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Deconstructing allostery by computational
assessment of the binding determinants of
allosteric PTP1B modulators
Adele Hardie1, Benjamin P. Cossins2,4, Silvia Lovera3 & Julien Michel 1✉

Fragment-based drug discovery is an established methodology for finding hit molecules that

can be elaborated into lead compounds. However it is currently challenging to predict

whether fragment hits that do not bind to an orthosteric site could be elaborated into

allosteric modulators, as in these cases binding does not necessarily translate into a func-

tional effect. We propose a workflow using Markov State Models (MSMs) with steered

molecular dynamics (sMD) to assess the allosteric potential of known binders. sMD simu-

lations are employed to sample protein conformational space inaccessible to routine equili-

brium MD timescales. Protein conformations sampled by sMD provide starting points for

seeded MD simulations, which are combined into MSMs. The methodology is demonstrated

on a dataset of protein tyrosine phosphatase 1B ligands. Experimentally confirmed allosteric

inhibitors are correctly classified as inhibitors, whereas the deconstructed analogues show

reduced inhibitory activity. Analysis of the MSMs provide insights into preferred protein-

ligand arrangements that correlate with functional outcomes. The present methodology may

find applications for progressing fragments towards lead molecules in FBDD campaigns.
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The ever-developing experimental methods and automation
in the drug discovery industry have led to the popularity of
high throughput screening1 for discovering molecules that

bind to proteins of interest, a frequent consideration in the early
stages of a drug discovery program. However, the chemical space
of drug-like small molecules (Molecular Weight in the range
350–500 g.mol−1) is estimated to be around 1020–1024

molecules2, making it challenging to put together representative
screening libraries of a reasonable size. Fragment based drug
design (FBDD) is a more efficient strategy that relies on screening
initially lower molecular weight compounds (under 300 g.mol−1).
As the number of unique fragment-sized molecules is much
smaller than that of drug-like small molecules, it is easier to
routinely screen a greater fraction of fragment chemical space3.
Structure-enabled biophysical assay methods4–6 used to screen
fragment libraries (MD mix, high-throughput X-ray crystal-
lography) frequently identify numerous fragments that bind all
over the surface of the protein of interest. Since fragments are
usually weak binders, they only provide starting points for
medicinal chemistry efforts to produce a lead molecule active in
functional assays7. This can be a slow and expensive process, with
an uncertain outcome especially in cases where the fragment
selected for elaboration binds to a site that is distinct from the
active site. In this case it may be difficult to anticipate whether
fragment elaboration will lead to a ligand that affects protein
function through allosteric mechanisms8,9.

Molecular dynamics (MD) simulations provide an approach to
avoid many of the issues associated with biophysical assays10,11.
For instance, fragments can be restrained to their binding sites,
and they can be grown in silico for further analysis before com-
mitting resources to synthesis and assays12. There are multiple
computational methods available to determine the binding affi-
nity of a fragment13–16, but there is a need for protocols that aim
to assess the allosteric effects of fragment. Computational meth-
ods that do so would be useful to prioritise selection of fragments
for follow-up elaboration.

Markov State Modelling (MSM) has been used successfully to
model the conformational dynamics of proteins17–22. An MSM is a
transition matrix that describes the conditional probability of a
system transitioning to some state j given that it is in state i, after a
given lag time τ23–25. These are then combined to give the dis-
tribution of protein conformations, e.g. catalytically active and
inactive. The system is treated as memory-less, meaning that the
transition probabilities only depend on the current state of the
system, and not any previously visited states24. A benefit of MSMs
is that models of protein dynamics can be built efficiently from
multiple short MD trajectories, making use of parallel computing23.
MSMs, as well as other ensemble methods, have been previously
employed to investigate allosteric modulation26–29.

The data available from standard MD simulations might still be
insufficient to explore the complete protein conformation
ensemble, such as short-lived intermediate states. Efforts have
been invested into adaptive sampling protocols to build more
robust MSMs in a unsupervised manner30–32. However it is also
possible to exploit prior knowledge about key protein con-
formational states to generate pathways for conformational
transitions between them22,33, using for instance steered MD
(sMD) simulations. sMD introduces a restraint on the system,
biasing it towards a certain conformation34,35. Therefore con-
formations that are important to protein dynamics but are not
sampled easily through equilibrium MD simulations can be
accessed.

Here we propose a joint sMD/MSM protocol, illustrated in
Fig. 1, to evaluate the effect a ligand has on the conformational
ensemble of a protein. In particular, sMD trajectories are not used
directly in the MSMs, but only to push the system towards

desired intermediate states. Shorter equilibrium simulations,
started from conformations achieved via sMD, are employed to
observe transitions from these intermediate configurations, which
then are combined to build an MSM that uncovers a fuller picture
of protein dynamics.

This protocol is tested using protein tyrosine phosphatase 1B
(PTP1B) as a benchmark system. PTP1B is a negative regulator of
insulin signalling36. Inhibition of PTP1B has been proposed as a
therapeutic strategy for type II diabetes treatments37. The protein
enzymatic activity is regulated by the conformations adopted by
the WPD loop that sits above the active site. The WPD loop
adopts two major conformations - open and closed (Fig. 2a). The
closed conformation is catalytically active, as it positions the
catalytic residues in range of the substrate38. The closing and
opening of the loop occurs on multimicrosecond timescales39.
The charged and highly conserved nature of the PTP1B active site
has made it challenging to develop orally bioavailable ligands that
act as competitive inhibitors. Therefore allosteric inhibition of
PTP1B enzymatic activity is an attractive drug design strategy40.

Three experimentally characterised inhibitors (1-3) and a
fragment binder (4) with unknown functional effect were used to
validate the methodology (Fig. 2b). Our protocol successfully
identified 1 as a potent allosteric inhibitor37. 2, a fragment
obtained by deconstructing inhibitor 1 that only shows very weak
activity experimentally was classified as inactive by our protocol.
3, a covalently bound fragment that weakly inhibit PTP1B shows
activity intermediate between 1 and 2 in our protocol41. Fragment
binder 4 is predicted functionally inactive by our approach.
Additionally, we use various protocols to assess the effect of
restraining a ligand orientation on the predicted activity levels of
the protein. Through comparative analysis of the computed
protein conformational ensembles we identify specific protein
conformational states that could be used as blueprints for virtual
screens of novel PTP1B allosteric modulators. Our efforts illus-
trate how our joint sMD/MSM protocol could be used to prior-
itise fragment for hit-to-lead chemistry efforts, and to plan virtual
screening campaigns.

Results
Validation of the sMD/MSM protocol on substrate simula-
tions. Systems including apo PTP1B, PTP1B with peptide substrate
(reference), and PTP1B with substrate and each of the compounds
1-4 (Fig. 2), were put through the sMD/MSM workflow as follows.
Steered MD simulations were performed, steering the WPD loop
and the allosteric network residues, outlined in Supplementary
Figs. 1 and 2. From each trajectory, 100 snapshots evenly sampling
the observed WPD loop conformations were saved and used as
starting points for follow-up 50 ns seeded MD simulations (200
trajectories, 10 μs total sampling time per model). Effects of
prolonging the seeded MD simulations to 100 ns are shown in
Supplementary Fig. 3. Each trajectory was reduced to two features:
WPD loop (residues 178–184) backbone root mean square distance
(RMSD) to closed conformation, and the P loop (residues 214–218)
backbone RMSD to closed conformation (Fig. 3a). Featurised data
of all systems considered here was pooled and clustered into 100
microstates using k-means clustering, an example of which is
shown in Fig. 3b. Implied timescales (ITS) were computed using a
range of lag times between 0.01 and 30 ns (Supplementary Fig. 4),
and the final lag time chosen for all MSMs was 20 ns.
Chapman–Kolmogorov (CK) tests for each MSM are available in
Supplementary Fig. 5.

MSMs were built for all of the systems, using the k-means
cluster centres as states to transition between. From state
transition probabilities, the equilibrium probabilities of each state
were computed. When not visited by a particular system, states
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were manually assigned a stationary probability value of 0. Perron
Cluster-Cluster Analysis (PCCA) of the reference MSM was used
to further cluster the states into two macrostates, referred to as
“active” and “inactive” based on the RMSD of the loops23,25

(Fig. 3b). The metastable state with lower RMSD values
corresponds to the active state, as lower RMSD values correspond
to higher similarity to the crystal structure of PTP1B with the
loop closed. Additionally, the WPD loop RMSD cutoff values for
the metastable states correspond to the RMSD value distribution
during equilibrium MD simulations of PTP1B with WPD loop
closed and open (Supplementary Fig. 2). Active state probabilities
obtained from using PCCA assignments based on other system
MSMs give very similar results and are shown in Supplementary
Fig. 6. The procedure was repeated a hundred times, using the
initial micro- and macrostate definitions, to generate probability
distributions for observing active states for each system (Fig. 3c).

The major conformation for apo PTP1B is the inactive
conformation, in agreement with experimental results that
suggest a low fraction of active states (2.5%)42 (“apo” in Fig. 3c).
Upon substrate binding there is a significant increase in active
conformation probability, in agreement with experimental data42

(“reference” in Fig. 3c). However while NMR measurements
suggest the active conformation dominates PTP1B’s conforma-
tional ensemble when the enzyme is bound to a substrate (87%
population42), the MSM indicates the active state is only formed
25% of the time. Experimental data suggests that activation of
PTP1B by closure of the WPD loop is coupled with a disorder-to-
order transition of helix α7. Owing to the difficulties in reliably
simulating such large-scale conformational changes the PTP1B
model used in the current study is a truncated variant that lacks

helix α7. Experimental evidence shows that a mutant PTP1B-Δ7
lacking helix α7 is about 40% less active than wild-type39. Thus
the incomplete activation of PTP1B in presence of a model
peptide substrate is fully consistent with experimental observa-
tions. The goal of the present protocol is to classify ligands as
allosteric effectors by comparison of relative shifts in active state
populations, for which trends (relative to the reference system)
are sufficient.

Compound 1 is modelled as an inhibitor, while the decon-
structed analogue 2 shows no inhibition. The active state
probability distribution for compound 1 is significantly shifted
towards lower values than that observed for the reference system
(Fig. 3c, “1”), strongly suggesting that compound 1 behaves as an
allosteric inhibitor. This behaviour is consistent with an IC50

value of 1 ca. 8 μM37 reported for compound 1.
Compound 2 is a smaller analogue obtained by truncation of

the aryl-sulfonamide moiety of 1 (Fig. 2b). 2 is reported in
literature as a very weak inhibitor (IC50 ca. 350 μM)37. The initial
results (Fig. 3c “2”) did not show a decrease in active
conformation probability, but rather a broad up-shifted distribu-
tion. Inspection of the MD trajectories used to build the MSM
showed that 2 was only weakly bound and had a tendency to
escape its binding site on a timescale of several nanoseconds,
casting doubts on the reliability of the results obtained by the
protocol. A second MSM was built, this time restraining
intermolecular distances between 2 and N193 and E276 with
weak flat-bottom biasing potentials (See Fig. 4b and methods).
These distance restraints were selected to enforce 2 to adopt a

Fig. 1 The proposed joint sMD/MSM protocol for identifying allosteric modulators. a Steered MD trajectories are used to generate transitions between
protein conformations that are presumed functionally active and inactive for the system of interest. Snapshots from the sMD trajectories are then used as
seeds for a swarm of equilibrium MD simulations. b The resulting ensemble of MD trajectories for multiple states of the protein of interest are clustered
together to generate a consistent definition of microstates for MSM construction. PCCA analysis is used on a reference system to generate a two-state
definition to evaluate the percentage of active state population. c Comparing the probability that the system will be catalytically active with and without the
ligand being investigated allows to model whether it will have an inhibitory effect.
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binding pose consistent with that observed with 1 throughout the
MD simulations. The resulting active state probability distribu-
tion (Fig. 3c, “2r”) was very similar to the reference system,
suggesting a lack of functional effect. Extending simulation time
or number of simulations reduces model error, but does not
suggest inhibitory effect for compound 2r (Supplementary Fig. 3).

The lack of inhibition by compound 2, even when restrained to
the binding pocket, may relate to its reduced interactions with
F280, which has been suggested to be part of the allosteric network
of PTP1B42,43. Compound 1 wraps around the side chain and π
stacks via its thiazole moiety, forcing F280 to adopt primarily an

“up” rotamer (Fig. 4a, d, magenta χ 1 angle ca.−60 deg.). The “up”
rotamer of F280 is observed in the inactive sub-ensemble of PTP1B
“reference” more frequently than in the active sub-ensemble
(Fig. 4c). Compound 2 lacks a arylsulfonamide-thiazole moiety to
wrap around F280, and consequently F280 adopts multiple
rotameric states during the simulations (Fig. 4b, d green). The
most populated “down” rotamer of F280 observed during
simulations of 2r is similar to the major rotamer observed in the
active sub-ensemble of PTP1B “reference” simulations (Fig. 4d
green χ 1 angle ca. −180 deg. and Fig. 4c, orange). Such differences
in behaviour in F280 dynamics are not apparent in crystal
structures of 1 and 2 (PDB IDs 1T4J and 1T48) where F280 adopts
a “down” rotamer exclusively (Fig. 4d, dashed lines).

Covalent tethering of compound 3 contributes to allosteric
effect. Large-scale automated crystallography screening of frag-
ments carried out by Keedy et al. has resulted in a tethered
fragment 3 at a site distinct from that occupied by compounds 1-
2. The fragment is covalently linked to a K197C mutant and
shows 60% maximum inhibition41. A ligand binding at the
K197 site may interact with residues part of the allosteric net-
work, such as Y152 or N19342,43. Therefore, the joint sMD/MSM
protocol was applied to compound 3. The model produced a
down-shift in active conformation probability distribution with
respect to the reference system (Fig. 3c “3”), suggesting an inhi-
bitory effect intermediate between 1 and 2.

In order to further assess the sensitivity of the sMD/MSM
workflow to the effect of fragments, a model for untethered 3, 3u
(with the K197C PTP1B mutant) was built. The covalent linkage
was replaced by a flat-bottomed non-directional distance restraint
to K197C (see Methods). The sMD/MSM produced a broad
active state probability distribution with a median only slighly
shifted down with respect to the reference system (Fig. 3c “3u”).
Comparison of the computed MSM ensembles for 3 and 3u
shows that 3 mainly adopts a “upright” binding pose owing to the
covalent tether (Fig. 5a) that resembles the crystallographic pose
observed for this fragment. This pose enables the fragment
phenol moeity to engage in hydrogen bonding interactions with
K150, a suggested allosteric residue42. By contrast untethered
fragment 3u is more mobile and adopts predominantly a
“sideways” pose (Fig. 5b). This causes the phenol group to
interact with E200, which has not been flagged as a residue of
interest to the allosteric network41–43. The “upright” pose can still
be detected albeit less frequently. These observations suggest that
stabilisation of the “upright” pose could be a plausible design
strategy to elaborate fragment 3 into a non-covalently bound
allosteric inhibitor of wild-type PTP1B.

Finally, the protocol was tested on a fragment of unknown
allosteric effect. Fragment binder 441 was processed using a
similar distance restraint scheme as for 3u. The resulting active
conformation probability distribution for 4 is broad and does not
suggest allosteric inhibition when compared with the reference
system (Fig. 3c “4”). The major binding pose of 4 also
corresponds to a “sideway” binding mode that engage in
hydrogen bonds with E200, (Fig. 5c) on the α3 helix and adjacent
to the binding site of 1 and 2, but further away from the allosteric
residues pictured previously. No minor “upright” pose was
detected in the conformational ensemble. Overall these results
suggest that fragment 4 does not show potential for allosteric
inhibition of PTP1B without further elaboration to enforce
adoption of a different binding pose.

Discussion
The results reported here demonstrate that the joint sMD/MSM
protocol can be used to discriminate allosteric inhibitors from

Fig. 2 Allosteric inhibitors of PTP1B reported in literature. a PTP1B with
WPD loop in active (orange, PDB ID: 1SUG) and inactive (blue, PDB ID:
2HNP) conformations, the substrate peptide (dark green, PDB ID: 1EEO), as
well as the allosteric binders shown in b: 1 (magenta, PDB ID: 1T4J), 2
(green, PDB ID: 1T48), 3 (cyan, PDB ID: 6B95), and 4 (yellow, PDB ID:
5QDL). Except for “apo” system simulations, all simulations included the
peptide substrate as well. b Structures of reported allosteric inhibitor 1 and
its weak analogue 237; tethered inhibitor 341 and non-covalently bound
variant 3u; fragment binder 4 with unknown functional effect41.
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non-functional binders. They provide an inverse view of how this
workflow could be applied in a computer-aided drug design
(CADD) project. The most potent allosteric PTP1B inhibitor
reported in the literature (1) was analysed and subsequently
deconstructed into a less potent variant 237. The MSM model for
1 suggest potent inhibition in agreement with literature data.
Reliable analysis of compound 2 requires the use of restraints to
prevent spontaneous unbinding during MD simulations. The
judicious use of distance restraints provides information on what
interactions are important in the activity of compound 1 and
suggests which vectors could be grown or changed to achieve the
desired functional results. Similarly, compound 3 is deconstructed
into 3u by replacing a covalent link with an in silico distance
restraint, causing a decrease in inhibition. These different stra-
tegies to enforce proximity with PTP1B have a significant effect
on the conformation of the ligand, and the interactions that are
formed with the protein. Compound 4 behaves similarly to 3u,
demonstrating how the protocol may be used to profile com-
pounds with unknown allosteric potential. Further developing 3u
or 4 to behave more like covalently linked 3 (such as moving the
compound 4 acetyl group around the benzene ring) could lead to
increased efficacy as allosteric inhibitors. Through modelling

active state probabilities via MSMs, these binding pose changes
can be related to protein activity.

As the modelled change in active state probability can be
related to local changes in ligand binding site conformations, the
seeded MD trajectories can be mined to select protein con-
formations associated with functional states. In turn, the resulting
conformations can be used for further virtual screening, to find
ligands that could induce the same binding site rearrangements.
For example, the increased activity of compound 1 over com-
pound 2 was related to differences in the preferred conformations
of F280 during the MD simulations. This insight was not
apparent from available X-ray crystallographic data since in
existing crystal structures for 1 and 2 this residue is modelled in
the “down” conformation (PDB IDs: 1T4J and 1T48
respectively)37. The simulations carried out here revealed an
alternative “up” rotamer, which is predominantly adopted in
inactive states of PTP1B. Therefore targeting the F280 “up”
rotamer offers a potential focus for further drug discovery
campaigns.

A key feature of the present approach is the use of steered MD
simulations. Previous studies applying MSMs to study allosteric
modulation have been successful in using unbiased MD

Fig. 3 Markov State Model features and results. a The features used to reduce data dimensionality: backbone RMSD to closedWPD loop conformation, and
Asp181(Cγ)-Cys215(S) distance. b An example of the reference system data, with the microstate clusters overlayed. Each cluster is assigned to a metastable
macrostate via PCCA (magenta - active, orange - inactive). Since all of the data was clustered together for consistency, some of the microstates for a given
system are not populated. cViolin plots of active state probability distributions for each system, after 100 iterations of bootstrapping by resampling. The middle
horizontal bar of each violin plot indicates the median active state probability, while the upper and lower bars indicate the maximum and minimum values. The
dashed line marks the median active state probability of the reference system. The x axis ticks indicate the PTP1B system composition: apo PTP1B (apo), PTP1B
with a subtrate peptide (reference), and PTP1B with compounds 1-4, in addition to the substrate peptide (1-4). 2r stands for restrained compound 2, while 3u
stands for untethered compound 3, i.e. the covalent S-S bond is replaced with a distance restraint.
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simulation data44. However, since the WPD loop of PTP1B
changes conformation on multi-μs timescales39, the simulation
length required to observe a number of transitions that is sta-
tistically significant is unpractical for routine applications. sMD
allows access to intermediate conformations with simulations on
nanoseconds timescales, and the following short seeded MD
simulations leverage parallel computing, reducing answer time
even further. Sampling of relevant conformations, both of the
ligand and the protein, is key to modelling activity probabilities
consistent with experimental data. Steering only the active site
residues does not ensure the allosteric network will adjust to new
conformational states as the WPD loop moves, which causes

inconsistent simulation results in disagreement with reported
literature values (Supplementary Fig. 7). Future work may focus
on extending the enhanced sampling methodologies used to seed
the MSMs to decrease the amount of experimental data required
to ensure that the relevant protein conformational states have
been sampled.

The use of Markov State Modelling enables a decrease of the
time-to-answer by modelling long-time scale dynamics as a set of
shorter timescale simulations that may be run concurrently.
However, obtaining equilibrium distributions require the use of
dimensionality reduction. The MD data is reduced to chosen
features, which in turn are clustered into discrete microstates.

Fig. 4 Protein and ligand conformations for PTP1B with compounds 1 and 2r. a Compound 1 and key residues. b2 and key residues. Distance restraints
indicated by black dashed lines. c F280 χ1 dihedral when PTP1B is active (orange, crosses) and inactive (blue, dots). d F280 χ1 dihedral for PTP1B with
1(magenta, dots) and 2r(dark green, crosses). X-Ray values for structures with compounds 1 (PDB ID: 1T4J) and 2 (PDB ID: 1T48) are shown as
(overlapping) dashed lines.
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Those discrete states in this case were assigned to final “active”
and “inactive” PTP1B states using Perron Cluster-Cluster Ana-
lysis (PCCA), which uses the eigenvectors of the transition matrix
that makes up the MSM to find metastable states45. Tools that
make this procedure simpler and data-driven, such as
VAMPnets31 are in development. The procedure is more complex
when comparing multiple MSMs, rather than focusing on a single
model. It is preferable that both the microstates and the coarser
active/inactive assignments are based on the same feature values
for the models to be more easily comparable. Additionally, to
determine the active and inactive state partition, the assignments
from PCCA of the reference system were used throughout to keep
them consistent. However, seven total MSMs were built in this
case, and any of those assignments could be used. Supplementary
Fig. 6 shows the effects of using different active state definitions
on the active state probability and ranking. The results remain
qualitatively consistent but in general the automated selection of a
suitable macrostate definition is non-trivial. Therefore future
work focusing on automating the MSM construction and analysis
steps is desirable to facilitate deployment of the technology
at scale.

The present study relies on simulation of binders to assess their
potential allosteric effects when bound to different pockets on the
surface of a protein. Future developments of the protocol could be
sought to allow characterisation of the allosteric potential of
cryptic binding sites discovered by molecular dynamics simula-
tions, enabling protein druggability assessments before efforts to
identify binders are initiated21,46.

Overall the present results suggest that it is now viable to
routinely compare numerous Markov State Models to assess the
effects of ligand binding or point mutations on protein function.
Extension of the present sMD/MSM methodology to other drug
target classes is warranted to validate the generality of the
approach for supporting allosteric drug design workflows.

Methods
System preparation. All systems with the WPD loop closed used protein coor-
dinates from PDB ID 1SUG. All open loop protein conformations were from PDB
ID 2HNP, with W179 rotated to match the rotamer in 1SUG using Flare v547. Both
protein conformations included residues 1–282, truncating the α7 helix. Peptide
substrate was taken from PDB ID 1EEO. Missing PTP1B residues and all peptide
ACE/NME caps were added using Flare.

In all cases, E97 was modelled as GLH and H214 as HID, due to predicted pKa

values of 8.59 and 3.71 respectivelly by propka348, for PDB ID 2HNP. Additionally
D181 was modelled as ASH, and C215 as CYM, to match the proton-donor role of
D181 and the coordination of substrate by C215. All system preparation was done
through BioSimSpace49, except in the case of tethered ligand 3. The ff14SB force
field was used for protein residues, with additional phosphate parameters from
Case et al.50. The ligands were parameterised using GAFF2 and the AM1-BCC
charge method. Ligand source PDB IDs and charges are outlined in Supplementary
Table 1. In all cases, TIP3P water was used to explicitly solvate the system as a
cuboid box, with 10Å distance. Na+ ions were added to neutralise the system, and
Na+ and Cl− ions were added to achieve 150 mM NaCl concentration. All systems
were minimised and equilibrated using GROMACS version 2020.251. Minimisation
was carried out over 7500 steepest descent steps. Systems were heated from 0 K to
300 K over 100 ps. Equilibration was performed in the NPT ensemble for an
additional 250 ps.

Tethered ligand parameter setup. To prepare the parameters for covalently
linked 3, the ligand and C197 (atoms SG, CA, CB, HB1-3) residues were obtained
from PDB ID 6B95. CA in C197 was changed to a hydrogen, and the CYS was
renamed to CYX. The PDB file was converted to mol2 format using antechamber52

and the AM1-BCC charge method, with a neutral charge. The atom types in the
mol2 file were set as follows: SB was set to S, CB to CT and HB1-3 to ha. The force
field modification file was generated using parmchk2 and the parameter file was
generated using tLeAP. The information corresponding to the Cys197 residue was
removed from the parameter file, also modifying connectivity and atom number
entries.

Steered MD. Steered molecular dynamics were run with Amber2052 and
PLUMED v2.6.135 via BioSimSpace. The collective variables used are outlined in

Fig. 5 The major ligand conformations during seeded MD of 3 (cyan), 3u
(dark blue) and 4 (yellow). a Covalently linked 3 maintains its crystal
binding pose, and forms hydrogen bonds with D148 and K150. b Replacing
the covalent link with a distance restraint changes the binding mode, and
interactions are mainly formed with E200 instead of K150. c Fragment 4
binds similarly to 3u.
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Supplementary Fig. 1. In all cases the first 4 ps were used to apply the force,
maintaining the CVs at original values. Open to closed loop conformation sMD
was carried out over 150 ns with a 3500 kJ mol−1 force constant, while closed to
open sMD was carried out over 100 ns with a 2500 kJ mol−1 force constant. The
target values for the allosteric residues were taken from 1 μs equilibrium MD
simulations (Supplementary Fig. 2). All simulations were run at 300 K and 1 atm.

Seeded MD. 100 snapshots were extracted from each sMD trajectory (200 total per
model), equally sampling the WPD loop RMSD range, using cpptraj v4.25.6
(AmberTools20). The systems were resolvated and re-equilibrated as outlined
above and 50 ns equilibrium MD simulations were carried out with Amber20 via
BioSimSpace, saving snapshots every 10 ps (5000 frames per simulation). Total
sampling time of trajectories used for a single MSM was 10 μs.

Ligand restraints. In the cases when ligands were restrained for sMD or seeded
MD simulations, flat bottomed distance restraints were used. The exact parameters
are given in Supplementary Table 2.

Markov state modelling. The seeded MD trajectories were featurised using
cpptraj53. The features used were WPD loop (residues 178–184) backbone RMSD
to PTP1B with WPD loop closed (PDB ID 1SUG), and P loop (residues 214–219)
RMSD. All MSM model buiding was done using PyEMMA version 2.5.754. All
system data was pooled together, and k-means clustering (100 cluster centres) was
used to define microstates. Implied timescales were calculated using a range of lag
times between 1 and 3000 steps (10 ps to 30 ns). MSMs were generated with a lag
time of 2000 steps (20 ns) in all cases. PCCA analysis of the reference system was
performed to define two macrostates, assigning the macrostate with lowest RMSD
as the active state. The clusters not sampled by the reference system were assigned
to the inactive state. When clusters were not sampled by a particular system, they
were assigned 0% stationary probability manually.

Bootstrapping by resampling was carried out for 100 iterations for each system.
200 random trajectories were selected, and the MSM was built using the same 100
cluster centres, and the same active state assignment as above. The stationary
probabilities of clusters belonging to the active state were summed to give a single
active state probability each time.

Conformational analysis. For systems with compounds 1 and 2r (Fig. 2), 10,000
frames were sampled out of all trajectory data, using the MSM stationary prob-
abilities as weights. These trajectories were used to compute the residue behaviour
shown in Fig. 4. To obtain the reference active and inactive conformation
ensembles, the same was applied to the reference system. However, instead of the
stationary probabilities, metastable distributions for the active and inactive states
were used.

Data availability
All input files and featurized trajectory data to reproduce the findings from this study are
available on GitHub at michellab/AMMo.

Code availability
All python scripts and jupyter notebooks to reproduce the findings from this study are
available on GitHub at michellab/AMMo.
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