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Impact of conformation and intramolecular
interactions on vibrational circular dichroism
spectra identified with machine learning
Tom Vermeyen 1,2✉, Ana Cunha 1, Patrick Bultinck 2✉ & Wouter Herrebout 1

Vibrational Circular Dichroism (VCD) spectra often differ strongly from one conformer to

another, even within the same absolute configuration of a molecule. Simulated molecular

VCD spectra typically require expensive quantum chemical calculations for all conformers to

generate a Boltzmann averaged total spectrum. This paper reports whether machine learning

(ML) can partly replace these quantum chemical calculations by capturing the intricate

connection between a conformer geometry and its VCD spectrum. Three hypotheses con-

cerning the added value of ML are tested. First, it is shown that for a single stereoisomer, ML

can predict the VCD spectrum of a conformer from solely the conformer geometry. Second, it

is found that the ML approach results in important time savings. Third, the ML model

produced is unfortunately hardly transferable from one stereoisomer to another.
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Chiroptical spectroscopic methods measure the difference
in interaction between an optically active compound and
left- or right-circularly polarized radiation1–4. The best

known chiroptical method is Electronic Circular Dichroism
(ECD), where one measures the difference in absorption of left-
and right-handed circularly polarized visible and ultraviolet
radiation by an optically active molecule. Vibrational Circular
Dichroism (VCD) is an infrared chiroptical method where
vibrational transitions are responsible for the difference in
absorption. The main advantage of VCD compared to ECD is the
richer information obtained from the former due to the much
larger number of vibrational transitions compared to the number
of accessible electronic transitions. Chiroptical methods find their
main area of application in establishing the absolute configuration
(AC) of molecules4–25. However, it also reveals a significant
amount of information on the conformational properties of a
molecule26–39. The link between conformation in the sense of its
molecular geometry and its VCD spectrum is not easily estab-
lished on the basis of e.g., some rules of thumb and one usually
relies on the quantum chemically computed spectrum. The usual
approach to establishing the AC of a compound is to choose a
specific AC of the molecule, find all its conformers on the
potential energy hypersurface and their energies and then com-
bine all computed spectra using Boltzmann weighting in a
simulated molecular spectrum for the chosen AC1. By repeating
all these steps for each possible AC and comparing all computed
spectra to the experimental one, one concludes what AC the
experimental sample corresponded to. Said computed spectra are
usually generated using Density Functional Theory (DFT) cal-
culations requiring sufficient expertize and computational
resources. Experience shows that the VCD spectra of individual
conformers of the same molecule may differ significantly even if
they belong to the same AC (see Supplementary Discussion 1 and
Supplementary Figs. 1–3), explaining why rules of thumb cannot
be established26–34. The first hypothesis tested in this paper is that
machine learning (ML) can be used to predict the VCD spectrum
for a specific conformer using only its geometry, in this sense
providing an alternative to the DFT procedure. The second
hypothesis of this paper is that ML may help reduce significantly
the total time cost needed to obtain a molecular spectrum. This
entails that ML should allow skipping enough time normally
spent in DFT calculations to more than compensate for the time
it takes to establish the ML model. The third and final issue
examined is the extent to which an ML model is transferable from
one AC to another. Does it suffice to learn from one AC and use
this for all other possible AC’s? For instance, in a molecule with
two stereocenters, does it suffice to establish an ML model for RR
and to then use it also for RS, SR, and SS?

ML methods are powerful methods for the extraction of
complex patterns hidden in spectral data, speeding up conven-
tional workflows, and accelerating computational methods40–51.
We have recently shown that there is hope that ML can play a
role in VCD spectroscopy52. More specifically, we have shown
that for a large set of congeneric molecules adopting a single
conformer, we can use ML to reveal to what AC a VCD spectrum
of an unknown molecule corresponds. Now the ambitions are
higher. We want to extract a VCD spectrum solely from a con-
former geometry. Figure 1 contrasts the current work against our
previous work52 and other recent works53–55 that address the link
between an AC and an experimental spectrum or property. The
present paper concentrates on the link between the structure of a
conformer and its VCD spectrum within a given AC of a mole-
cule. Success in establishing this link will then also strongly
benefit the usual approach to VCD-based AC assignments as it
will allow circumpassing the quantum chemical calculation of all
conformer VCD spectra.

To prove or disprove the hypotheses set, a test bench of
compounds must be established. Somewhat naively, one could
think of any set of compounds for which VCD has been com-
puted and/or measured but this is not useful. We namely wish to
be able to control ourselves the degree of conformational flex-
ibility of the molecules and the nature of their intramolecular
interactions by changing a number of substituents. At the same
time, both effects should not intercorrelate too much. This entails
the use of admittedly somewhat peculiar molecules but the
priority is given to stepwise understand and prove the hypotheses.
This would not be possible using too diverse compounds while at
the same time, error cancellation could play a much larger role
there. We use a tetra-substituted naphthalene framework whose
conformational flexibility and intramolecular interactions (such
as hydrogen bonding) we can control by judicious selection of
substituents. This allows us to test whether ML is sufficiently
reliable over a range of chemical situations.

To be able to impact the conformational flexibility and the
degree to which intramolecular interactions play a role without
changing too many features simultaneously, we have chosen
compounds that have the same backbone. A tetra-substituted
naphthalene framework is chosen as backbone. To this sub-
stituents containing a chiral center in the R-configuration are
added. Changing the substitution pattern enables to control the
intramolecular interaction between the substituents. An overview
of the compounds considered in this work is provided in Fig. 2. In
compounds 1a and 2a, the sidechains and their conformational
properties can be expected to be largely independent from each
other. For example, steric hindrance is limited thanks to the large
distance between the sidechains. Vibrational mode coupling
between the sidechain vibrations may still impact the vibrational
frequencies and corresponding VCD intensities though. By
changing the substitution pattern we impact the conformational
freedom through specific intramolecular interactions. Hence, we
may introduce steric interactions between the side chains when
going from 1a to 1b and hydrogen bonding in going from 2a to
2b. Differences in the performance of the ML procedure can then
be attributed to the interactions introduced. The influence of a
wider variety in the functional groups present in the side chains,
yielding more feature-rich spectra, is examined using compounds
3 and 4. The absence of a C2 axis in addition reveals the impact of
the associated symmetry operation.

The obtained excellent quality of the spectral prediction sug-
gests that ML can link the geometry of a conformation to its VCD
spectrum. As such, ML can strongly reduce the effort spent in
quantum chemically obtaining all VCD spectra provided the ML
step has a much lower computational cost. This is indeed shown
to be the case. On the other hand, unfortunately, the ML models
are not transferable, not even within the same molecule but with
different AC.

ML as well as DFT-based prediction of VCD spectra are quite
technical fields and every step needs to be very well thought of.
Because of the highly technical nature, the precise methodology
including all error checks and balances used are given in the
methods section and supplementary material. The main lines of
the approach taken are:

● Generate minimum energy conformations using a force
field for all compounds in Fig. 2 with chosen AC equal
to RRRR

● Compute DFT geometries and VCD spectra using the
B3PW91 functional and 6-31G(d) basis set

● Establish a training, validation, and test set per compound
to train an ML model to extract from solely a conforma-
tional geometry the VCD spectrum and test hypothesis 1
(see above)
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● Repeat this for all conformations of a molecule in the
chosen AC and establish the time gained by using ML
(hypothesis 2)

● Test the ML model for a different AC of the same molecule
or even a different molecule in the same AC or different
(hypothesis 3)

Admittedly, in this study, the entire usual approach involving
elaborate DFT calculations is also still performed to serve as a
comparison basis but the end goal is to strongly reduce the
number of these calculations although some will always remain
required to train the model.

Results and discussion
For each conformer of each compound in a single, chosen AC, the
VCD spectrum is computed using DFT. This basis of spectra is

then used in finding the ML model as described in detail in the
methods section. For each compound, the ML method is trained
to allow the prediction of conformer VCD spectra solely from the
geometry of the conformers. In this section, emphasis is placed on
the actual results which are discussed in terms of the extent to
which they (dis)prove the hypotheses formulated above.

Hypothesis 1: machine learning can predict conformer spectra
solely from molecular geometry. The first hypothesis is that ML
can learn from a dataset of conformer geometries and their VCD
spectra the intricate link between both. To this end, for every
compound, a training set of conformers and spectra is established
so that an ML model can be obtained. This does -admittedly-
mean that it is impossible to completely bypass all DFT calcu-
lations but the aim is to be able to limit the number to just
enough to train a proper model. For all compounds in Fig. 2, an
ML model was trained using different ratios of training, test and
validation set, and the hypothesis is examined by looking at the
similarity between a DFT predicted conformer spectrum and one
obtained using the trained ML model. The results are presented in
Fig. 3. For all applications, the molecular geometry is represented
using only the sidechain dihedral angles.

As a similarity measure we use the cosine similarity measure
Spred which is the normalized overlap between the ML predicted
and DFT computed spectrum (see Supplementary Methods 1 and
2 for details on the similarity measures). If it equals 1, the spectra
are exactly the same. It can turn negative, meaning that the ML-
predicted spectrum would rather agree with the enantiomer of the
DFT computed spectrum. This would be detrimental for the use
of ML in VCD-based AC assignment and it is gratifying that no
conformers appear with negative similarities. Figure 3 are so-
called violin plots. The width of the blob at every value of Spred

reflects how many conformers are binned within a small interval
around that value. How wider the blob the more conformers have
an Spred in that bin.

Clearly, the procedure works very well in case of compound 1a.
The far majority of conformers comes with values around 0.99
and only a very small tail descends towards circa 0.96. To put this
in perspective, the loss in exact similarity is of the order of or even
better than the variation in spectrum if one compared DFT
spectra for the same conformer obtained using a different basis
set or functional. This shows that the ML procedure works very
well. Compound 1b is a structural isomer and there the results are
somewhat less impressive. A vertically more spread out blob is
obtained but the far majority of points still has an impressive
similarity above 0.9. Two sets of conformers appear and one
might be tempted to interpret this in terms of one collection of
conformers with stronger steric hindrance and one with less, but

Fig. 1 Role of machine learning in VCD. Scope of the current paper: can ML extract the link between the structure of a conformer for a specific AC of a
compound and its corresponding DFT computed VCD spectrum? Note the difference with our previous ML work52.

Fig. 2 Test compounds for VCD machine learning. Overview of
compounds for which the link between conformer and VCD spectrum is
extracted with the ML workflow.
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no such connection is found (see Supplementary Discussion 2
and Supplementary Figs. 4 and 5). Compound 2a again shows
that the majority of conformers exhibits very good agreement
between the ML predicted and actual DFT computed spectrum
although the similarities do go down to roughly 0.75. This is still
more than sufficient in the context of AC determination56. One
could suggest that conformers with higher energy lay lower in
similarity, but this is not the case (see Supplementary Discussion 3
and Supplementary Figs. 6–11). For compound 2b, two plots are
shown. The first is the result using ML training with only the
sidechain dihedral angles as input. Hydrogen bonding is not well
represented in this encapsulation of molecular geometry. When
additional parameters are included (denoted as hbond, see Fig. 3),
the violin plot shifts massively to higher similarities
(see Supplementary Discussion 4 and Supplementary Figs. 12
and 13). This means that sufficient attention must be paid to what
is a proper representation of a conformer geometry. Compounds
3 and 4 introduce a wider range of substituents and it is clear that
the agreement between DFT and ML predicted spectra is
very good.

These results reveal that ML does allow to partially replace
DFT calculations. Still, for many conformations the VCD
spectrum needs to be calculated using DFT as one needs a
training set for each compound but once an ML model is
available, the spectra of all conformations for which no DFT
calculation of the VCD spectrum was performed can be
computed from the ML model. A detailed study of what fraction
of conformers is required for DFT VCD calculations is given in
Supplementary Discussions 5 and 6, Supplementary Figs. 14 and
15, and Supplementary Table 1.

Hypothesis 2: machine learning can significantly reduce the
computational cost for AC assignment. From a practical per-
spective, the scientifically already valuable results above, suggest
that one could significantly reduce the effort to assign an AC to
an experimental sample. In practice, assigning the AC of an
experimental sample requires elaborate DFT calculations for all
conformers in each possible AC, composing a Boltzmann

averaged VCD spectrum and comparing it to an experimental
measurement. Even if for the moment, we assume that a separate
ML model needs to be trained for every assumed AC, there may
be a significant time gain due to the use of ML. The most time
consuming part in the usual approach lies in computing the VCD
spectra, much less in the geometry optimization so for now we
take for granted that the geometries and Boltzmann weights are
DFT computed. One could envision to also skip the step of
geometry optimization and use only geometries and energies
from a force field calculation but this is subject of future work. At
this exploratory stage, it is important not to reach too far in
ambitions to avoid conclusions could be based on partial error
cancellation.

Table 1 shows the total time cost for all compounds to compute
a Boltzmann weighted VCD spectrum using the classical
approach and using one where part of the DFT VCD calculations
are replaced by the ML-based prediction. To allow for a fair
comparison, the time spent to train the ML model is also

Fig. 3 Machine learning performance. For each conformer of each compound, the similarity between the ML-predicted spectrum and the DFT computed
spectrum in the test set is shown. Separate plots are used per class of compounds in Fig. 2.

Table 1 Computational cost reduction due to machine
learning.

DFT cost DFT cost
ML-

Cost
generation

Time
savings
ML-

Compound Classical
approach

Aided
approach

ML model Aided
approach

1a 7140 h 5707 h 7 h 1426 h
1b 5507 h 4406 h 4 h 1097 h
2a 2691 h 2153 h 6 h 532 h
2b 2025 h 1619 h 5 h 401 h
3 7293 h 5828 h 11 h 1454 h
4 4771 h 3811 h 6 h 954 h

Comparison of the cost for the Boltzmann weighted spectrum with the classical approach (using
the DFT computed spectra for all conformers) and the ML-aided approach where 80% of all
conformer spectra come from DFT calculations and the remaining 20% are predicted with the
ML model. Cost is reported in cpu time for a Intel Xeon E5-2680v4 processor.
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reported. The data in Table 1 is obtained using a very large
fraction of DFT conformer VCD spectra (DFT spectra computed
for 80% of all conformers). As the ML training step can be done
quite efficiently, the relative time savings are mostly limited by the
time spent in computing DFT spectra to generate the ML model.
Nonetheless, significant computer time is already being saved
compared to the classical approach.

Computing DFT spectra for 80% of all conformers of course
limits the possible time gain with ML. Hence, we also investigate
the additional time savings possible if the ML model is generated
using a smaller percentage of DFT computed spectra. Using fewer
DFT spectra may adversely affect the similarity between the
Boltzmann weighted spectrum composed with the DFT spectra of
all conformers and one based on a combination of DFT spectra
and ML predictions. Figure 4 shows the relative speedup for the
Boltzmann weighted spectrum as a function of the percentage of
DFT computed spectra, along with the similarity of the
Boltzmann weighted spectrum and the one based on the DFT
spectra of all conformers, for compound 4. It is found that one

can strongly reduce the percentage of DFT computed spectra
without significantly affecting the resulting spectrum in the sense
that the similarity to the spectrum composed with all DFT
conformer spectra remains very high. At a similarity of 0.95, all
details of the spectrum are still reproduced. With roughly 15% of
the conformer spectra computed with DFT and used to generate
the ML model, the ML-aided approach allows to retain a
similarity above the threshold of 0.95 while providing a speedup
with a factor of 6.6.

Similar speedup values as reported for compound 4 are also
found for the other model compounds. The Boltzmann weighted
spectra obtained for each compound with this approach, along
with the associated speedup and similarity, are given in
Supplementary Discussions 7–8 and Supplementary Figures 16–18.

Hypothesis 3: machine learning can generate transferable
models. All of the above is based on individually training an ML
model for a specific AC of a specific molecule. The gratifying time
savings reported above could be very strongly boosted if learning
an ML model for a single AC would lead to a model that can also
be used for a different stereoisomer. To test this we took com-
pound 4 where ML works excellently for a single AC (see
hypothesis 1 and Fig. 3). We then switched the AC of compound
4 to both an epimer and the enantiomer, and used the ML model
generated for compound 4 to predict conformer spectra for both.
The results are presented in Fig. 5a. The predictions for the new
stereoisomers unfortunately do not resemble the DFT conformer
spectra. The ML model is far from transferable to other AC’s,
especially if the conformer spectra differ significantly from the
original AC. In an attempt to remedy this, one could suggest to
train for multiple stereoisomers in one run. With this approach
the conformer spectra of each stereoisomer are obtained with the
same accuracy as for a single AC (Fig. 5b). With the current
approach, the ML model can only faithfully reproduce spectra for
stereoisomers it has been trained on.

Figure 5 also reveals a particular feature. DFT spectra are
always only computed for one enantiomer of the set of
enantiomers as spectra of enantiomers are mirror images. It is
clear that this was not picked up when training on only one of
both enantiomers. When training on both enantiomers, the
question is whether enough information was sourced such that
for the two mirror images of the same conformation also a mirror
image spectrum is obtained from the ML model. This is indeed
the case as is shown in Fig. 6 where in panel a the spectra of an
enantiomeric pair of conformers is compared when only one AC

Fig. 4 Efficiency gain due to machine learning. The relative speedup with
the ML-aided approach (blue) using different percentages of DFT
conformer spectra is shown for compound 4. The similarity of the
Boltzmann weighted spectrum obtained with the ML-aided approach and
the one composed with all DFT conformer spectra (green) is determined
for each percentage of DFT conformer spectra using the cosine similarity Θ
(see Supplementary Methods 1 for details).

Fig. 5 Transferability of machine learning models. a similarity of the predictions for the epimer and enantiomer with the ML model trained on only
compound 4. b similarity of the predictions from the ML model trained on a combination of the conformers of compound 4 and the conformers of either
the epimer or enantiomer.
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was used in training. In Fig. 6b, the result is shown when both AC
are included in training.

Conclusions
The potential of ML in VCD spectroscopy to (partially) replace
DFT calculations was examined. Three hypotheses have been put
forward, leading to the following conclusions:

● Hypothesis 1: machine learning can predict conformer
spectra solely from molecular geometries. The similarity
between the DFT computed spectrum of a conformer and
the spectrum predicted with ML from its geometry is very
high. ML can indeed learn the intricate and hidden
connection between a conformer geometry and its VCD
spectrum. Though, it is up to the user to make sure that the
representation of the geometry in a practical form
encapsulates all the necessary input to cover intramolecular
interactions.

● Hypothesis 2: machine learning can significantly reduce the
computational cost of AC assignment. The present results
show that the ML training step may be done quite
efficiently and as a result significant time savings are
possible. Obviously, it remains up to the user to determine
whether the time savings compensate for the learning curve
associated with proper training in ML methods.

● Hypothesis 3: machine learning can generate transferable
models. The current design architecture does not result in
transferable ML models, neither between molecules nor
among different AC’s of the same molecule.

The current ML approach already satisfies 2 out of 3 hypoth-
eses. Clearly, more development on the ML methodology is still
needed to satisfy hypothesis 3. Nonetheless, ML shows promise as
a tool for extracting the link between conformations and VCD
spectra.

Methods
Conformational analysis and VCD DFT calculations. VCD spectra are very
conformation dependent and so a molecular VCD spectrum for a chosen AC is
composed of a set of conformer VCD spectra each weighted with their Boltzmann
weight. Hence, to compute a proper VCD spectrum that takes into account all
conformers and their Boltzmann weights, it is necessary to thoroughly sample the
conformer ensemble within the chosen AC. The conformer geometries and VCD
spectra also constitute the input for an ML model. In order to provide the model
with an as diverse input as possible both low-energy and a substantial number of
higher energy conformers are generated using a force-field-based conformer gen-
eration algorithm. The geometry of the conformers is then optimized further using
DFT and VCD spectra are calculated for each conformer. The details of each step
are provided below.

● Conformer generation: A set of conformers is generated using the GMMX
routine57, which implements a stochastic search mechanism. Conforma-
tional energies are computed with the MMFF9458 force field as
implemented in PcModel1059. During the stochastic search, a cut-off on
the energy of the conformers equal to 40 kcal mol−1 is used. In practice, the

generated conformers spread over a smaller range of force field energies.
The high cut-off does not mean that we expect the high energy conformers
to significantly impact the Boltzmann averaged spectrum but it may add to
the diversity of the input for the ML stage. Second, experience shows that
some interactions are not well handled at the force field stage and
conformer energies may change significantly when moving to the DFT
level.

● Geometry optimization and VCD spectrum generation: For each
conformer, the geometry is optimized further and the VCD line spectrum
is computed with the B3PW9160 functional, the 6-31G(d) basis set and
assuming the rigid rotor, ideal gas, and harmonic approximation. These
calculations are performed using Gaussian1661.

● Spectrum broadening and representation: The computed conformer
spectra are broadened using a Lorentzian band shape with a full width at
half maximum (FWHM) of 10 cm−1. The spectra were represented as
vectors containing the molar absorbance difference Δϵð~νÞ ¼ ϵLð~νÞ � ϵRð~νÞ
for wavenumbers ~ν ranging from 800 cm−1 to 1800 cm−1 using a sampling
interval equal to the FWHM (10 cm−1), so a 101-dimensional vector.

The distribution of the conformer DFT energies is discussed in Supplementary
Methods 3 and Supplementary Fig. 20.

ML model architecture, training, and optimization. A fully connected Feedfor-
ward Neural Network (FNN) is used in this work to extract the link between
conformer geometries and their corresponding VCD spectra. The input is a vector
containing molecular features describing the geometry of the conformer (for full
description see section ‘Molecular representation’) and the output is the 101-
dimensional vector representing its VCD spectrum. Layers of artificial neurons, so-
called hidden layers, are inserted between the input and output layer. During
training, the connections between the neurons establish the link between the VCD
spectrum and the conformer geometry. An illustration of an FNN with two hidden
layers is shown in Fig. 7. Training a single FNN to predict VCD intensities for
multiple ~ν simultaneously, improves the generalizability62,63 of the connections
between the layers. The set of conformers for a specific AC of a single molecule is
split randomly into three sets: a training, validation and test set. As mentioned
earlier, the connections between the neurons are extracted from the training set.
The validation set is used to optimize the so-called hyperparameters of the FNN
such as its size and the algorithm used for training. The test set provides a final test
of how well the FNN can predict the spectra of new conformers. Initially a default
80%:10%:10% (training:validation:test) split is used. Results of the ML approach for
different splits are reported in Supplementary Discussion 5.

Fig. 6 Machine learning and enantiomer spectra. a prediction for a selected conformer of the test set of 4 (red) and its mirror image (blue) when the ML
model is trained on conformers of 4. b prediction for the conformer and its mirror image when the ML model is trained on conformers of both 4 and the
enantiomer.

Fig. 7 General structure of FNN. Illustration of an FNN with two hidden
layers. Molecular features such as dihedral angles are provided to the input
neurons (red) and VCD intensities emerge from the output neurons
(green).
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More technical details of the model are:

● Hyperparameter Optimization: for every application of the model the
hyperparameters are optimized using Bayesian optimization. Here, a tree-
structured parzen estimator optimizes the hyperparameters within the
search space shown in Table 264. By reoptimizing the model for every
application (such as compound, representation, or training set size) we
prevent data leaking from previous applications to the current model. The
Bayesian optimization was implemented with Hyperopt 0.2.565.

● Dropout/Batch Normalization: during the Bayesian optimization the tree-
structured parzen estimator can choose to introduce Dropout66 for the
hidden layers or batch normalization67 layers to reduce overfitting.

● Loss function: the model is trained with the mean squared error as loss
function. The exact implementation of the metric is explained in
Supplementary Methods 1-2.

All models are built and trained on a Xeon E5-2680v4 processor using
Tensorflow 2.2.068.

Molecular representation. The ML model is trained to predict the VCD con-
former spectra from the conformer geometries of each molecule in turn and for a
chosen AC. Ideally, a minimal set of intramolecular coordinates that fully describes
the conformation is chosen as input for the model. For each of the six compounds,
the major differences between conformers of the same compound lie in the geo-
metrical arrangement of the sidechains. Therefore, the conformer geometry is
presented to the ML model as the set of dihedral angles in the sidechains shown in
Fig. 8. Throughout this work we will refer to this set of dihedral angles as repre-
sentation A. We expect this representation to capture most of the conformational
flexibility. If the model cannot fully capture the link between conformer and
spectrum with representation A, other geometric parameters are added to the
representation and their influence is discussed.

Conformers of compounds 1a/1b/2a/2b lacking a C2 axis can arise in two
different ways by rotating the sidechains internally, resulting in degenerate
conformations which share the same VCD spectrum but are presented to the ML
model as different conformations with this representation. Hence, we will teach the
model that the predicted spectra need to be the same for both by explicitly
including both members of such pairs.

Data availability
The conformer dataset that supports the findings of this study is openly available at
https://doi.org/10.5281/zenodo.8009874. The technical approach and choices are
described in full detail in the supplementary material.
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