids
based on Diels–Alder cycloaddition (red bonds) and Michael addition (blue
bonds). b Fungal, shikimic-derived secondary metabolites11–15.
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spirosorbicillinols (Fig. 3). Spirosorbicillinol A (5) and B (6) were
prepared by a single reaction using the same dienophile 11.
During Diels–Alder cycloaddition, the preferred endo-derivative 6
(25%, based on re-isolated starting material (brsm): 52%) was
obtained in higher yields compared to the exo-product 5 (4%,
brsm: 9%). Using the double-bond isomer epi-scytolide 23
resulted in the Diels–Alder reaction product similar to spir-
osorbicillinol C (7) in a yield of 25% (brsm: 45%). Interestingly, in

all previous chemo-enzymatic syntheses of bisorbicillinoids ori-
ginating from Diels–Alder reactions, only the endo products were
observed5,6,16,17. Presumably due to the very large dienophiles,
exo-addition products were produced and isolated for the first
time in this work, although in comparatively low yields. Aside
from the desired target structures, we also observed formation of
bisorbicillinol (1) as product, resulting from the not preventable
dimerization of sorbicillinol (in the synthesis of 5/6: 8% of

Fig. 2 Synthetic routes for the formation of scytolide and multiple isomers. Isolated yields are given. ACN acetonitrile, CSA camphorsulfonic acid, PCC
pyridinium chlorochromate, DMP Dess-Martin periodinane16–18.

Fig. 3 Total synthesis of spirosorbicillinol A–C (5–7) and unnatural 12R-analogs 24–26. Isolated yields are given. brsm based on re-isolated starting
material.
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compound 1, 7: 27% of 1). Nuclear magnetic resonance (NMR)
analysis of the prepared spirosorbicillinols (see Supplementary
Figs. S23–S51) showed that compounds 5 and 6 indeed corre-
spond to the natural products isolated from the fungus Tricho-
derma sp. USF-486014,15, hence concluding their first and
stereoselective total synthesis. To our surprise, the analytical data
of synthesized compound 7 were different from those published
for the natural product, spirosorbicillinol C (7)12. In particular,
the optical rotation (reported: [α]D=+484.2; measured:
[α]D=+109.1) and the indicative 1H NMR chemical shifts at
position 7 (reported: δH= 2.99, 2.34 ppm, measured: δH= 3.15,
2.22 ppm) showed considerable differences. Having the C-8
epimers 21a/b of scytolide (11) and epi-scytolide (23) in hands,
we therefore next explored if these differences might be explained
by a change of configuration at C-12 in the final product. Reac-
tion of 21b with sorbicillinol delivered the desired (12R)-spir-
osorbicillinol C (26) in 17% yield (brsm: 24%). Interestingly, the
reported optical rotation of natural 7 corresponded almost per-
fectly to the synthesized C-12-diastereomer 26 ([α]D=+455.6).
However, the NMR shifts of the scytolide backbone in compound
26 (see Table S7, positions 12–15) did also not match with the
literature values of 7. The analytical data recorded for 7 strongly
indicate that we indeed produced the reported endo structure.
This is also in agreement with the isolated yield of 25%, which is
in the typical range of endo product formation in chemo-
enzymatic sorbicillinoid syntheses5,6,16,17. The nuclear Over-
hauser effect spectroscopy NMR data of synthetic 7 (Fig. S30)
showed similar interactions compared to the reported spir-
osorbicillinol C (7)12. Due to the lack of formation of the putative
exo product analog of 7 in our synthesis, we can unfortunately
not unambiguously determine the structure of natural 7. Analo-
gously to the spirosorbicillinol C derivative 26, the respective
(12R)-diastereomers of spirosorbicillinol A and B, 24 and 25,
were synthesized in yields of 12% (brsm: 16%) and 35% (brsm:
47%) using (8R)-scytolide (21a). Comparison of the analytical
data of these two epimers to their natural product counterparts
showed no match, hence further corroborating the stereocenter at
position 12 to be correct.

Conclusions
In summary, we herein systematically combined the enzymatic
synthesis of sorbicillinol using the heterologously expressed
monooxygenase SorbC with the chemical synthesis of various
scytolide analogs, providing synthetic access to the natural pro-
duct family of the spirosorbicillinols and several unnatural dia-
stereomers. Besides the first total syntheses of the
spirosorbicillinols and unnatural diastereomers, this work also
presents an efficient ten-step synthesis of the shikimic-derived
natural product scytolide (11) along with a range of different
double bond/C-8 stereoisomers. Overall, the developed syntheses
of the spirosorbicillinols highlight the great potential of chemo-
enzymatic approaches to the streamlined formation of structu-
rally complex sorbicillinoids.

Methods
General methods. For instrumentation and material, see Supple-
mentary Information—Experimental procedures, Supplementary
Figures, and NMR spectra of new compounds (see Tables S1–S7,
Figs. S1–S51).

Data availability
All data generated and analyzed during this study are included in this article,
its Supplementary Information, and also available from the authors upon reasonable
request.
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