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The quest for effective virtual screening algorithms is hindered by the scarcity of training

data, calling for innovative approaches. This study presents the use of experimental electron

density (ED) data for improving active compound enrichment in virtual screening, supported

by ED’s ability to reflect the time-averaged behavior of ligands and solvents in the binding

pocket. Experimental ED-based grid matching score (ExptGMS) was developed to score

compounds by measuring the degree of matching between their binding conformations and a

series of multi-resolution experimental ED grids. The efficiency of ExptGMS was validated

using both in silico tests with the Directory of Useful Decoys-Enhanced dataset and wet-lab

tests on Covid-19 3CLpro-inhibitors. ExptGMS improved the active compound enrichment in

top-ranked molecules by approximately 20%. Furthermore, ExptGMS identified four active

inhibitors of 3CLpro, with the most effective showing an IC50 value of 1.9 µM. We also

developed an online database containing experimental ED grids for over 17,000 proteins to

facilitate the use of ExptGMS for academic users.
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Over the past decade, high-throughput virtual screening
has become a popular method for discovering hit com-
pounds in the field of drug design1–3. When a receptor’s

three-dimensional (3D) structure is available, molecular docking
is used to identify potential binders for the target pocket4.
However, due to the simplifications made to achieve high com-
putational speed, such as treating the protein as mostly rigid and
handling the solvent crudely5, docking and scoring accuracy is
still suboptimal and has room for improvement. Numerous
attempts have been made to address these challenges by focusing
on algorithm and calculation protocol optimizations. For exam-
ple, ensemble docking and induced-fit docking attempt to con-
sider the flexibility of the pocket6, while molecular mechanics/
generalized-Born surface area method (MM/GBSA) considers the
effect of solvation7. Moreover, various designs for scoring func-
tions have been created by considering more ligand–protein
interactions, or by training machine-learning models with
structural features, and biochemical and biophysical assay results
as labels8,9. Despite the success of these approaches in improving
active compound enrichment for docking results, virtual screen-
ing still has a relatively low success rate, and more effective
approaches are imperative. Since most of these approaches are
designed from the perspective of algorithm and calculation pro-
tocol optimizations—and are approaching a bottleneck due to
lack of training data—it is important to consider alternative
perspectives by leveraging additional information that can
experimentally reflect the dynamics of ligands and solvents.

Electron density (ED) maps from X-ray crystallography and
Coulomb potential maps from cryogenic electron microscopy
(Cryo-EM) are experimental data that provide valuable infor-
mation about the dynamics of macromolecular systems, including
the ligands and solvents present in the pocket10,11. Some studies
have explored the use of these maps for intermolecular non-
covalent interaction (NCI) identification12, artificial intelligence
(AI)-based molecule generation13, and quantum mechanics
parameter refinement14. Despite these advancements, the current
virtual screening approaches rely predominantly on static struc-
tures and implicit solvent models. Thus, there is an urgent need to
establish an efficient method for using these maps in docking-
based virtual screening to enhance active compound enrichment.

In this study, we present a novel method, ExptGMS (Experimental
ED-based Grid Matching Score), which utilizes experimental ED
maps to screen docking poses for better enrichment of active com-
pounds. A machine-learning model was built for the effective use of
ExptGMS generated from multi-resolution ED maps. When tested
using the Directory of Useful Decoys–Enhanced (DUD-E) dataset15,
ExptGMS displayed the ability to complement molecular docking
technology by achieving an over 20% increase in active compound
enrichment in the top 10, 50, and 100 ranked compounds without
affecting the diversity of the screening results. Approaches like 2D
and 3D molecular similarity comparisons and MM/GBSA were used
as benchmarks in our study. To further confirm the real-world
effectiveness of ExptGMS, we performed virtual screening for Covid-
19 3CLpro inhibitors. Using a biochemical assay, we tested the
protease inhibition activity of the top-ranked compounds and dis-
covered that the combination of ExptGMS and docking score pro-
vided three times more active compounds than the use of docking
score alone. Furthermore, to facilitate the use of ExptGMS by aca-
demic users, we prepared ExptGMS grids for over 17,000 proteins
and developed a database that provides web-based services (https://
exptgms.stonewise.cn/#/create).

Results
Construction of ExptGMS. X-ray diffraction of macromolecular
crystals generates an average ED over numerous crystal cells,

which represents a time-average distribution of the molecules in
the crystal. As shown in Fig. 1a, two ligand conformations were
observed in the binding pocket. In addition, some solvent
molecules with relatively intense dynamics may exhibit low
intensity due to time-averaged effects, and may get overlooked
during model building (Fig. 1b), resulting in incomplete modeling
of the pocket contents. Given that most computational methods
for virtual screening rely on static or incomplete models, the full
profile of the pocket contents and their dynamic information
embedded in the experimental ED maps are considered impor-
tant complements to the methods currently in use.

To fully utilize the time-averaged signals in ED maps, we
developed ExptGMS, which has two key components: an
experimental ED-based grid and a scoring function. We used
2Fo–Fc ED maps with above-zero contour levels (>0 σ) for grid
generation. To avoid excessive experimental noise, ED lower than
zero σ were excluded. Grid points were placed in and around the
pocket, and were assigned values reflecting the ED intensity at
that position (Fig. 1c). A given ligand conformer is scored based
on its degree of matching with the grid. In general, we developed
a scoring function based on three principles: (1) rewarding ligand
atoms occupying grid points with strong ED intensity; (2)
penalizing ligand atoms occupying space with no grid points; (3)
penalizing grid points with strong ED intensity but not occupied
by any ligand atom. Details regarding the grid construction and
scoring function development can be found in “Methods”.

To address the bias introduced by the grid being constructed
on the ED of binders and solvents observed in a limited number
of experiments with a limited range of binder types, we used the
concept of ED map resolution. An ED map with lower resolution
contains fewer details and is more abstract than the one with
higher resolution; thus, it can provide more generalized
conformation matches and consequently enhance the diversity
of matched molecules. For pilot testing, we chose a median
resolution of 3.0 Å to create ExptGMS.

Performance of 3.0 Å resolution ExptGMS on DUD-E dataset.
The evaluation of ExptGMS generated using experimental ED
with 3.0 Å resolution was described from three perspectives:
dataset, benchmark technologies, and evaluation framework.

From a total of 102 targets in the DUD-E dataset, 85 targets
were selected, since the remaining had no qualified experimental
ED available. For each target in the dataset, about 13,000
compounds were available, with an active-to-decoy ratio of 1:30.
The binding positions of the active compounds and decoys in the
corresponding pockets were obtained from a previous study
which used GlideSP for docking16.

GlideSP was selected as the docking program in our study
because of its widespread use in the industry. We included two
types of benchmarks for comparison with ExptGMS: pocket-
based and ligand-based approaches. For the pocket-based
approach, MM/GBSA was used for binding energy-focused
evaluation; while pocket shape-focused evaluation was done
using alpha spheres and ExptGMS shape-only (ExptGMS grid
with all grid point intensities set as one). For the ligand-based
approach, extended-connectivity fingerprint (ECFP) with Tani-
moto index was included as the 2D similarity descriptor. In
addition, Ultrafast Shape Recognition with CREDO Atom Types
(USRCAT)17—a 3D similarity method that incorporates infor-
mation on shape and pharmacophores—was used as the 3D
similarity descriptor. Furthermore, three-dimensional force field
fingerprint (TF3P)18—a newly developed 3D fingerprint for small
molecules—was also included to represent the force field and
deep learning-based approaches. Finally, because our goal was to
test whether the addition of ExptGMS could assist docking

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00984-5

2 COMMUNICATIONS CHEMISTRY |           (2023) 6:173 | https://doi.org/10.1038/s42004-023-00984-5 | www.nature.com/commschem

https://exptgms.stonewise.cn/#/create
https://exptgms.stonewise.cn/#/create
www.nature.com/commschem


procedures in eliminating false positives and false negatives, we
included tandemly linked GlideSP and ExptGMS scores in the
test. This hybrid approach was termed GlideSP + ExptGMS and
involves the process of selecting the top 10% molecules based on
their ExptGMS scores, and then ranking them according to their
GlideSP scores.

For the evaluation framework, two key indexes were con-
sidered: (1) enrichment of active compounds, measured by the
number of active compounds in the top 10, 50, and 100 ranked
molecules, and (2) diversity of the top-ranked active compounds
measured using the average Tanimoto similarity of each pair of
selected active compounds. We measured both enrichment and
diversity because virtual screening methods should identify a
variety of scaffolds in addition to a large number of active
compounds.

The results were analyzed using a two-dimensional scatter plot.
The highest enrichment was achieved by 2D similarity compar-
ison, but at the cost of a significant loss in diversity (Fig. 2,
Supporting Information Fig. S1 and Supplementary Data 1).
Considering both enrichment and diversity, ExptGMS outper-
forms most of the benchmark approaches. More importantly,
Glide + ExptGMS enriched more active compounds in both top
10 and top 50 than GlideSP alone, indicating that ExptGMS is
complementary to GlideSP. As a pilot test using single-resolution
ExptGMS, the observed complementarity is not strong, but it
confirms that our research is moving in the right direction. In
addition, the significant drop of performance of ExptGMS-shape-
only relative to ExptGMS confirms the effectiveness of introdu-
cing ED intensity to the grid.

The complementarity of ExptGMS to GlideSP was also
demonstrated in the case studies (Fig. 3). As shown in Fig. 3a,
an inactive compound with a good GlideSP score was eliminated
due to a poor match to the ExptGMS grid. This molecule had a

docking score of −7.3, with Rewards and HBond scores
accounting for −2.9 and −1.1, respectively. As GlideSP scoring
function assigns empirical terms with high weights, molecules
having empirically recognizable interactions with pockets tend to
score well. However, from the perspective of ExptGMS, this
molecule failed to occupy a strong ED blob, resulting in a poor
ExptGMS score. In addition to this false-positive elimination case,
we have also listed two false-negative elimination cases. Figure 3b
shows an active molecule fitted well with the ExptGMS grid, but it
did not have any empirically favored interactions, and therefore
had a low GlideSP score of −4.8. Furthermore, as shown in
Fig. 3c, an active molecule with its carboxyl group occupying the
ED originally contributed by a water molecule in the crystal
structure and achieved a good ExptGMS ranking. Based solely on
the low GlideSP score, this compound would have been
eliminated. This case demonstrates the effectiveness of preserving
the solvent ED information in the ExptGMS grid.

In summary, our pilot testing on 3.0 Å resolution ExptGMS
confirmed our hypothesis that ExptGMS contains signals useful
for the improvement of active compound enrichment. To further
maximize the effectiveness of such signals, we considered an
ExptGMS with multiple resolutions.

Performance of multi-resolution ExptGMS on DUD-E dataset.
The ExptGMS grids display varying resolutions, much like the
experimental EDs which can also vary in resolution. As shown in
Fig. 4a, an ExptGMS grid with a specific resolution can be con-
structed using the ED map at that resolution. Furthermore, the
curve in Fig. 4b illustrates that decreasing resolution results in a
more uniform distribution of grid values, suggesting a higher
degree of tolerance for conformational matches with ligand
candidates. Such characteristics affect the recall of compounds

Fig. 1 Time-averaged information embedded in experimental electron density (ED) maps. a Two conformations of a ligand identified in an experimental
ED, denoted by yellow and purple colors, respectively (PDB ID: 6KMP, resolution: 1.3 Å). b Additional solvent molecules indicated in ED maps (PDB ID:
3QKK, resolution: 2.3 Å). Modeling of the solvent in the pocket is incomplete due to the missing solvent molecules (indicated with red arrows).
c Construction of grids using experimental ED (PDB ID: 3G0E, resolution: 3.0 Å). The grids only cover the regions inside and around the pocket, excluding
the region occupied by the pocket itself (i.e., protein atoms). Grid points are colored according to their ED intensities using a rainbow scheme, where red
represents high and blue represents low ED intensity. For all panels, 2Fo–Fc maps are presented in blue mesh, at a contour level of 1.0 σ. b Fo–Fc map is
presented in green (positive) and red (negative) mesh, at a contour level of 3.0 σ and −3 σ, respectively.
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that differ significantly from the reference ligand topology, and
may consequently improve enrichment.

To quantify the ability of ExptGMS with varying resolutions in
enriching active compounds, we extended the aforementioned

pilot testing on 3.0 Å resolution ExptGMS to four additional
resolutions—2.5 Å, 3.5 Å, 4.5 Å, and 5.5 Å. To enhance clarity, we
listed all 85 tested targets in a circle and colored the targets using
a resolution-specific color, if the active compound enrichment of

Fig. 2 Comparison of electron density-based grid matching score (ExptGMS) with benchmark technologies using 85 targets from DUD-E dataset. The
average of pairwise Tanimoto similarities over ECFP4 fingerprints is shown for the active molecules ranked in top N (N= 10, 50, and 100) [diversity= 1 –
(average pairwise 2D similarity among the molecules)].

Fig. 3 Case study of electron density-based grid matching score (ExptGMS) supporting GlideSP in eliminating false-positive and false-negative
results. a A case of false-positive elimination. The strong electron density (ED) blob missing in this molecule is indicated with a red circle. b A case of false-
negative elimination. This active compound fits well in ExptGMS grid, but has a low GlideSP ranking. c Another case of false-negative elimination. The
original ligand and solvent molecules observed in the crystal are shown on the left side. The carboxyl group filling the density occupied by the original water
molecule is indicated by a red arrow. The ExptGMS grid points are colored according to their ED intensities using a rainbow scheme, where red represents
high and blue represents low ED intensity.
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ExptGMS+GlideSP at that resolution outperformed GlideSP.
Figure 5a displays the union of these colored targets across
different resolutions, covering ~75% of the targets, while the
intersection of these colored targets accounts for only one-third of
the total. This observation suggests the potential of using multi-
resolution ExptGMS to achieve superior performance.

The question arises as to why ExptGMS with different
resolutions can complement each other in terms of enriching
active compounds. One possible explanation is that ExptGMS
with different resolutions intend to score ligands from different
perspectives. Low-resolution grids focusing on scaffold-level
information, whereas high-resolution grids focusing on R group

of atomic-level information. This distinction arises due to the
intrinsic characteristic of X-ray or electron diffraction-based
density, where decreasing the resolution results in a more
uniform intensity distribution with fewer details expressed in
the density map. To illustrate this point, we present a case
involving PDB ID 2HV5. Here, an active compound exhibits a
similar binding mode and scaffold to the co-crystallized ligand of
the protein (Fig. 5b). This active ligand (yellow) can be ranked in
top 100 by using ExptGMS with 3.5 Å but not with 2.5 Å. To
highlight the difference of ExptGMS grids at these two
resolutions, we selected grid points with strong intensities (i.e.,
over 3 σ) and showed them side by side in Fig. 5c. The 2.5 Å grid

Fig. 4 Electron density-based grid matching score (ExptGMS) grids with different resolutions. a Multiple resolution ExptGMS grids generated using
experimental electron densities (EDs) at that resolution. Experimental ED are 2Fo–Fc maps contoured at 1 σ. ExptGMS grids are colored with a rainbow
scheme ranging from low (blue) to high ED intensity (red). b Distribution of grid points by value at different resolutions. The bar chart is created with grid
value normalized using a min-max scaling.
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appears more fragmented, containing numerous blobs with high
intensity (red grid points) than 3.5 Å grid. When scoring the
original co-crystallized ligand (cyan), the fragmented blobs in the
2.5 Å grid exhibit a higher degree of matching with the ligand
than the 3.5 Å grid (Fig. 5d). However, when scoring the active
compound sharing similar scaffold but with different substitution
groups, the 3.5 Å grid shows better match than the 2.5 Å grid.
Fig. 5e illustrates that the penalty introduced by the fragmented
blob (#1) in the 2.5 Å grid is waived in the 3.5 Å grid, and the
strong blob (#2) in the 2.5 Å grid spreads across a wider region,
fitting more accurately with the scaffold profile of the compound.

Multi-resolution ExptGMS-powered machine-learning model.
To further demonstrate the value of multi-resolution ExptGMS,
we developed a straightforward machine-learning model using
Gradient Boosting Decision Tree (GBDT) for signal integration.
We did not select a more complicated model because we focused
on testing the value of the data. Our GBDT model is a classifi-
cation model that was trained and tested using 85 targets from the
DUD-E dataset. Specifically, the training set contained 73 targets,
and the test set contained 12 targets. To prevent information
leakage, the division of the training and test sets (Supporting
Information Table S1) was split in a way that no targets in the test
set had homology with a sequence identity greater than 30% in
the training set. The activities reported in the DUD-E dataset
were used as labels.

The GBDT model was trained in different versions, in which
the selected features provided by benchmark technologies were
used. As shown in Table 1 (details in Supplementary Data 2 and
3), the combination of GlideSP and ExptGMS exhibited the
highest enrichment and good diversity of active compounds. The

addition of multi-resolution ExptGMS improved the enrichment
of active compounds in top 10 and top 50 by more than 20%,
compared to the use of GlideSP alone.

The confidence intervals for the active compounds in the top N
were obtained using the bootstrapping method. Specifically,
samples were randomly selected with replacement from the test
dataset until the selected sample size matched the size of the test
dataset. Considering all the selected samples, the average numbers
of active compounds in the top 10, 50, and 100 results were
calculated, respectively. By repeating this process 200 times, a
distribution of results was generated. From this distribution, the
mean value and percentile confidence interval were computed.

In addition to enhancing the enrichment of active compounds
within the top N ranked molecules, we sought to assess the
impact of ExptGMS on the classification of active and decoy
compounds. For evaluation, we utilized the area under the
receiver operating characteristic curve (AUROC). The GBDT
model incorporating both GlideSP score and ExptGMS features,
demonstrated a higher AUROC compared to the model that
solely utilized GlideSP score as a feature (Table 1), reflecting the
classifier’s improvement with the inclusion of ExptGMS. None-
theless, it is important to acknowledge that this improvement is
mild, and the absolute AUROC value remains relatively low,
indicating the need to incorporate ExptGMS features into more
sophisticated models in future research.

Application of ExptGMS in virtual screening of Covid-19
3CLpro inhibitors. To further validate the efficiency of ExptGMS
in the real world, we applied this method for the virtual screening
of 3CLpro inhibitors. Using the pocket structure extracted from
the crystal structure of SARS-CoV-2 3CL protease (PDB ID

Fig. 5 Performance of electron density-based grid matching score (ExptGMS) with varying resolutions on 85 targets from the Directory of Useful
Decoys–Enhanced (DUD-E) dataset. a Performance comparison of ExptGMS at different resolutions. A target was labeled with a resolution-specific color
if ExptGMS+GlideSP demonstrates more active compounds than GlideSP score alone, among any of the top 10, 50, or 100 ranked compounds for that
target, at that particular resolution. b The binding mode of co-crystalized ligand and docked active compound (CHEMBL344526_63) in the pocket of PDB
ID 2HV5. The co-crystalized ligand, active compound, and pocket atoms are colored with cyan, yellow, and green, respectively. c ExptGMS grids of 2HV5
pocket at 2.5 Å and 3.5 Å. Only the grid points with ED intensity over 3.0 σ are shown. ExptGMS grids are colored with a rainbow scheme ranging from low
(blue) to high ED intensity (red). The outlying blob (#1) and strong-grid-points-concentrated blob (#2) are indicated with green arrows to show the
fragmentation and disparate distribution of 2.5 Å grids, respectively. d The match of co-crystalized ligand with ExptGMS grids at 2.5 Å and 3.5 Å. The
molecule in cyan matches with 2.5 Å grid better than 3.5 Å. e The match of active compound (CHEMBL344526_63) with ExptGMS grids at 2.5 Å and
3.5 Å. The yellow molecule exhibits a better match with the 3.5 Å grid: it attains a top 100 ranking in ExptGMS at 3.5 Å, whereas it does not achieve a
similar ranking at 2.5 Å. The penalty associated with the presence of blob #1 in the 2.5 Å grid is eliminated in the 3.5 Å grid. In addition, the expansion of
blob #2 in the 2.5 Å grid across a larger area in 3.5 Å grid makes 3.5 Å grid align more favorably with the compound’s scaffold.
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7VU6), GlideSP-based molecular docking was performed against
an 8-million-compound library compiled by consolidating com-
mercially available compounds. Subsequently, the 3 Å resolution
ExptGMS score was calculated for the conformations obtained
from the molecular docking. 24 molecules were selected by
intersecting the top 500 compounds ranked by ExptGMS score
with the top 1000 compounds ranked by docking score. These 24
compounds were evaluated using wet-lab tests to determine their
inhibitory rates and IC50 values. The top 24 compounds, ranked
solely by docking scores, were also tested to serve as controls. It is
important to mention that no visual inspection or manual
selection was involved in the selection of the aforementioned 48
compounds.

The structures, binding modes, and IC50 values of the tested
compounds are presented in Fig. 6 and Supporting Information
(Supplementary Tables S2 and S3 and Supplementary Figs. S2
and S3). Among the 24 molecules selected using ExptGMS and
GlideSP, nine molecules exhibited an inhibition rate greater than
50%, and four molecules exhibited IC50 values of less than 25 µM,
with the best one hitting 1.9 µM. In contrast, only three molecules
exhibited inhibition rate greater than 50%, in the top 24 ranked
molecules obtained using GlideSP alone, and only one of them
exhibited IC50 around 10 µM.

In conclusion, ExptGMS significantly enhanced the enrichment
of active compounds in our Covid-19 3CLpro-inhibitor screening
study.

Construction of ExptGMS database and online service. Despite
the value of multi-resolution ExptGMS demonstrated in the
above study, the construction of ExptGMS grids is not straight-
forward for end users. To facilitate the use of our approach by
academic users, we processed multi-resolution ExptGMS grids for
over 17,000 proteins and created a web-based server that can be
accessed at this link (https://exptgms.stonewise.cn/#/create). Prior
to working, users are required to select grids by specifying the
PDB code from a drop-down list, upload the ligand poses, and
upload the pocket structure which will be used to align the ligands
with the grids. Typically, our service takes about one hour to
complete the ExptGMS scoring for 100,000 compounds.
ExptGMS grids at 2.5, 3.0, 3.5, 4.5, and 5.5 Å resolutions will be
used to score the docking conformations. The ExptGMS scores at
each resolution are written in the output SDF file. If a “dock-
ing_score” attribute is available in the uploaded SDF file, it will be
combined with multi-resolution ExptGMS scores and submitted
to our GBDT model, and the predicted probability of being an
active compound will be added to the output SDF file.

Discussion
Our study on ExptGMS demonstrates that the use of experi-
mental ED can improve the enrichment of active compounds in

molecular docking-based virtual screening. In this section, we
discuss two topics: (1) how to further leverage multiple-crystal
information, if available; and (2) what limitations ExptGMS
currently has, and how they can be overcome in the future.

Given that most of the popular targets have more than one
available crystal structure, it is necessary to discuss whether
ExptGMS can benefit from using multi-crystal information. An
intuitive approach involves creating an ExptGMS grid for each
crystal structure, followed by an averaging procedure. We tried
such approach on four crystal structures of RAC-alpha serine/
threonine-protein kinase (AKT1) and tested the performance of
the multi-crystal averaged ExptGMS using active compounds
and decoys of this target in DUD-E (Fig. 7). As shown in
Table 2, the multiple-crystal-averaged ExptGMS significantly
outperformed the single-crystal ExptGMS. Such an analysis
provides a good start for future scope of investigating the
optimal strategy for using ExptGMS to improve ensemble
docking.

ExptGMS has three limitations. First, the current use of
ExptGMS relies on the binding conformation achieved by the
docking programs, which limits the value of ExptGMS if the
binding pose is incorrect. An example is shown in Fig. 8, where
an incorrect binding pose can be intuitively corrected by aligning
the molecule to the ExptGMS grid. Real-space refinement
technology19 used in crystallography can serve as a good starting
point for the development of ExptGMS-based high-speed
binding-pose-search engines. Second, the construction of
ExptGMS depends on the availability of experimental ED.
However, these conditions cannot always be satisfied. For
example, it is common to use apo-protein structures processed by
molecular simulation for virtual screening, especially for studies
in which allosteric pockets are considered. In this scenario, an
experimental ED is not available. One plausible approach to
address this challenge is to conduct co-solvent molecular
dynamics20 to find a fragment-sized binder in the potential
pocket and use computational ED to construct the ExptGMS grid.
Using an AI generative model13 to create a filler ED in the pocket
is also an alternative approach. Third, the current version of
ExptGMS lacks information to support the estimation of the
interactions between ligands and pockets. This explains why the
combination of GlideSP and ExptGMS performs better than
ExptGMS alone; GlideSP complements this interaction estima-
tion. A clue to address this challenge can be found in a previously
reported study on identifying NCIs between ligands and pockets
by studying the saddle points of the ED12. Incorporating NCI-
related saddle points into ExptGMS grids and assigning them
appropriate weights could be a potential solution. An alternative
solution could be the introduction of electrostatic surface
potential (ESP)-matching score into ExptGMS grids. A previous
study21 that has discussed this topic is a good starting point for
future research.

Table 1 Performance of GBDT models trained using different features on the DUD-E test set (N= 12).

Features used in the model Average number of active compound in top N, with 90%
confidence interval

Diversity*b AUROC*d

N= 10 N= 50 N= 100

GlideSP and multi-resolution ExptGMS*a 5.4 [5.0, 5.8] 21.6 [20.4, 22.9] 33.2 [30.9, 35.1] 0.64 [0.60, 0.67] 0.66
GlideSP and TF3P 5.4 [4.9, 5.8] 19.5 [18.1, 20.8] 27.7 [26.0, 29.6] 0.62 [0.60, 0.64] 0.64
GlideSP and MM/GBSA 4.5 [4.0, 5.2] 18.5 [17.0, 19.9] 30.1 [28.1, 32.2] 0.66 [0.62, 0.68] 0.65
GlideSP and USRCAT 4.5 [3.9, 5.1] 18.1 [16.9, 19.3] 30.4 [28.0, 32.3] 0.63 [0.59, 0.66] 0.63
GlideSP and Alpha sphere 5.1 [4.6,5.6] 18.4 [17.0, 19.8] 29.2 [27.2, 31.0] 0.64 [0.61, 0.68] 0.63
GlideSP*c 4.3 [3.8, 4.8] 17.3 [16.1, 18.6] 29.9 [27.9, 31.9] 0.66 [0.62, 0.68] 0.62

*aMultiresolution indicates ExptGMS at resolutions of 2.5, 3.0, 3.5, 4.5, and 5.5 Å.
*bDiversity of active compounds among the top 100 ranked compounds.
*cRanking was performed directly using the GlideSP score without using a trained model.
*dAUROC was calculated by using GBDT predicted probability of being an active compound.
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In summary, our research highlights the importance of data,
unlike other computational approaches that focus on algorithms,
and demonstrates the value of experimental ED in enriching
active compounds in virtual screening. We hope that our study
will contribute to the community as a novel data source and open
a new door for future algorithmic studies.

Methods
Datasets. The DUD-E15 dataset was used in this study. After
removing the targets lacking a qualified ED map in the PDB, 85
targets were retained. GlideSP22 docking poses and scores of all
active compounds and decoys cited in DUD-E, for these 85 tar-
gets, were obtained from a previous study16.

Experimental ED map preparation and ExptGMS grid gen-
eration. The coordinates and map coefficients were downloaded
from the RCSB PDB web server23. The sigma (σ)-scaled 2Fo–Fc
maps were synthesized at specific resolutions using Phenix24, to

cover the ligands and a 5 Å region around them. Specifically, the
highest available resolution X-ray diffraction data in .mtz format
were used as input for phenix.fft to generate electron density
maps at various resolutions, which were specified by the para-
meter d_min. To create an ExptGMS grid based on an ED map,
the map was first discretized into grids with a 0.3 Å interval. The
value assigned to a grid point was the 2Fo–Fc ED intensity at that
particular point. Grid points within the van der Waals radius of
the pocket residue atoms were removed. Grid points with values
of less than 0 σ were also removed. All the experimental maps
involved in this study are electron density maps obtained through
X-ray crystallography. No Coulomb potential maps from Cryo-
EM were involved.

Alpha sphere-based pocket shape preparation and grid gen-
eration. An alpha sphere-based pocket shape was produced using
FPocket version 4.025. To generate a grid based on pocket shape,
the region filled with alpha spheres was covered with grid points
at intervals of 0.3 Å. Each grid point was assigned a value of one.

Fig. 6 Active inhibitors of Covid-19 3CLpro. a Active inhibitors among top 24 compounds ranked by considering both docking score and electron density-
based grid matching score (ExptGMS). b Active inhibitors among top 24 compounds ranked based on docking score alone. Docking poses are shown as
sticks, with ligands colored in yellow and pockets colored in green. Error bars represent the standard deviation from three replications.
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Grid points within the van der Waals radius of the pocket residue
atoms were removed.

ExptGMS scoring function. A scoring function was designed to
measure the degree of matching between the ligand conforma-
tions and ExptGMS grids [Eq. (1)].

MatchScore ¼ Svac � Socc þ P ð1Þ

where Svac represents contribution of vacant grid points that
have intensity values, but are not occupied by any ligand atoms;
Socc represents contribution of grid points occupied by ligand
atoms; and P represents contribution of ligand atoms with no
nearby grid points. A smaller MatchScore indicates a better
match.

Socc is defined using Eq. (2):

Socc ¼ ∑
m2M

∑
r2Rm

wmρðrÞ ð2Þ

where M represents all heavy atoms in the ligand; Rm represents
grid points located within a radius of 0.4 Å around a given atom
m; ρ(r) indicates the intensity value at grid point r; and wm
represents the electron number of atom m with a ceiling
value of 9.

Svac is defined using Eq. (3):

Svac ¼ ∑
v2V

ρðvÞ ð3Þ

where V indicates vacant grid points with no ligand atoms within a
radius of 0.4 Å; and ρ(v) represents the intensity value of grid point v.

Fig. 7 Construction of multi-crystal averaged ExptGMS grid for AKT1. ED maps of four crystal structures of AKT1 (3CQU, 3MV5, 3OCB, 3OW4) are used
to create multi-crystal averaged ExptGMS.

Table 2 Performance of multi-crystal averaged ExptGMS vs. single-crystal ExptGMS.

Method*a Number of active compounds among the top N ranked*b

N= 10 N= 50 N= 100 N= 500 N= 1000

Averaged ExptGMS (3CQU, 3MV5, 3OCB, 3OW4) 4 8 11 27 49
ExptGMS (3CQU) 0 3 6 14 20
ExptGMS (3OW4) 1 1 5 22 49
ExptGMS (3MV5) 3 7 7 16 24
ExptGMS (3OCB) 2 3 9 26 46

*aExptGMS grids in this table are created based on 3 Å resolution EDs;
*bThe ranking is solely based on ExptGMS score.
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P is defined using Eq. (4):

P ¼ nout
Socc
nin

� �
ð4Þ

where nin and nout denote the number of ligand atoms with and
without grid points found within a radius of 0.4 Å, respectively.

Molecule similarity and diversity. The Tanimoto index was used
to measure the 2D similarity between two molecules based on
their ECFP4 fingerprints. The diversity of a set of molecules was
defined as:

Diversity ¼ 1� ðaverage pairwise 2D similarity among themoleculesÞ
ð5Þ

To measure 3D similarity, the Manhattan distance between the
two molecules was calculated using their USRCAT descriptors17.
ECFP4 and USRCAT calculations were performed using RDKit26.

MM/GBSA. The receptor structure was prepared using the Pro-
tein Preparation Wizard program. To calculate the single point
MM/GBSA binding free energy of the ligand–receptor complex,
we used the Prime program. All residues within 4 Å of the ligand
were treated as flexible during minimization. The Protein Pre-
paration Wizard and Prime programs used in this study were
sourced from the Schrödinger Suite (Release 2022-3). The force-
file used is OPLS4.

Machine-learning approach utilizing multi-resolution
ExptGMS. The DUD-E dataset was split into two separate sub-
sets, a training set containing 73 targets, and a test set containing
12 targets (Supplementary Table S1). The sequence identities
between target proteins were calculated using the Basic Local
Alignment Search Tool (BLAST)27 from NCBI. To avoid data
leakage during the machine-learning process, it was ensured that
none of the targets in the test set shared more than 30% sequence

identity with any sequence in the training set, thus minimizing
the potential for sequence similarity bias.

A series of ExptGMS grids were generated using experimental
ED maps of varying resolutions (2.5, 3.0, 3.5, 4.5, and 5.5 Å). For
each ExptGMS grid, small molecules were scored using Eq. (1),
and the scores were normalized to uniform features. Since the
ExptGMS score may vary significantly among different targets, we
employed by-target normalization in our approach. The mean
and standard deviation of the ExptGMS scores for each target
were calculated, and the original ExptGMS score was transformed
to Z-score (Z = (x− μ)/σ, where μ represents mean value and σ
represents standard deviation). Similarly, the alpha sphere
matching, GlideSP, and MM/GBSA scores were also normalized
using by-target Z-score, while the other features remained
unchanged during our feature generation procedure.

In our GBDT model, ED scores from different resolutions were
treated as a single feature with different preferences. Instead of using
a statistical value such as the mean or median as a unique
representation, we trained a group of decision trees by combining
ExptGMS scores with other features. These submodels were further
ensembled using the gradient boostingmethod. To address the issue
of imbalanced positive and negative samples in the dataset, during
training, a label-balancing strategy was introduced in which weights
were assigned to different samples that were inversely proportional
to their quantity. GBDT model was implemented using Scikit-
learn28 with parameters documented in Supporting Information
(Supplementary Table S4 and Supplementary Fig. S4).

Software for figures and tables. All structures and ED figures
were made using PyMOL. Analyses were performed using the
Pandas29, NumPy30, and Scikit-learn28. Scatter plots were con-
structed using Matplotlib31 and Seaborn32 libraries.

Covid-19 3CLpro-inhibitor virtual screening and biochemical
assay. The pocket used for virtual screening was obtained from
SARS-CoV-2 3CL protease (PDB ID 7VU6) and prepared using
Protein Preparation Wizard program. To conduct the screening,
docking was performed onGlide program, against an in-house virtual
compound library containing the structures of more than 8 million
commercially accessible compounds. During screening, constraints
were set so that the output ligand would require to form at least one
hydrogen bond with the amide group of G143 or E166 in the pocket.

After docking, compounds were ranked based on their GlideSP
score. The top 100,000 compounds were then subjected to an
ExptGMS score calculation using a 3.0 Å ED map. By intersecting
the top 500 compounds ranked by ExptGMS score with the top
1000 compounds ranked by docking score, we selected 24
molecules. These 24 compounds were evaluated using wet-lab
tests to determine their inhibitory rates and IC50 values. As
controls, an additional 24 compounds ranked solely by docking
scores were also tested.

SARS-COV-2 3 CLpro (EC: 3.4.22.69) is a 3C-like proteinase that
recognizes substrates containing the core sequence [ILMVF]-Q-
↓ -[SGACN]33,34. The inhibition potency of a potential inhibitor
was determined by FRET-based assay using a FRET-compatible
peptide substrate MCA-AVLQ ↓ SGFR-Lys (Dnp)-Lys-NH2 (“↓”
indicates the cleavage site). MCA fluorescence is initially quenched
by the Dnp group until cleavage (at the cleavage site) separates
them. The maximum excitation light of MCA is 320 nm, while the
maximum emission wavelength is 405 nm. The activity of 3CLpro
was detected by measuring fluorescence. The protease inhibition
rates of the compounds were measured as follows: each reaction
mixture contains 0.15 µM 3CLpro (having a P132H mutation,
3CLproP132H) and 40 µM inhibitor in 120 µL total volume in 96-
well black polystyrene, flat bottom plates (Labselect, China). For

Fig. 8 Example showing the necessity of applying ExptGMS-based
binding-pose searching. The active compound colored in yellow is
unsuccessful in docking to the designated pocket.
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IC50 determination, the reaction mixtures had 0.15 µM
3CLproP132H and different concentrations of inhibitors in 120 µL
total volume. 3CLproP132H was preincubated with the compound
for 30min at room temperature. Subsequently, the fluorescence
resonance energy transfer (FRET)-compatible peptide substrate
MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 was added to the reaction
mixtures to initiate the reaction. Fluorescence was recorded for
20min using 340 nm excitation and 405 nm emission filters at 10 s
intervals on a multimode microplate reader (Thermo ScientificTM

VariosknTM LUX). The IC50 values were determined by curve
fitting, using a four-parameter equation in GraphPad Prism
8 software.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data analyzed in this study is included in this published article and
its Supplementary Information files. Three additional supplementary data files were
provided, with Supplementary Data 1 containing more details about Fig. 2, and
Supplementary Data 2 and 3 containing more details about Table 1. The partial codes are
available from the corresponding author upon reasonable request. Our model provides a
service for academic users at https://exptgms.stonewise.cn/#/create.
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