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Highly accurate and large-scale collision cross
sections prediction with graph neural networks
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Yi Chen 3,5✉, Hongmei Lu 1,5✉ & Zhimin Zhang 1,5✉

The collision cross section (CCS) values derived from ion mobility spectrometry can be used

to improve the accuracy of compound identification. Here, we have developed the Structure

included graph merging with adduct method for CCS prediction (SigmaCCS) based on graph

neural networks using 3D conformers as inputs. A model was trained, evaluated, and tested

with >5,000 experimental CCS values. It achieved a coefficient of determination of 0.9945

and a median relative error of 1.1751% on the test set. The model-agnostic interpretation

method and the visualization of the learned representations were used to investigate the

chemical rationality of SigmaCCS. An in-silico database with 282 million CCS values was

generated for three different adduct types of 94 million compounds. Its source code is

publicly available at https://github.com/zmzhang/SigmaCCS. Altogether, SigmaCCS is an

accurate, rational, and off-the-shelf method to directly predict CCS values from molecular

structures.
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Liquid chromatography-mass spectrometry (LC-MS) is an
ideal platform for analyzing complex samples1. The com-
putational pipeline from raw LC-MS data to discriminant

models can be easily constructed with existing packages, such as
XCMS2 and MetaboAnalyst3. Furthermore, the potential bio-
markers (compounds) can be screened with assistance from these
models. However, only a limited percentage of compounds can be
identified by searching MS/MS spectral databases due to the
limited molecular coverage of databases and the unavailability of
pure standards4. To partially address this problem, researchers
have taken advantage of structural databases and computational
methods to generate mass spectra from molecular structures with
rules or models5,6, predict molecular fingerprints from mass
spectra7, extend the identifiable molecular space using spectrum-
structure similarity8,9, and simulate mass spectra with quantum
chemical calculation10. However, compound identification
remains a major challenge when analyzing complex samples.
Therefore, it is necessary to use other stable, distinguishable, and
readily obtained physicochemical properties to improve the per-
formance of compound identification11.

Recently, ion mobility spectrometry (IMS) has been integrated
into LC-MS12. The collision cross section (CCS) values can be
calculated from the drift time measured by IMS. The CCS values
have excellent reproducibility13 and are highly correlated with the
molecular shapes14. It provides an additional physicochemical
property that can be used to improve identification accuracy15.
However, this utility is limited by the availability of reference CCS
values. The theoretical calculation and model-based prediction
methods have been developed to obtain CCS values from molecular
structures. The common theoretical calculation methods include
projection approximation, exact hard-spheres scattering, and tra-
jectory method (TM), which have been implemented in the MobCal
program16 and in silico chemical library engine (ISiCLE)17.
Nevertheless, the projection approximation and exact hard-sphere
scattering methods are not accurate enough, and the TM method is
time-consuming for large-scale molecules. The model-based pre-
diction methods use machine learning to establish the relationship
between the molecular structures and their experimental CCS
values. They have been used with molecular descriptors to predict
CCS values (or related properties such as reduced ion mobility
constant and drift time). Those methods involve multiple linear
regression18, random forests19, partial least squares20, artificial
neural network21, and support vector regression22–24. The issue
with these methods is that the descriptors do not always completely
reflect the structural features of compounds. They may lose some
useful information for CCS prediction.

Deep learning methods can take simplified molecular-input
line entry system (SMILES) strings or molecular graphs as inputs
and learn multilevel representations from chemical datasets to
predict molecular properties. They have achieved state-of-the-art
performance in related fields ranging from peak detection25,
alignment26, retention time (RT)27–29 and CCS prediction30,31 to
library searching32 and in silico compound identification33–35.
For instance, DeepCCS can predict the CCS values of molecules
with a convolutional neural network (CNN) from the one-hot
encoding of their SMILES strings, and it has achieved good
performance with the coefficient of determination (R2) and
median relative error (Median RE) of 0.976 and 2.67%,
respectively30. According to the theoretical calculation methods,
the CCS value of a molecule is closely related to its 3D structure,
which is not included in the one-hot encoding of its SMILES
string. Therefore, there is plenty of room to improve the accuracy
of CCS prediction with proper neural network architectures and
reasonable inputs.

In this study, we developed an accurate and high-performance
approach SigmaCCS, which can integrate the advantages of the

graph neural network (GNN) and the molecular graph including
three-dimensional (3D) information for CCS prediction. The
workflow of SigmaCCS is shown in Fig. 1. The SigmaCCS model
was trained with the experimental CCS values from CCSbase36.
The 3D conformers were generated by the experimental-torsion
knowledge distance geometry method (ETKDG)37 and Merck
molecular force field (MMFF94)38, which are good starting points
for theoretical calculation and model-based prediction of CCS
values. The molecular structures are encoded into molecular
graphs, then fed into graph layers for higher-level feature
extraction. The GNN is a suitable architecture for processing
molecular graphs effectively. The performance of the model was
evaluated by different metrics on the test set and the external test
set. The importance of each atom attribute was investigated by a
model-agnostic interpretation method, and the atomic degree,
atomic symbol, is-in-ring, and 3D coordinates are attributes with
relative importance larger than 10%. The learned representations
are the pooled node attributes (p), and the visualization of the
learned representations shows that they are chemically mean-
ingful. The CCS values of compounds in PubChem were pre-
dicted, and an in-silico database with 282 million CCS values was
generated.

Results
Hyperparameter optimization and training. The intuitive
hyperparameters include the epoch, batch size, optimizer, learn-
ing rate, activation function, regularization method, the number
of fully connected layers, and the number of units in fully con-
nected layers. Their values optimized by the manual search are
listed in Supplementary Table 1. The crucial hyperparameters are
the type of graph convolutional layer and the number of graph
layers. Their settings are listed in Supplementary Table 2 with six
combinations in total. Five models were trained using the training
subset for each hyperparameter combination, and the total
number of trained models was 30. Their performance is evaluated
on the validation subset listed in Supplementary Table 3.
According to R2 and Median RE, the type of graph layer was
chosen as edge-conditioned convolution (ECC)39, and the num-
ber of layers was set to 3. The neural network architecture of
SigmaCCS is shown in Fig. 2. The loss curves of the training and
validation subsets in the final training with the optimized
hyperparameters are shown in Supplementary Fig. 1. The details
of implementation and computing resources are presented in
Supplementary Text 1.

Performance evaluation. The training of deep learning models is
often accompanied by some randomness. The effect of parameter
initialization was explored by training ten different models with
the training set. As listed in Supplementary Table 4, the standard
deviation of R2 and Median RE on the test set are 0.0002 and
0.0795%, respectively. The results indicate that the effect of ran-
domness in parameter initialization is small enough to negligible
on the model performance. The performance of SigmaCCS on the
test set based on molecular-level deduplication and adduct-level
deduplication is listed in Supplementary Table 5. The result
shows that the model performs excellently on the test set even
after molecular-level deduplication.

The SigmaCCS method was compared with DeepCCS
proposed in 2019. The hyperparameters of SigmaCCS were set
according to the previous section. The DeepCCS model was
downloaded from its GitHub repository. Then, the SigmaCCS
and DeepCCS models were evaluated on the test set. The results
are listed in Supplementary Table 6. R2 and Median RE of
SigmaCCS on the test set are 0.9945 and 1.175%, significantly
better than the corresponding values of DeepCCS (0.9794 and
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2.403%). The scatter plots of the experimental vs. predicted values
of the test set are shown in Fig. 3a, b. All the points in the scatter
plot of SigmaCCS are compact and close to the diagonal line.
There is no systematic deviation between the fitting line and the
diagonal line. All the points in the scatter plot of DeepCCS are
more dispersed to the diagonal line when compared to
SigmaCCS. Meanwhile, DeepCCS has a significant deviation of
its predicted values from the experimental values at large CCS
values. Furthermore, four molecules predicted by SigmaCCS
resulted in the largest improvement compared to DeepCCS are
listed in Supplementary Table 7. In the test set, the experimental
CCS values are acquired by three different types of instruments,
which are drift tube (DT), traveling wave (TW), and trapped ion
(TIMS) IMS. The instrument types are plotted in different colors
and shapes. As seen in Fig. 3a, SigmaCCS can reasonably predict
the CCS values of these three different instruments with the same
model.

The external test set was the dataset of AllCCS deduplicated by
removing entries in the training set of SigmaCCS, and it was used

to compare the performance of SigmaCCS with AllCCS, MetCCS,
DeepCCS, and ISiCLE. As shown in Fig. 3c, SigmaCCS achieves
the highest R2 and the lowest Median RE on the external test set.
The scatter plots of the experimental vs. predicted values of
SigmaCCS and DeepCCS on the external test set are shown in
Supplementary Fig. 2. In short, SigmaCCS is an accurate and
unbiased method to predict the CCS values.

Since there are 50 molecules of the external test set included in
the training set of CCSbase, the external test set was further
deduplicated by removing molecules in the training set of
CCSbase. The number of CCS entries is 294 in the external test
set. A disadvantage of Median RE is that it does not fully use all
the data. Therefore, we introduce the root mean squared error
(RMSE) as the metric to evaluate the performance of SigmaCCS
and CCSbase. As shown in Supplementary Fig. 3a, b, R2, RMSE,
and Median RE of SigmaCCS on the external test set are 0.9780,
6.7012, and 1.8211%, and the corresponding values of CCSbase
are 0.9778, 6.7240, and 1.3608%. Furthermore, SigmaCCS is
compared with CCSbase on the plant dataset40. As seen in

Fig. 1 Workflow of SigmaCCS. a Dataset curation: a curated dataset with 5597 experimental CCS values was used to train, validate and test the SigmaCCS
model. It was obtained through a five-step cleaning pipeline from CCSbase. b Conformer generation: the molecular object of each molecule was
constructed from its SMILES string, and the 3D conformer was generated and optimized by ETKDG and MMFF94. The attributes of each atom and bond in
the molecule were calculated by RDKit. c Molecular graph construction: the molecular graph of each molecule was established by initializing the node
attribute matrix, the edge attribute matrix, and the adjacency matrix with attributes calculated in the previous step and its connection table. d Edge-
conditioned convolution: the atomic vector of each atom in the molecule was learned from the curated dataset with edge-conditioned convolution, and the
molecular vector was generated from atom vectors through global sum pooling. e Adduct encoding: the adduct ion type ([M+H]+, [M+Na]+, and [M-
H]-) was encoded as a one-hot vector. The molecular vector and the one-hot vector of adduct type were concatenated to obtain the feature vector. f CCS
prediction: the feature vector was fed into the fully connected layers and feedforwarded to the output layer to predict the CCS value. g Database
generation: the SigmaCCS model was used to predict CCS values of 94,161,201 compounds in PubChem. Three different adduct ions of each molecule were
predicted. There are >280,000,000 predicted CCS values in the CCS database. The complete workflow of SigmaCCS was implemented in Python (v3.7.7).
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Supplementary Fig. 3c, d, SigmaCCS (R2= 0.9655, RMSE=
5.3812, and Median RE= 1.4232%) achieves better performances
than CCSbase (R2= 0.9643, RMSE= 5.4720, and Median RE=
2.3211%). The details of the performance evaluation of
SigmaCCS and CCSbase on the external test set and the plant
dataset are presented in Supplementary Text 2. CCSbase uses
K-Means clustering for molecules and then trains a specific model
for each cluster. As listed in Supplementary Table 8, molecules
with large errors are further from the cluster centroids than those
with small errors.

Importance of atom attributes. The deep learning models are
often regarded as black boxes lacking transparency and inter-
pretability. Recently, some model-agnostic methods have been
presented to interpret these black-box models. Among them,
feature importance (FI) is a simple and popular method41. Its idea
is simple: select one atomic attribute at a time, mask its values,
and compare the performance difference between the masked
model and the original model. If there is a significant drop in
performance after masking the selected atom attribute, then that
atom attribute is more significant. The FI of each attribute was
calculated according to Supplementary Text 3. As shown in
Fig. 4a, the FI of the atomic symbol (27.57%) is the highest
because the structure of a molecule is mainly determined by the

atoms and their connections. The FI of the atomic degree ranks
second (26.86%). The possible reason is that the atomic degree
describes the connections between atoms and is closely related to
the topological structure of a molecule. The FI of the atomic
radius is 9.56% because of the relationship between the atomic
radius and atomic volume. The FI of the atomic mass is 0.61%,
which is possible because their information is implicitly included
in the atomic symbol. The FI of the "Atom IsInRing" ranks third
because the ring structures may have a lower probability of col-
lision and smaller CCS value than the linear molecules with the
same atoms14. The FI of 3D coordinates (14.82%) ranks fourth.
The CCS value is theoretically defined by averaging the projected
areas of the 3D atomic spheres in different directions.

The 3D coordinates can directly reflect the projected areas. The
CCS value of a molecule is closely related to its chemical structure
and 3D conformation12. The 3D coordinates determine where
there is a molecule, while the atom attributes (atomic symbol,
degree, radius, mass, and atom IsInRing) determine the element
types in 3D coordinates, bond angles, bond lengths, atomic
radius, and the connections between atoms. These atom attributes
also play an important role in the size and shape of the 3D
conformers and thus impact the projected area of the 3D atomic
sphere in different directions. The FI approach is widely used to
interpret deep learning models. However, it only shows how the
model makes use of the provided features without considering the
interactions between the features. If a feature describes the same
information as two other features implicitly do, the analysis only
reveals the importance of the masked feature. The approach to
interpretable machine learning needs further improvement.
Meanwhile, it will be meaningful to assess the importance of
combinations of features.

Rotation of conformers. The details of the CCS prediction for
the same molecule with different coordinates are presented in
Supplementary Text 4. The 3D conformers of two randomly
chosen molecules generated by ETKDG and MMFF94 are
visualized in Supplementary Fig. 4. Histograms with fitted density
curves for the predicted CCS values of the molecules with 1000
different 3D coordinates generated by ETKDG and MMFF94 are
shown in Supplementary Fig. 5. Visualization of the 3D con-
formers of the molecule named 2,5-dihydroxybenzoic acid with
completely random rotation is shown in Supplementary Figure 6.
The performance of SigmaCCS on the test set and the external
test set with different coordinates generated by ETKDG and
MMFF94 is listed in Supplementary Table 9 and Supplementary
Table 10, respectively. The performance on the test set with
completely random rotation angles is listed in Supplementary
Table 11. These results show that the model still performs well on
CCS prediction even if the obtained coordinates of the same
molecule have large rotations. Therefore, SigmaCCS is a reliable
model, and there is no risk of overfitting with the 3D coordinates
as the node attributes.

Visualization of the learned representations. The pooled node
attributes (p) are the learned representation of a molecule by the
ECC layers and the global sum pooling layer. The dimensionality
of p is 16. The uniform manifold approximation and projection
(UMAP)42 can project the learned representations from 16 to 2
dimensions for visualizing and exploring.

Molecules in the training set and 1% randomly sampled
compounds from PubChem (the sampled data set) were fed into
SigmaCCS. Their pooled node attributes were extracted and
visualized by UMAP. The number of rings in each molecule was
calculated using RDKit. Each molecule was colored according to
its ring numbers. From Fig. 4b, c, the molecules aggregate

Fig. 2 The neural network architecture of SigmaCCS. The ECC and global
sum pooling are used to learn multilevel representations from molecular
graphs. The CCS value can be predicted from the fused features by merging
the learned representation with the one-hot encoding of an adduct ion.
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according to their ring numbers. There is a clear trend between
the position of clusters and the ring numbers. These clustering
results also further validated the rationality of the FI of the "Atom
IsInRing" attribute in Fig. 4a.

We also randomly selected three target molecules from
PubChem. Then, Tanimoto similarities (Ts) were calculated based
on Morgan fingerprints of molecules in the sampled data set and
the target molecules. All the molecules in the sampled data set are
colored by their similarities in Fig. 4d–f. The similarities decrease
with increasing distances to the target molecules. Structurally
similar molecules are clustered closer in UMAP plots based on the
learned representations. It means that the learned representations
correlate well with the molecular structures.

From the 5,597 entries in the training set and the test set, we
extracted 3,996 molecules and their molecular classes. A UMAP
model was fitted by the molecules in the sampled data set from
PubChem. The molecules in the training and test sets were
transformed into the learned space with the UMAP model. The
molecules in the training and test sets are colored by their
molecular classes in Fig. 4g. They are clustered according to their
molecular classes (small molecules, lipids, peptides, and carbohy-
drates). Additionally, the molecules are also colored according to
the training and test sets. As shown in Fig. 4h, i, the molecules in

the training set and the test set are evenly distributed in the
learned space of UMAP. The representations learned by ECC
layers from molecular graphs have reasonable chemical signifi-
cance. It lays a good foundation for the accurate prediction of
CCS values.

Relationship with the theoretical calculation. The ISiCLE is a
pipeline proposed recently to calculate CCS values with the TM
method, which can be used to verify the predicted values of
SigmaCCS. The CCS values (825,702 entries of 281,318 mole-
cules) calculated by ISiCLE (version 0.1.0) were downloaded from
Pacific Northwest National Laboratory CCS database on July
29th, 2021.

The calculated CCS values by ISiCLE and the predicted CCS
values by SigmaCCS are shown in Fig. 5. There is a significant
correlation between the calculated and predicted CCS values. The
Pearson correlation coefficients are 0.9572, 0.9586, and 0.9546 for
[M+H]+, [M+Na]+, and [M-H]− adducts, respectively. The
CCS values of ISiCLE are significantly larger than the values of
SigmaCCS. This phenomenon is consistent with the results in
Fig. 3c. There is an upper limit (around 380 Å2) of the CCS values
predicted by SigmaCCS. By observing the CCS value distribution

Fig. 3 Performance evaluation of different methods. a SigmaCCS on the test set. b DeepCCS on the test set. c Performance comparison of SigmaCCS with
AllCCS, MetCCS, DeepCCS, and ISiCLE on the external test set. 1.5 interquartile range was used as the error bars of the boxplot.
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of the training set in Supplementary Data 1, the possible reason
for the existence of this upper limit in the SigmaCCS model is
that the number of molecules with CCS values greater than 380
Å2 is small in the training set (6 molecules in total, 5 peptides,
and 1 carbohydrate). The performance of SigmaCCS on
molecules with larger CCS values can be improved by pre-
training with CCS values calculated by ISiCLE or (and) adding
some molecules with larger experimental CCS values to the
training set.

CCS prediction of PubChem. The compounds in PubChem were
chosen to build the in-silico CCS database with SigmaCCS. The
upper limit of 380 Å2 was implicitly considered when performing
the predictions on PubChem. The in-silico CCS database is
established to assist in identifying the metabolites in organisms,
which typically have molecular weights (MWs) under 1500 Dal-
ton. Meanwhile, the CCS value of a molecule is closely related to
its MW43. The experimental CCS vs. mass-to-charge ratio (m/z)

for all adducts in the training and test sets of SigmaCCS is shown
in Supplementary Fig. 7. It can be seen that experimental CCS
and m/z are highly correlated, with Pearson correlation coeffi-
cients of 0.9813, 0.9748, and 0.9865 for [M+H]+, [M+Na]+,
and [M-H]− adducts, respectively. MW is an important physical
property that is easy to obtain and does not require complex
calculations. Therefore, molecules with MWs under 1500 Dalton
are chosen from PubChem for CCS predictions. After filtering
according to Supplementary Fig. 8 and conformer generation,
there were 94,161,201 retained molecules. For each molecule, its
CCS values of [M+H]+, [M+Na]+, and [M-H]− adducts were
predicted and filled in CSV files. These CSV files were uploaded
to the Zenodo repository (https://doi.org/10.5281/zenodo.
5501673). According to the results in Fig. 4h, i, the filtered
PubChem library is within the application domain of the Sig-
maCCS model, and the accuracy of the predicted CCS values is
guaranteed for most entries. The details of in-silico CCS database
generation are described in Supplementary Text 5.

Fig. 4 Visualization of the atom attribute importance and the learned representation. a The feature importance of atom attributes. b UMAP plot of
learned representations colored by the ring number. c Zoomed UMAP plot on molecules with ring number greater than or equal to 6. d–f UMAP plots of
molecules in the sampled data set colored by their Tanimoto similarities based on Morgan fingerprint to three randomly chosen molecules. g UMAP plot of
all 3,996 molecules in the training and test sets colored by their molecular types. h UMAP plot of molecules in the training set and the sampled data set.
i UMAP plot of molecules in the test set and the sampled data set.
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Multidimensional filtering assisted by SigmaCCS. The m/z,
RTs, and CCS values of lipids were used together for multi-
dimensional filtering with the assistance of the CCS values pre-
dicted by SigmaCCS. The mouse lung dataset was downloaded44,
and 761 lipids in negative ion mode were chosen for multi-
dimensional filtering. Meanwhile, LipidBlast was downloaded,
and there were 256,696 retained entries in LipidBlast with
negative ion mode. The list of candidates (MList) was retrieved
from LipidBlast using the experimental m/z and the given
threshold. Then, the candidates in the MList were filtered by
matching the experimental and GNN-RT predicted RTs to obtain
the RT-filtered list of candidates (RList). The candidates in the
RList were further filtered by matching the experimental and
predicted CCS values to obtain the CCS-filtered list of candidates
(CList). Finally, the candidates in the CList were ranked
according to their fused scores. More details of multidimensional
filtering are presented in Supplementary Text 6. The results of the
multidimensional lipid filtering are listed in Supplementary
Table 12. Recall@1 increases from 15.2% to 24.6% and 28.9%, and
recall@30 increases significantly from 47.6% to 78.4% and 91.2%
when including m/z, RT, and CCS, gradually. It can be seen that
this multidimensional matching procedure can improve the
ranking of the correct molecule in the candidate list. The CCS
values predicted by SigmaCCS are valuable for filtering false
positives. In the case of isomeric compounds, the number of
candidates at each filtering step and the ranking of the lipid
(PubChem CID: 114944) are shown as an example in Supple-
mentary Fig. 9.

Discussion
The CCS values mainly depend on the 3D structures of molecules.
By naturally encoding molecular structures into graphs, GNNs
can process molecular graphs efficiently. In SigmaCCS, the ECC
layers are mainly used for learning multilevel representations
from molecular graphs. Then, the learned representations are fed
to the fully connected layers to predict CCS values. The atom
attributes (element types, degree, radius, atom IsInRing, mass,
and 3D coordinates) are also the input of the neural network, and
they are easy to obtain and do not require complex calculations.
SigmaCCS can predict CCS values for molecules of any size end-
to-end, using the basic attributes of atoms and bonds combined
with a GNN. In general, the architecture of SigmaCCS is flexible
and extendable. Although SigmaCCS cannot predict molecules of
elements other than C, H, O, N, P, S, F, Cl, Br, I, Co, As, and Se,
the molecule graph of the molecule consisting of other elements

can be established by filling the corresponding columns of node
attribute matrix with the attributes of the other elements.
Meanwhile, the [M+H]+, [M+Na]+, and [M-H]- are the three
most common types of adducts in LC-MS analysis, and thus
SigmaCCS focuses on the three adduct ion types. Further
improvement can be made by encoding more adduct ion types in
the one-hot vector. If enough molecules with different adduct ion
types and different elements are available, the SigmaCCS model
can be easily trained because of its flexibility, extendibility, and
simplicity of inputs.

In comparison, DeepCCS feeds the one-hot encoding of
SMILES string into CNN for representation learning. The input
of most CNNs should be a tensor with fixed dimensions.
Therefore, DeepCCS may fail on some SMILES strings beyond
the training set. For example, the length of SMILES cannot be
greater than 250 characters. In addition, DeepCCS can not per-
form a prediction when a SMILES string contains unknown
chemical symbols. These problems limit the application scope of
DeepCCS. There are 559 molecules in the test set. Only 514
molecules can be predicted by DeepCCS (Supplementary
Table 6). AllCCS is a support vector regression-based method for
CCS prediction using molecular descriptors. Its limitation is that
molecular descriptors of a compound require complex calcula-
tions. CCSbase uses K-Means clustering for the untargeted clas-
sification of chemical structures and then performs CCS
predictions using specific models trained on the corresponding
cluster data. There exists a possibility of misclassification. If the
molecule is assigned to an unsuitable cluster, it will make a
relatively large deviation between the predicted CCS value and the
experimental CCS value. ISiCLE is a theoretical calculation
method. Although it is supported by solid theoretical principles, it
requires complex computational steps, which makes a high
demand on computational resources.

There are also some interesting findings in this study. First, the
conformers of some molecules (33 out 94,161,896) in PubChem
and (5 out 5645 entries) in CCSbase cannot be generated by the
ETKDG method. There are 662 molecules whose conformers
generated by ETKDG cannot be minimized by the MMFF94
method. Their structures are listed in Supplementary Data 2,
which can be used to improve conformer generation and mole-
cular force field methods. Second, the CCS values of SigmaCCS
are significantly lower than the values of ISiCLE for molecules
with large CCS values (>380 Å2). It can be attributed to the lack
of molecules with high CCS values in the training set. Therefore,
more molecules with large CCS values should be analyzed by IMS
for training unbiased models in the entire domain. Third, the
rationality of neural network architectures and the interpretability
of the models significantly boost the confidence in the prediction
results, which are recommended in similar studies.

Methods
Dataset curation. A high-quality dataset is a prerequisite for training deep neural
networks with high accuracy. Therefore, the experimental database of CCSbase
(V1.2) was downloaded from its official website. It includes 14,008 entries with
measured CCS values by merging 22 datasets from 15 independent laboratories and
3 different types of instruments. The source, instrument type, size, and molecular
category of each dataset are listed in Supplementary Table 13. Due to its diversity, a
proper data curation procedure is required to improve the quality of the dataset for
training, validating, and testing the SigmaCCS model. In this study, a data curation
procedure consists of five steps: SMILES string verification, adduct type selection,
the median of CCS values, unsuccessful conformation generation, and outlier
removal. Their details can be found in Supplementary Text 7, and the outliers are
listed in Supplementary Data 3.

After the above five filtering steps, the number of CCS entries was reduced from
14,008 to 5,597. The number of molecules is 3,996 in the curated dataset since one
molecule may have multiple types of adducts. It shows vast chemical diversity with
17 superclasses, 104 classes, and 300 subclasses, according to the results of
ClassyFire. The ClassyFire web service was not able to classify all the molecules.
The classifiable molecules (3,365/3,996) are listed in Supplementary Data 4.

Fig. 5 Comparison of the predicted CCS by SigmaCCS and the calculated
CCS by ISiCLE. Visual representation of CCS values predicted by SigmaCCS
and calculated by ISiCLE, colored by adduct types.
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The curated dataset was divided into the training set (90%) and the test set
(10%). The training set was further divided into the training subset (90%) and
validation subset (10%) to tune the hyperparameters. Later, the training set and the
optimized hyperparameters were used to train the SigmaCCS model. The test set
was used to evaluate the performance of the trained model. The training subset,
validation subset, and test set can be seen in Supplementary Data 1. There are 344
entries of 295 molecules in the external test set after deduplicating, which are listed
in Supplementary Data 5. The plant dataset is from this article40, and there are 114
entries after deduplicating molecules in the training set of SigmaCCS, as listed in
Supplementary Data 6. Its details are presented in Supplementary Text 2.

Conformer generation. The CCS values are highly correlated with the 3D struc-
tures of molecules. The accuracy of model-based CCS prediction methods will be
improved if the 3D structural information of molecules can be used as the input of
deep neural networks. Efficient tools are needed to generate and optimize the 3D
conformers of large-scale molecules from their SMILES strings. The ETKDG37,45

and MMFF9438 have been implemented in RDKit, which can generate conformers
with distance geometry, correct the conformers with experimental-torsion
knowledge, and optimize the conformers using molecular force fields. The ETKDG
combined with MMFF94 is the best-performing freely available conformer
generator46. It provides a quick way to generate 3D structures of molecules, which
are suitable for the CCS prediction task. The workflow of conformer generation is
shown in Fig. 6a, b.

Molecular graph construction. A molecule can be naturally represented as a
graph G(v, e). Here, vi is the i-th atom, and ei,j is the bond between the i-th and j-th
atoms. The node attribute matrix X and the edge attribute matrix E are introduced
to store the attributes of atoms and bonds, respectively. The adjacency matrix A is
introduced to describe the connection of atoms in the molecule. In the curated
dataset, molecular structural information was stored as SMILES strings. They were
read as molecular objects by RDKit. Their 3D conformers were generated and
optimized by ETKDG and MMFF94, respectively. Then, the atoms, bonds, and
their attributes were obtained from these molecular objects. Attributes of each
atom were filled into the corresponding row of node attributes matrix X. The
detailed node attributes are shown in Fig. 6c and listed in Supplementary Table 14
and Supplementary Table 15. Attributes of each bond were filled into the

corresponding row of edge attributes matrix E. The column size of E is four
because there are four types of chemical bonds (single, double, triple, and aromatic)
in the curated dataset. The adjacency matrix A was obtained by calling the
GetAdjacencyMatrix function of the rdmolops module in RDKit with the mole-
cular object. The constructed molecular graph is shown in Fig. 6c, d.

Edge-conditioned convolution. The natural data structure for molecules is the
molecular graph. The GNN47,48 is a type of neural network with the ability to
operate on graph data structures, which has gained increasing popularity in the
field of molecular property prediction. Recently, ECC was proposed by generalizing
the convolution operator to graph and generate filter weights conditioned on edge
attributes. Deep neural networks with ECC layers can handle datasets with varied
graph sizes, apply graph convolutions to point clouds, and exploit the edge attri-
butes. These advantages make it an ideal method for predicting molecular prop-
erties from their structures. Hence, the ECC layer is the core module to build a
GNN-based method for CCS prediction. The ECC layer is formalized as follows:

xoi ¼ xiWþ ∑
j2NðiÞ

xjMLPðei;jÞ þ b ð1Þ

Here xi and xoi are the input and output of the ECC layer for the i-th atom. W is
the trainable weight matrix. NðiÞ is the one-hop neighborhood(s) of the i-th atom.
MLP is a multi-layer perceptron that outputs a bond-specific weight. ei;j is
attributes of the bond between i-th and j-th atoms. b is the trainable bias vector.

In this study, multiple ECC layers are used to learn multilevel representation
from molecular structures. Given a molecular structure with N atoms, the output of
the last ECC layer is a matrix XLast;o with N rows and F columns. The output of the
last ECC layer should be used as the input of fully connected layers to predict the
CCS value. However, the output size of the ECC layer varies with the number of
atoms in the molecular graph. To solve this problem, the global sum pooling layer
was introduced to pool a graph by adding node features across the node dimension.
The global sum pooling for a graph G is computed by:

pj ¼ ∑
N

i¼1
XLast;o

i;j ðj ¼ 1; 2; :::; FÞ ð2Þ

Here XLast;o is the output of the last ECC layer. p is the pooled representation of
graph G, which is a vector of F elements.

Fig. 6 Schematic for constructing a molecular graph. a Conversion of the SMILES string into the RDKit Mol object. b Generation of 3D conformer with
ETKDG and MMFF94. Coordinates of each atom were obtained from the 3D conformer. c Connection states, edge attributes, and node attributes of
representative atoms and edges. Node attributes and edge attributes of all the atoms and bonds in the molecule were collected as node attributes matrix
and edge attributes matrix. Connected states of all the atoms in the molecule were stored in the adjacency matrix. d Molecular graph consists of the node
attributes matrix, edge attributes matrix, and adjacency matrix.
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Adduct encoding. Electrospray ionization typically produces protonated
[M+H]+ and deprotonated [M-H]− ions in the positive and negative ion modes,
respectively. Meanwhile, the adduct ion [M+Na]+ is also abundant for some
molecules. The type of adduct significantly affects the CCS value of a molecule.
Therefore, the type of adduct should be part of the input of the neural network.
The SigmaCCS method focuses on the three most common types of adducts:
[M+H]+, [M+Na]+, and [M-H]−. The one-hot encoding method is used to
encode the type of adduct into the adduct vector (a) of size 3. The adducts
[M+H]+, [M+Na]+, and [M-H]− are encoded as [1, 0, 0], [0, 1, 0], and [0, 0, 1],
respectively. Then, the pooled node attributes p and the adduct vector a are
concatenated as the molecular vector m= [p, a], which is fed to fully connected
layers.

Fully connected layers. The fully connected layer has full connections to all
activations of its previous layer, which is an efficient way to learn non-linear
combinations of the learned representations and form the final output. Therefore,
the last few layers of deep neural networks are usually fully connected layers. For
this reason, the fully connected layers are used to process the molecular vector
learned by the ECC layers and finally obtain CCS values in SigmaCCS. It can be
described by the following equation:

mo ¼ σðmWþ bÞ ð3Þ
Here, m is the molecular vector learned by ECC layers, and mo is the output of

fully connected layers.W and b are the learnable weights and bias, respectively. σ is
the rectified linear unit (ReLU) activation function σðxÞ ¼ maxð0; xÞ.

The architecture of SigmaCCS. The neural network input is the molecular graph
consisting of the node attribute matrix, the edge attribute matrix, and the adja-
cency matrix constructed from the 3D conformer. The multilevel representations
are learned from the molecular graphs with three ECC layers. The last ECC layer is
followed by a global sum pooling layer, which gathers the learned representations
from all the atoms in the molecule and outputs a pooled representation vector.
The adduct type of the ion is encoded by the one-hot encoding method. The
pooled representation and adduct vector are concatenated into the molecular
vector. Then, eight fully connected layers are used to perform a nonlinear com-
bination of the molecular vector to form the CCS value. For both the ECC layers
and the fully connected layers, their activation functions are ReLU, and the L2
regularization is applied to the weights of these layers. The output layer is also a
fully connected layer with a ReLU activation function but no regularization. The
optimizer is Adam, which is a stochastic gradient descent method based on the
adaptive estimation of first-order and second-order moments. The mean squared
error is chosen as the loss function since it is appropriate for most regression
problems.

To evaluate the performance of SigmaCCS on the CCS prediction, the metrics
are presented in Supplementary Text 8.

Data availability
The experimental database of CCSbase (V1.2) are available at its official website (https://
ccsbase.net). The external test set is the dataset of AllCCS deduplicated by removing
entries in the training set of SigmaCCS, which is provided in Supplementary Data 5. The
plant dataset is from this article40, and there are 114 entries after deduplicating molecules
in the training set of SigmaCCS, as listed in Supplementary Data 6. The molecules from
PubChem to build the in-silico CCS database are available at the PubChem FTP site
(https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF). The predicted
CCS values of compounds in PubChem can be downloaded from https://doi.org/10.5281/
zenodo.5501673. The LipidBlast can be downloaded from MS-Dial software (http://
prime.psc.riken.jp/compms/msdial/main.html). The mouse lung dataset can be
downloaded from this article44. The predicted CCS values of compounds in LipidBlast
are available on GitHub. The curated dataset for training, validating, and testing the
SigmaCCS model is provided in Supplementary Data 1. Molecules in CCSbase and
PubChem whose 3D conformers can not be generated or optimized by ETKDG and
MMFF94 are available in Supplementary Data 2. Forty-three outliers detected in the
curated dataset are listed in Supplementary Data 3. Chemical classification of the
molecules in the curated dataset using the ClassyFire web service is provided in
Supplementary Data 4.

Code availability
The source code, models, document, manual, and tutorial are available on GitHub49

(https://github.com/zmzhang/SigmaCCS, https://github.com/yuxuanliao/SigmaCCS, and
https://github.com/YoujiaZhang/SigmaCCS).
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