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Elucidating the structure of a chemical compound is a fundamental task in chemistry with

applications in multiple domains including drug discovery, precision medicine, and biomarker

discovery. The common practice for elucidating the structure of a compound is to obtain a

mass spectrum and subsequently retrieve its structure from spectral databases. However,

these methods fail for novel molecules that are not present in the reference database. We

propose Spec2Mol, a deep learning architecture for molecular structure recommendation

given mass spectra alone. Spec2Mol is inspired by the Speech2Text deep learning archi-

tectures for translating audio signals into text. Our approach is based on an encoder-decoder

architecture. The encoder learns the spectra embeddings, while the decoder, pre-trained on a

massive dataset of chemical structures for translating between different molecular repre-

sentations, reconstructs SMILES sequences of the recommended chemical structures. We

have evaluated Spec2Mol by assessing the molecular similarity between the recommended

structures and the original structure. Our analysis showed that Spec2Mol is able to identify

the presence of key molecular substructures from its mass spectrum, and shows on par

performance, when compared to existing fragmentation tree methods particularly when test

structure information is not available during training or present in the reference database.
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The identification of the chemical compounds that are
present in a sample of chemical matter is a fundamental
task in chemical analysis with applications in multiple

domains. The field of metabolomics, for example, seeks to iden-
tify the chemical molecules that are present in a biological sample.
In humans, the metabolome, that is the set of all chemical
molecules that can be found in human tissues, is a great source
for biomarker discovery as it reflects changes at a genetic, pro-
teomic or environmental level1. Additionally, mapping the
human metabolome will lead to a better understanding of human
physiology and disease etiology and pathology which is essential
for the identification of new therapeutic targets for developing
new treatments. The increasing interest in mapping the meta-
bolome extends to other organisms as well, such as plants which
have been a great source of bioactive compounds for multiple
products including drugs and supplements2. The identification of
chemical compounds is also critical in product development such
as in the production of pharmaceuticals and agrochemicals.
Structure elucidation practices are being used for quality control
and detection of impurities, as well as in safety studies for iden-
tifying potential metabolites that can be formed in the human
body. Finally, structure elucidation practices are being employed
in forensics analysis.

The identification of the structure of a chemical compound is
perceived as one of the most time consuming and laborious task
in chemical analysis. This is often performed through analytical
techniques such as mass spectroscopy (MS) and nuclear magnetic
resonance (NMR)3–5 with MS being used more often due to its
higher sensitivity and specificity3. In MS, the molecules that are
present in a biological sample are first separated using a chro-
matographic technique, such as liquid chromatography (LC) and
gas chromatography (GC), with the latter being used more
commonly1,6. After the separation, the molecule is fragmented
into positive or negative charged ions using an ionization source
such as electron ionization (EI), chemical ionization (CI) and
electrospray ionization source (ESI)1,6. What the instrument
records is the mass-to-charge (m/z) ratios of the generated frag-
ment ions. The information that is collected from this process is
presented in the mass spectrum which is a graph with the m/z of
each recorded fragment in the horizontal axis and the relative
abundance in the vertical axis. In order to obtain more detailed
information on the query structure, a sequential fragmentation
process is often used called tandem mass spectrometry5. Once the
molecule has been fragmented into ions, a set of them, called
precursor ions, is selected and further fragmented to generate
MS2 (also called MS/MS) spectra. These second-level ions can be
fragmented even further giving MS3 spectra and so on. The peaks
and their intensity in the resulting spectrum depend not only on
the structure of the chemical molecule that is being fragmented,
but also on the experimental conditions, that is the instrument
used, the collision energy, the selected precursor ion and the
ionization mode, as it is illustrated in Fig. 1.

Once the mass spectrum is obtained, it is matched against the
content of spectral databases of reference compounds in order to
retrieve its structure. Various chemical databases provide spectra
data of metabolites7 such as Human Metabolome Database,
METLIN, MassBank, and mzCloud7. Certain databases are focused
on the metabolites of specific organisms, such as the Human
Metabolome Database, or on specific molecular classes, such as the
LIPID MAPS Structure Database, while others have greater cov-
erage such as METLIN. However, despite the intense ongoing
efforts to map the metabolome of various organisms, existing
databases cover only a small percentage of the actual metabolites
that occur in organisms. Particularly for humans, it is estimated
that less than 10% of metabolites have experimental reference mass
spectra8, which means that the current practice cannot identify a

large percentage of the molecules that are found in human tissues.
It is estimated that in untargeted metabolomics studies less than
2% of the detected spectral features are identified8.

An approach that has been developed to address the problem
of limited amount of experimental spectra data is in silico frag-
mentation which essentially attempts to solve the inverse pro-
blem. This approach aims at enhancing the content of existing
spectra databases with computed spectra of known molecular
structures which have no available experimental spectra. Essen-
tially this approach seeks to close the gap between spectral and
structural databases. In silico fragmentation tools predict the
fragmentation process either relying on fragmentation rules or
using combinatorial/optimization-based approaches or employ-
ing machine learning methodologies6,9,10. Fragment prediction
methods have been especially successful for predicting spectra of
peptides, however, fragmentation of small molecules into ions is a
more stochastic process that is especially challenging to predict6.

A more direct approach to the structure elucidation problem
would be to reconstruct the underlying chemical structures given
spectra features. Such an undertaking though is computationally
challenging as it requires the generation of a molecular structure.
Indeed, this approach is performed as a two-step process to cir-
cumvent the need for generating molecular structures: A machine
learning model is used to map the spectrum to an intermediate
vector representation such as a molecular fingerprint. Once the
fingerprint is obtained then it is matched against the content of
structural databases in order to identify candidate molecular
structures with similar fingerprints11,12. This method though will
also fail for molecules that are not present in the structural data-
base and especially for novel molecules. A more direct association
of spectra features with molecular structures through a rule-based
approach has also been explored13. More specifically, this approach
extracts rules, that associate spectra features with substructures,
from spectra databases aiming at a partial structure identification.

An additional concept that has been introduced to facilitate the
interpretation of mass spectra, and subsequently structure iden-
tification, is that of fragmentation trees6,14. A fragmentation tree is
derived computationally from tandem mass spectra using opti-
mization algorithms such that its nodes correspond to fragments
or precursor ions and the edges correspond to fragmentation
reactions. Fragmentation trees have various uses such as identi-
fying the molecular formula and clustering molecules by aligning
fragmentation trees15. They have also been used for the prediction
of molecular fingerprints that are subsequently used to search
structural databases16,17. The information in a mass spectrum is
thought to be insufficient to explain the fragmentation process by
itself while the fragmentation tree provides complementary
information by elucidating the dependencies between the mass
peaks6. However, fragmentation trees are expensive to compute
and often approximations are preferred for practical applications.

A more thorough review of existing methodologies for meta-
bolite identification, including in silico fragmentation tools, fin-
gerprint prediction, and fragmentation trees, was recently
presented by Nguyen et al. with a focus on machine learning
(ML) approaches6. It should be noted here that early ML-based
approaches were built on shallow ML models, such as Support
Vector Machines (SVMs) and Random Forests (RFs), applied
either on features extracted from the mass spectra or the frag-
mentation trees, and also kernel-based methods to determine
similarity between either spectra or fragmentation trees. However,
lately, there is a growing interest in exploring Deep Learning (DL)
architectures for the development of computation tools to sup-
port structure elucidation. There have been efforts to learn
spectra embeddings that can be subsequently used to assess
spectral similarity when searching in spectral databases12,18.
Additionally, there are DL-based methodologies for clustering
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Fig. 1 MS/MS spectra from different experimental conditions for the same molecule.MS/MS spectra obtained through different experimental conditions
from the same molecule (approximate spectra based on data obtained from the Human Metabolome Database). a Precursor ion: [M+H]+, NCE: 35%,
Instrument: HCD. b Precursor ion: [M+H]+, NCE: 130%, Instrument: HCD. c Precursor ion: [M+H-Br]+, NCE: 35%, Instrument: HCD. d Precursor ion:
[M+H+2i]+, NCE: 35%, Instrument: IT-FT.
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spectra, either for identifying the compound class12,19 or for
aiding medical diagnosis by differentiating between healthy and
cancerous tissues20. Most DL-based methodologies that operate
directly on spectra data are based on Convolutional Neural
Networks (CNNs) representing the spectrum as a vector that
indicates the intensities of each fragment mass20–22. The CNN
attempts to automatically identify spectra features replacing the
need for manual featurization. Architectures that have adopted
concepts from Natural Language Processing (NLP) have also
emerged representing the mass spectrum as text and the mass
peaks as words18. Due to the limited amount of mass spectra data,
different workarounds have been investigated including hybrid
approaches19, combining statistical ML models and DL archi-
tectures, and approaches based on transfer learning20.

It should be noted that, at the same time, DL-based approaches
are being investigated for identifying protein sequences from mass
spectra in proteomics studies21–23. A noteworthy effort, DeepNovo,
consists of an end-to-end DL architecture for de novo peptide
sequencing from mass spectra22, which is a direct reconstruction of
the peptide sequence from the mass spectra data. Structure eluci-
dation of small molecules though is perceived as a more challenging
problem due to the stochastic nature of the fragmentation process.
On top of that, the structure of small molecules has a graph-like
representation as opposed to the linear nature of a peptide
sequence. Existing approaches essentially attempt to retrieve
molecules from structure databases that have a spectrum similar to
the query spectrum. This method though, cannot identify novel
molecules, that is molecules whose structure currently remains
unknown and therefore they do not exist in chemical databases.

In this paper, we present Spec2Mol, an end-to-end DL archi-
tecture for translating MS/MS spectra to molecular structures.
Spec2Mol is intended for recommending molecular structures that
can explain observed MS/MS spectra. We represent molecular
structures as sequences using the SMILES notation24 and MS/MS
spectra as vectors of fragment intensities. Spec2Mol consists of an
encoder, that learns an embedding for the MS/MS spectrum, and a
decoder that generates the SMILES sequences of the recommended
chemical molecules. Due to the limited amount of available spectra
data, our approach is based on unsupervised pre-training on a large
dataset of unlabeled molecules. In particular, we pre-trained the
decoder as part of an auto-encoder (AE) architecture which is
trained to reconstruct a molecule through its SMILES sequence. The
encoder is subsequently trained such that the spectra embeddings
match the embeddings that the AE has learned. In the following
sections, we discuss the data used to develop and evaluate the model,
the architecture of Spec2Mol, as well as, the evaluation of the model.

The main contributions of this work are as follows:

● To our knowledge, this is the first approach for generating
potential molecular structures from mass spectrometry data
that is not based solely on database retrieval.

● Our method can facilitate database retrieval and addition-
ally de novo molecular structure recommendation.

● Our approach takes advantage of large datasets of
unlabeled molecules using unsupervised pre-training.

● We introduce metrics to assess the similarity of the
generated molecules with the reference ones and we
perform a comparative evaluation with a widely accepted
method that makes use of additional information, that is
fragmentation trees.

Results and discussion
Reconstruction accuracy of the autoencoder. As a sanity check,
we evaluated the ability of the pre-trained AE to reconstruct the
SMILES of the molecules in the testing set of the spectra dataset.

This is performed by comparing the canonicalized input SMILES
and the canonicalized output SMILES and evaluating whether
there is an exact match between the two. The autoencoder is
trained by minimizing the mean reconstruction error on a single-
character level for each input sequence. Therefore, the recon-
struction accuracy is estimated on a single-character level, by
comparing the correct character in the target sequence with the
most probable character in the decoder RNN’s output at each
position. It should be noted, that the reconstructed SMILES, as
well as neural fingerprints derived from SMILES25–27, has been
successfully used in similarity search and have been found to be
more informative, when compared to molecular fingerprints.

The AE was able to correctly reconstruct the SMILES sequence
for about 93.3% of the NIST molecules. This is very close to the
reconstruction rate of the AE on a held-out test set which was
94.95%. This demonstrates that the pre-trained model has been
trained on a diverse set of molecules and therefore it is able to
handle the large variability of the molecules in the NIST dataset.

Spec2Mol performance evaluation. Spec2Mol generates a set of
recommended molecular structures given MS/MS spectra. Our
evaluation focuses on assessing the similarity between the gen-
erated structures and the reference molecular structure from the
NIST dataset. We recall here that the information in an MS/MS
spectrum may not be sufficient to fully reconstruct the molecular
structure. It is possible that more than one molecular structures
may explain a given spectrum. For that reason our analysis has
been focused on assessing whether the model has learned to
identify key features in the molecular structure from the mass
spectra rather than identifying the exact same structure with the
reference molecule from the NIST dataset.

For the evaluation of the model, we first perform a coarse-level
comparison taking into account physicochemical properties and
more specifically the molecular weight and the element
composition of the molecule. Next, we assess molecular similarity
at the substructure level. In particular, we compute the fingerprint
similarity as well as the maximum common substructure between
the generated structures and the reference structure. The
specifications for each metric are given below. We evaluate
the overall performance in the entire test set as well as
the performance of the model when not all four required spectra
are available as input. Additionally, we assess the contribution of
each of the two strategies for generating the recommended
structures.

● Physiochemical attributes: A property of special interest is
the molecular weight since it is directly reflected in the
mass spectrum. In particular, the spectra indicates the mass
of the fragments and therefore the mass of the original,
non-fragmented, molecule can be approximated more
easily given the mass spectra as opposed to determining
the composition or the structure of the molecule. We
record the difference between the molecular weight of
the generated structures and the reference structure and we
report the relative average-minimum difference, that is, the
average-minimum difference over all the predicted struc-
tures divided by the average molecular weight of the
reference structures (DMWmin). We also report the
average-average difference over all the predicted structures
divided by the average molecular weight of the reference
structures (DMWavg). Additionally, we also evaluate
whether the model is able to identify the element
composition of the molecule. In particular, we assess
whether the atom species that are present in the reference
molecule have been identified in the predicted structures
ignoring the numbers of atoms for each atom species. More
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specifically, for each atom species we report sensitivity and
specificity for detecting the presence of this species. In
order to account for discrepancies in the number of atoms
per atom species, we also report the difference between the
molecular formulas of the predicted structures and the
reference structure (DMF). We define the distance between
two molecular formulas as the number of atoms that differ
between two molecules when accounting for the atom
species and the number of atoms for each species (without
including hydrogen atoms). We report the minimum
distance over all predictions divided by the average number
of heavy atoms (DMFmin) as well as the average distance
over all predictions divided by the average number of heavy
atoms (DMFavg). The exact mathematical formulas for the
calculation of the DMW and DMF are provided in the
supplementary material (Supplementary Methods 3).

● Fingerprint similarity: Fingerprints are vector representa-
tions of chemical molecules, which indicate the presence of
certain substructures in the molecule, and are widely used
as an efficient way to judge similarity between molecules28.
We extracted fingerprint representations based on the
Morgan algorithm29 using the RDKit toolkit30 and used the
cosine coefficient to assess similarity (Fngpcosine). The
Morgan fingerprints are computed for radius 2 and 1024
bits. We report the maximum fingerprint similarity among
all model predictions when compared with the reference
structure as well as the average similarity of all predicted
structures.

● Maximum common substructure (MCS): We computed
the MCS between two molecular structures using the
RDKit toolkit30 with the following constraints: the
substructure match respects the atom species, the bond
orders, as well as the ring bonds, that is ring bonds are only
matched to ring bonds. From the computed MCS we
extracted the following three metrics: i) MCS ratio, ii) MCS
Tanimoto, and iii) overlap coefficient, which are defined as
follows, respectively: MCSratio ¼ aMCS

ar
, MCStan ¼ aMCS

arþap�aMCS
,

MCSovrlp ¼ aMCS
minðar ;apÞ, where aMCS denotes the number of

atoms in the MCS, ar the number of atoms in the reference
compound, and ap the number of atoms in the predicted
compound. For each metric, we report the maximum value
as well as the average value over all predictions.

Table 1 summarizes the evaluation of the effect of missing data
in the predictions. More specifically, we present the evaluation
metrics on four different partitions of the test-set depending on
the number of the available spectra. We recall that the input to
the model consists of four different spectra obtained through
different specifications. However, not all molecules in the dataset
have all four spectra available. Our results indicate that missing
only one spectrum does not severely impact performance, but
performance starts to degrade when less than three spectra are
available. This is expected as the number of spectral peaks that
will be observed in one spectrum (or two) most likely will not
be adequate to reconstruct the molecular structure. It should
be noted though that other factors, such as the molecular size, are
also potentially contributing to the variability observed among
the different subsets of the test-set. The set of molecules with
three available spectra for example, includes molecules that on
average have smaller molecular weight and shorter SMILES
representation. The model appears to have the highest perfor-
mance on this subset of the test-set since reconstructing shorter
SMILES is expected to be less of a challenge for the decoder. The
evaluation of the model on the training set is presented in the
supplementary material (Supplementary Note 1, Table S3).

Next, we evaluate the effect of the strategy that is used to
generate the recommended molecules. The analysis is shown in
Table 2. We recall that the recommended structures are obtained
either directly through decoding the computed embeddings or
indirectly by identifying the closest embeddings from the pre-
trained dataset. In particular, we are comparing the top-20
predictions, as ranked using the molecular weight criterion,
through (i) only the direct strategy, (ii) only the indirect strategy,
and, (iii) the two strategies combined. According to the results,
the indirect approach, which generates molecules through
decoding the closest embeddings from the pre-trained dataset
appears to have a larger contribution to the effectiveness of the
method to generate relevant structures. However, combining the
two strategies appears to slightly improve performance.

Overall, the results illustrate that the predicted structures have a
molecular weight that is significantly close to the molecular weight
of the reference compound. This is not surprising as the generated
molecules are ranked based on the molecular weight. The
molecular formula though seems to also be considered close to
the reference one. The model was able to retrieve the exact
structure for a small percentage of the test cases (7%) while it

Table 1 Effect of missing spectra in the model input.

metric full dataset 4 spectra 3 spectra 2 spectra 1 spectrum

# test cases 1000 413 65 483 39
Avg. MW 275.3 287.5 242.6 267.4 300.3
Avg. SMILES length 34.5 37.0 28.5 32.5 43.6
correct molecules (↑) (%) 7.0 9.2 15.2 4.1 5.1
correct formulas (↑) (%) 39.3 45.1 46.9 34.8 20.5
DMW% (↓) Min 2.3 1.6 0.5 2.4 9.5

Avg 6.3 5.5 3.9 6.6 14.6
DMF% (↓) Min 9.2 6.5 8.1 10.8 21.1

Avg 21.7 17.8 24.5 24.0 32.9
Fngpcosine (↑) Max 0.53 0.56 0.57 0.50 0.45

Avg 0.36 0.39 0.38 0.34 0.31
MCSratio (↑) Max 0.68 0.70 0.72 0.66 0.57

Avg 0.51 0.53 0.55 0.50 0.43
MCStan (↑) Max 0.55 0.58 0.60 0.53 0.44

Avg 0.38 0.39 0.41 0.36 0.30
MCScoef (↑) Max 0.71 0.73 0.74 0.69 0.63

Avg 0.54 0.55 0.58 0.53 0.48

Evaluation metrics when considering the entire test set and the test-data partitions that have available all 4, only 3, only 2, and only 1 spectrum. The arrows show the desired trend for each metric.
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identified the exact molecular formula for a considerably larger
percentage (26%). The performance of the model was significantly
better when at least 3 out of the 4 input spectra were available.

Regarding the structural similarity between the predicted
structures and the reference structure, the obtained values for
the respective metrics demonstrate that the structures share
common substructures. More specifically, the metrics that are
based on the MCS between the reference and the predicted
structures indicate that the common substructure is, on average,
nearly 70% of the size of the reference structure for the closest
structure and more than 50% for the average prediction. This
result is in agreement with the high correlation between the
molecular fingerprints.

Regarding the ability of the model to identify the presence of
each atom species in the molecular structure, it varies significantly
and it correlates with the frequency of each atom species in the
training dataset, as it is shown in Table 3. More specifically, the
model has very high sensitivity for nitrogen (N) and oxygen (O)
which are the most common atom species in the dataset
(excluding carbon which is not included in this analysis as it
is present in all molecules). However, the specificity for oxygen is
significantly lower than that of nitrogen which means that there is
a significant number of false positives for oxygen compared to
nitrogen. Regarding the rare atom species, the opposite
phenomenon is observed: specificity is significantly high while
sensitivity is low. This means that for the rare species there is a
very small number of false positives which is expected as these
atoms are under-represented in the training set. However,
sensitivity is at least 0.5 for all atoms, which shows that the
model is able to capture the presence of rare atoms quite well
considering that some atom species are severely under-
represented in the training set.

Finally, we investigated the effect of the molecular weight as
well as the presence of heteroatoms on the ability of the model to
identify the exact structure or the exact molecular formula. More
specifically, we divided the test set molecules into those that
have molecular weight (MW) less than 300Da and those that have
molecular weight greater than or equal to 300Da (the average
molecular weight in the test set is 275Da). Furthermore, we
created four categories based on the presence of heteroatoms: (1)
molecules that have only C and O, (2) molecules in which N is
present, (3) molecules in which S is present, and, (4) molecules in
which a halogen (one of Br, Cl, F, I) is present. Table 4
summarizes this analysis. The model is able to identify the atom
species and atom counts for almost half of the molecules (45.4%)
with MW less than 300Da and for more than 60% of the
molecules that contain only C and O (63.6%). The higher
molecular weight as well as the presence of atoms that are under-
represented in the training set (S and halogens) degrades the
ability of the model to identify the molecular structure or
formula.

Figure 2 shows a few examples of successful cases with the
model correctly identifying key substructures such as rings and
long chains and the presence of rare atoms and functional groups.
Given the vast space of possible molecular structures, these cases
demonstrate that the model has indeed learned to associate
spectra features with molecular structures.

We also identify two general scenarios where the model has
difficulty in predicting relevant structures: (1) Molecules with
large rings and (2) Molecules that have poor-quality spectra. An
example of the first case is illustrated in Fig. 3. We believe this is
because molecules with large rings are significantly under-
represented in the dataset that was used to pre-train the decoder.
Also, it is hard to generate a valid SMILES sequence for molecules
with very large rings. Regarding the second case of poor quality
input spectra, it includes cases where there is a very small number
of peaks in the spectra and therefore not adequate information to
reconstruct the SMILES sequence.

Comparative evaluation. In order to perform a comparative
evaluation, we have used SIRIUS 431, which offers multiple
functions including chemical formula, as well as molecular
structure, identification from mass spectra. SIRIUS’ structure
elucidation method, called CSI:FingerID, is a database retrieval
method16. It relies on Support Vector Machines (SVMs) for
predicting a molecular fingerprint and subsequently compares the
predicted fingerprint against those of a reference database in
order to identify candidate structures. The input to the SVM is
the MS/MS spectrum along with the corresponding computed
fragmentation tree. CSI:FingerID has shown superior perfor-
mance when compared to other existing tools for the automatic
identification of molecular structures from spectra data. In par-
ticular, it was the best-performing method in the Critical
Assessment of Small Molecule Identification (CASMI) contest for
2016 and 201731. However, the performance of this method
degrades significantly for cases that are not covered in the
training set31. Additionally, the dependence of CSI:FingerID on

Table 3 Sensitivity and specificity for detecting the presence of each atom species in the entire test set, having as reference the
frequency of each species in the training spectra dataset.

O N S Cl F Br P I

Sensitivity 0.94 0.86 0.50 0.68 0.48 0.79 0.53 0.51
Specificity 0.50 0.76 0.96 0.91 0.92 0.98 0.99 0.99
Frequency (%) 85.4 71.5 18.4 15.2 11.5 7.5 2.5 1.4

Table 2 Effect of the molecule generation strategy.

Metric Direct Indirect Combined

Correct
molecules (↑)

(%) 0.8 6.9 7.0

Correct formulas
(↑)

(%) 26.1 28.0 39.3

DMW% (↓) min 3.1 4.4 2.3
avg 11.6 9.3 6.3

DMF% (↓) min 10.4 11.9 9.2
avg 24.2 22.4 21.7

Fngpcosine (↑) max 0.46 0.53 0.53
avg 0.33 0.36 0.36

MCSratio (↑) max 0.65 0.66 0.68
avg 0.50 0.51 0.51

MCStan (↑) max 0.50 0.55 0.55
avg 0.34 0.38 0.38

MCScoef (↑) max 0.68 0.71 0.71
avg 0.53 0.56 0.54

Comparative evaluation of the top-20 predictions using the direct strategy, the indirect strategy,
and the two strategies combined. The arrows show the desired trend for each metric.
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fragmentation tree data adds significantly to the running time of
this method.

We run SIRIUS on the same test set we developed for
evaluating Spec2Mol. As input, we provided SIRIUS with the
positive mode spectra (that is [M+H]+ at low and high energy)
as they were selected for Spec2Mol. The spectra from negative

ions were not used since a single run for SIRIUS accepts spectra
from a single precursor which may be obtained through different
energies. As 53 test cases out of the 1000 cases of the test set did
not have any positive mode spectra and therefore the test set used
for the comparison consists of 947 cases. As a side note, SIRIUS
performs structure elucidation after identifying the molecular

Table 4 Effect of molecular weight and presence of heteroatoms.

MW< 300 MW≥ 300 Only C and O N present S present Halogen present

Number of cases 668 332 184 769 199 318
Exact structure (%) 8.5 3.9 9.8 6.1 5.5 5.7
Exact formula (%) 45.4 27.1 63.6 34.1 23.6 25.8

Fig. 2 Examples of cases where Spec2Mol successfully identified key substructures. Examples of the most likely predicted structures from Spec2Mol
along with the cosine similarity values with respect to the original reference structures.
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formula. The number of molecular formulas to be explored is one
of the parameters of the tool which we set to 10. An additional
parameter is the reference database which we set to PubChem,
which is the largest available source offered by SIRIUS. Finally,
SIRIUS allows the user to define the set of chemical elements to
be considered when performing the search which we set to C, H,
O, N, S, Cl, F, Br, P, and I. It should be noted that expanding the
pre-defined set of atoms (C, H, N, O, P, S) to account for more
rare atoms, which were present in the NIST dataset, significantly
increased the running time.

On the test set of 947 cases, SIRIUS found the correct formula
for about 98% of the test cases while it found the correct structure
for about 67%. For 6 cases out of 947, SIRIUS did not return any
structures. It should be highlighted that the CSI:FingerID method
from SIRIUS has been trained on the NIST dataset (NIST v17).
As it is discussed in the original study on the SIRIUS tool, the
presence of spectra for a given test structure in the training set
can significantly boost performance even if the spectra that are
used when testing is not the exact same spectra as the ones used
in training31.

The comparative evaluation between SIRIUS and Spec2Mol
was performed on the cases where SIRIUS failed to find the exact
molecular structure. Since Spec2Mol is intended for recommend-
ing potential molecular structures given mass spectra, our
intention here is to evaluate how relevant the recommendations
are, when compared to a widely accepted and state-of-the-art
method like SIRIUS. By focusing our comparison on the cases
where SIRIUS did not find an exact match, we are essentially
evaluating the relevance of the recommended structures when an
exact match is not found, which points to the case of novel
molecules. In particular, we compared SIRIUS and Spec2Mol on
the 307 cases, for which SIRIUS failed to find an exact match,
using the metrics based on fingerprint similarity and MCS. It
should be noted here that failure to identify the exact structure
includes cases where SIRIUS either did not return any structure
as well as cases where the reference structure was not among
the predicted structures. The results are summarized in Table 5.
The comparison of the full test set (including cases where SIRIUS
found the exact structure) is provided in the supplementary
material (Supplementary Note 2, Table S4). According to our
analysis, the structures recommended by Spec2Mol are at least as
relevant as the ones recommended by SIRIUS. More specifically,
Spec2Mol achieved slightly better cosine similarity for the closest
structure, while almost all metrics based on the MCS are
improved in the case of Spec2Mol. This outcome is
especially interesting and encouraging, given that Spec2Mol is
an end-to-end approach that does not take into account any prior
knowledge. Spec2Mol generates potential molecular structures by
solely looking at raw MS/MS spectra. On the other hand, the
combination of CSI:FingerID and SIRIUS attempts to retrieve the
exact molecular structure from a reference database taking as

input the computed fragmentation tree on top of the raw mass
spectra. It should be stressed that a direct comparison of the two
methods is not possible since they differ significantly: CSI:Fin-
gerID uses predicted fingerprints from the MS/MS spectrum of an
unknown compound to find the best match against a chemical
structure database, while Spec2Mol aims for de-novo generation
of potential molecular structures rather than attempting the best
match retrieval from a database. Therefore, Spec2Mol is useful
in situations where a reference database is not available or CSI-
FingerID cannot find an exact match. For that reason, the
comparison is performed on the cases where CSI-FingerID failed
to identify the exact structure, and the metrics used aim at
evaluating molecular similarity rather than exact matches.

Still, the outcome of our comparative evaluation demonstrates
that the molecular structures generated by Spec2Mol are at least
as successful as the ones obtained by state-of-the-art tools when
considering novel molecules despite the fact that Spec2Mol relies
solely on raw MS/MS spectra.

Conclusions
Elucidating the structure of chemical compounds is a funda-
mental, but cumbersome, task in metabolomics studies, as well as
in chemical analysis in various domains including drug devel-
opment and forensics analysis. The available computational tools
for aiding structure elucidation are based on fragment annotation
and database retrieval methods. This approach fails to identify
molecules that are not present in the reference database which, in
practice, may correspond to a considerably large percentage of the
query spectra. We have developed Spec2Mol, an end-to-end deep
learning architecture for directly generating molecular structures
(as SMILES sequences) from the input MS/MS spectra. Spec2Mol
is based on an encoder-decoder architecture that generates
molecular SMILES sequences, given mass spectra. While the
proposed architecture supports the retrieval of molecules from a
database that best matches the input spectra, it can also generate
new molecules that have not been seen before in any dataset. Our

Fig. 3 A case where Spec2Mol did not identify relevant structures. An example where Spec2Mol failed to identify a similar structure for a reference
compound containing a large ring.

Table 5 Comparative evaluation between SIRIUS and
Spec2Mol, based on structural similarity between the
recommended structures and the reference structure, on the
subset of the test set where SIRIUS failed to identify an
exact match.

Method Fngpcosine MCSratio MCStan MCScoef
SIRIUS Max 0.49 0.65 0.54 0.66

Avg 0.33 0.49 0.35 0.49
Spec2Mol Max 0.49 0.66 0.53 0.69

Avg 0.34 0.50 0.36 0.53
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analysis demonstrates that the recommended molecules are
structurally, and physiochemically, similar to the reference
compounds, suggesting that the latent space has indeed learned
informative associations between the spectra and the structural
features. When compared to an existing method that depends on
the fragmentation tree annotation, on top of the raw spectra for
molecule identification, Spec2Mol performed on par for the task
of recommending potential molecular structures. Our results
indicate that the proposed approach of recommending de-novo
molecules directly from input MS spectra provides critical
insights into the characteristics of the underlying molecular
structure, and, can complement existing tools especially when the
current tools fail to identify the right molecule from existing
databases. We speculate that incorporating prior knowledge in
the model, for example in the form of fragmentation trees, can
further boost the performance of the proposed method. Further,
even though the main focus of our work is on de-novo generation
of molecules given an input spectrum, the indirect method pro-
posed by our paper can be extended to identify the correct
molecule from a library of a plausible set of molecules, similar to
the work proposed by Lim et al.32. A substructure-constrained
similarity search or the nearest neighbor search on the embed-
dings of the molecule library with the spectra embedding as a
query can be used to identify the best candidates from a relevant
library.

Methodology
Spec2Mol consists of an encoder that learns spectra embeddings
and a pre-trained decoder, which has been trained as part of an
autoencoder architecture. The autoencoder has been trained on a
large set of molecules (molecule dataset discussed in section
Molecule dataset), while the encoder has been trained on a set of
molecules for which MS/MS data are available (spectral dataset
discussed in section Spectral dataset).

Datasets
Molecule dataset. The autoencoder, from which the Spec2Mol
decoder has been derived, was pre-trained on about 135 million
molecules which were sourced from the PubChem33 and ZINC-
1234 datasets. The structures of these molecules are represented
using the SMILES notation24. Stereochemistry information was
not indicated in the SMILES representation. The reason for not
accounting for stereochemistry is that, in the subsequent task of
spectra translation, recovering stereochemistry information from
the mass spectra is especially challenging or possibly even
impossible and therefore it is out of the scope of this work.

Spectral dataset. The mass spectra data for training the encoder
has been derived from the NIST Tandem Mass Spectral Library
2020 which is a commercial dataset of more than 1M spectra
obtained from more than 30K compounds35,36. The largest per-
centage of the NIST dataset (60%) corresponds to metabolites (6K
human metabolites and 8K plant metabolites) while a significant
amount of the data is drugs (20%). The rest corresponds to
peptides, lipids, forensics, surfactants/contaminants and sugars/
glycans. The dataset contains low and high resolution MS/MS
spectra, obtained through different fragmentation techniques.
Each molecule in the dataset may be associated with more than
one spectra which may be obtained through different experi-
mental conditions, that is, different fragmentation instrument,
precursor ion, ionization mode, collision energy or fragmentation
level (MS2, MS3 or MS4). Statistics of the dataset regarding
common molecular properties (e.g. molecular weight, number of
atoms and number of rings), as well as the atom species coverage,

are presented in the supplementary material (Supplementary
Methods 1, S1.2, Tables S1-S2).

Data processing and representation. In order to minimize var-
iations in the spectra data, due to differences in the experimental
conditions, we chose to keep certain variables in the dataset fixed.
Details on the filtering process that we followed for constructing
the spectral dataset are provided in the supplementary material
(Supplementary Methods 1, S1.1). More importantly, we used only
the spectra that are obtained through the most common precursor
ions, that is [M+H]+ and [M-H]-. For each precursor ion, we
used two spectra, one obtained using low collision energy (35%
NCE) and one with high collision energy (130% NCE). Therefore,
each instance in the dataset we constructed is characterized by four
MS/MS spectra derived from two different precursor ions and two
energy levels. The four spectra constitute the input to the spectra
encoder as described in paragraph 3.2. It should be highlighted
though, that not all molecules in the NIST dataset have experi-
mental data for the specific precursors and energy levels. However,
we have allowed cases with missing data in the dataset and the
missing spectra are represented as empty spectra, that is spectra
with no peaks, in an attempt to develop a model that is robust to
missing data. Therefore, the model is being trained and evaluated
on cases that may not have available all four spectra.

Data representation. We represent each MS/MS spectrum as a
vector in which each bit corresponds to a specific mass-over-
charge (m/z) value, representing the m/z value of the recorded
fragments, while the value of each bit corresponds to the intensity,
or otherwise frequency, of the fragments that have been recorded
with that specific mass-over-charge value. We have normalized the
intensity values by dividing with the maximum intensity over all
the vector bits of a given spectrum. More details on the repre-
sentation of the MS/MS spectra are provided in the supplementary
material (Supplementary Methods 1, S1.3). Regarding the mole-
cular structures, we represent them using canonical SMILES
without indicating stereochemistry information.

Data augmentation. The variability in the spectra for a given
molecule opens up the possibility for data augmentation. In
particular, although some spectra from the same molecule may
differ significantly, as shown in Fig. 1, in many cases the obtained
spectra are closely related. One such case is when the collision
energies that are being used are relatively close.

In order to augment the dataset, for each instance in the training
set we are creating an additional training instance by slightly
perturbing the collision energy in all four spectra. In particular, each
spectrum, out of the four spectra that are used to represent an
instance in the dataset, is replaced with a spectrum that has the
closest collision energy in the dataset while all other parameters
(precursor ion, instrument) are shared. More information is provided
in the supplementary material (Supplementary Methods 1, S1.4).

Data partition. After the data filtering process, the acquired
dataset consists of 23K molecules, each one of them is asso-
ciated with four MS/MS spectra, or more precisely, up to four
MS/MS spectra given that there are cases with missing spectra.
This dataset was partitioned into a training, a validation and a
test set with the validation and test set having about 1K
molecules each. For the test set specifically, we used fingerprint
similarity, based on the Tanimoto coefficient28, in order to
ensure that no test molecule is either in the train or in the
validation set. The validation set was used to select the model
hyper-parameters and the test set was used to evaluate the
performance of the model.
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Spec2Mol architecture. Spec2Mol uses an encoder-decoder
architecture for recommending molecular structures from MS/
MS spectra. The Spec2Mol encoder generates spectra embeddings
while the decoder reconstructs the SMILES sequence from a
spectra embedding. The encoder and the decoder have been
trained separately as it is shown in Fig. 4. First, the decoder is
trained as part of an autoencoder architecture for reconstructing
the SMILES sequence from a SMILES embedding. Next, the
spectra encoder is trained such that the learnt spectra embeddings
match the corresponding SMILES embeddings. Finally, for
making inference on unseen cases, Spec2Mol uses the spectra
encoder to obtain the spectra embedding which is subsequently
used in order to decode potentially novel molecules and also to
retrieve molecules from the pre-training dataset.

The specifications for training each model are given in the
following paragraphs while more details on the architectures of
the models, hyperparameters, and training parameters are
provided in the supplementary material (Supplementary
Methods 2).

Pre-training the AE on chemical structures. The autoencoder is
trained on a translation task where a randomized input SMILES is
translated into its corresponding canonical SMILES, similar to the
work of Winter et al25. The encoder and the decoder of the AE
are both based on gated recurrent units (GRU) which is a

variation of the standard long short term memory (LSTM)
models, that are commonly used for learning sequence repre-
sentations, with fewer parameters. The details regarding the
autoencoder architecture are in the supplementary material
(Supplementary Methods 2, S2.1).

Training the spectra encoder. The spectra encoder is trained in a
supervised manner such that the learned spectra embeddings are
the same as the SMILES embeddings that the AE has learned.
More specifically, the input of the spectra encoder consists of the
four spectra that have been pre-selected to represent each mole-
cule. The spectra encoder is based on 1-D CNNs and in particular
consists of two 1-D CNN layers and two fully connected layers.
The four spectra are represented as 4 discrete vectors which are
fed into the 1-D CNN as data from four different channels. Each
channel corresponds to a specific precursor ([M+H]+ or [M-H]-)
and energy level (low or high). If any of the required four spectra
are not available, then the input to the respective channel is an all-
zeros vector. The output of the spectra encoder is a 1-D vector
which is the latent representation of the spectra in the embedding
space. The model is trained such that the distance (root mean
square error) between the latent representation that is learned by
the spectra encoder and the latent representation that is obtained
from the pre-trained SMILES encoder is minimized. Details
regarding the architecture and training of the spectra encoder are

Fig. 4 Spec2Mol architecture. The Spec2Mol model consists of a spectra encoder and a SMILES decoder which have been trained separately but share the
same embedding space. a The AE is pre-trained to translate from a random SMILES to the canonical SMILES string. b The spectra encoder is trained to
learn the same embedding as the SMILES encoder. c During inference, the spectra encoder and the SMILES decoder of the pre-trained model are used to
translate spectra into molecular structures.
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provided in the supplementary material (Supplementary Meth-
ods 2, S2.2).

Recommending molecular structures for unseen spectra.
Spec2Mol provides as output molecular structures that can
potentially explain the observed spectra peaks. The recommended
molecules for unseen spectra are obtained using two strategies: a
direct and an indirect molecule generation strategy. The direct
molecule generation strategy generates molecular structures using
the SMILES decoder from the computed MS/MS embedding.
Multiple SMILES are generated for each MS/MS embedding using
a pure sampling strategy37, and subsequently filtered in order to
retain only the valid ones, i.e., the sequences that are in accor-
dance with the SMILES syntax. The indirect strategy retrieves
molecular structures from the dataset that was used for pre-
training the AE based on the distance in the embedding space.
More specifically, for each MS/MS embedding we find the closest
embeddings from the pool of molecules used to pre-train the AE
and decode those embeddings into SMILES sequences.

The predicted molecules obtained through these two strategies
are combined and ranked based on their discrepancy from the
expected molecular weight. The molecular weight of the under-
lying chemical structure is easily inferred from the mass spectrum
and therefore in this work we consider it as known. The
molecular structures that have molecular weight closer to the
reference weight are highly ranked. The top-20 ranked predic-
tions are returned to the user.

Data availability
The spectra dataset used for training and evaluating the model cannot be made publicly
available as it is a commercial dataset.

Code availability
The code is available at https://github.com/KavrakiLab/Spec2Mol.
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