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A mutation-induced drug resistance database
(MdrDB)
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Shengyu Zhang 1✉

Mutation-induced drug resistance is a significant challenge to the clinical treatment of many

diseases, as structural changes in proteins can diminish drug efficacy. Understanding how

mutations affect protein-ligand binding affinities is crucial for developing new drugs and

therapies. However, the lack of a large-scale and high-quality database has hindered the

research progresses in this area. To address this issue, we have developed MdrDB, a data-

base that integrates data from seven publicly available datasets, which is the largest database

of its kind. By integrating information on drug sensitivity and cell line mutations from

Genomics of Drug Sensitivity in Cancer and DepMap, MdrDB has substantially expanded the

existing drug resistance data. MdrDB is comprised of 100,537 samples of 240 proteins

(which encompass 5119 total PDB structures), 2503 mutations, and 440 drugs. Each sample

brings together 3D structures of wild type and mutant protein-ligand complexes, binding

affinity changes upon mutation (ΔΔG), and biochemical features. Experimental results with

MdrDB demonstrate its effectiveness in significantly enhancing the performance of com-

monly used machine learning models when predicting ΔΔG in three standard benchmarking

scenarios. In conclusion, MdrDB is a comprehensive database that can advance the under-

standing of mutation-induced drug resistance, and accelerate the discovery of novel

chemicals.
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Structural mutation of proteins can directly affect their
folding and stability1–3, function4,5, interactions with other
proteins6,7 and binding affinity8. In some cases, it can result

in significant perturbations or even complete abolishment of
protein function, potentially leading to diseases or cancer9,10. The
evolutionary pressure imposed by small molecule drugs on many
quickly evolving systems, including cancer cells, viruses, and
bacteria, can lead to the rapid development of resistance11–14.
While novel and cheap high-throughput sequencing technologies
have made it possible to identify mutations in large
populations15,16, the significance and characteristics of any novel
polymorphisms currently require time-consuming and expensive
experiments to determine17. Protein-ligand binding affinity data
are of great value for understanding the impact of polymorphisms
on disease and identifying mutations that lead to drug
resistance18,19. Convenient and broad access to such data for
wild-type and mutant proteins would aid our understanding of
the mechanisms of mutation-induced drug resistance, increase
the accuracy of extrapolations to novel mutations and systems,
enable more effective computational approaches for drug resis-
tance prediction, and facilitate the development of combination
therapies and the discovery of novel chemicals.

Fortunately, a number of databases on the effects of mutation
on protein-ligand binding affinity have been compiled and
released in recent years. In particular, Platinum17 was the first
database to provide experimental data on changes in protein-
ligand affinities upon mutation, along with three-dimensional
structures, while tyrosine kinase inhibitor (TKI)18 contains reli-
able inhibitor ΔpIC50 data for 144 clinically identified mutants of
the human kinase Abl. Together, these two datasets are the cur-
rent gold standards, both providing well-curated data and three-
dimensional structural information. Other resources include Auto
In Silico Macromolecular Mutation Scanning (AIMMS)20, RET21

and kinase mutations and drug response (KinaseMD)22, which
provide kinase inhibitor resistance information. However, while
the value of these datasets is significant, there remain a number of
deficiencies. Platinum and TKI are restricted to known cocrystal
structures and thus contain relatively few samples (approximately
1000 and 150, respectively), which can limit their use with
machine learning models. For AIMMS, RET, and KinaseMD,
structural information is not provided. In addition, while all of
the aforementioned databases consider single-point and multi-
site substitution mutations, they do not include more varied and
complex mutation types—such as deletions, insertions, and
insertion-deletions (indel)—which play an important role in
certain disease progressions.

To tackle these challenges, we have created MdrDB, an all-
encompassing database that significantly expands the amount of
information on drug resistance. MdrDB combines the five data-
bases mentioned above and achieves considerable augments by
incorporating large-scale drug response data, and somatic
mutation information from various cancer cell lines, as reported
in the Genomics of Drug Sensitivity in Cancer (GDSC) dataset23,
and Cancer Dependency Map (DepMap)24. Further supple-
mented with data from supporting databases such as RCSB
Protein Data Bank (PDB), UniProtKB and PubChem, and 3D
structures computed with PyMOL and AlphaFold 2.025, MdrDB
brings together 3D structures of wild-type and mutant protein-
ligand complexes, binding affinity changes upon mutation (ΔΔG),
and biochemical features calculated from complex structures.
MdrDB contains 100,537 samples, generated from 240 proteins
(5119 total PDB structures), 2503 mutations, and 440 drugs. A
total of 95,971 samples are based on available PDB structures, and
4566 samples are based on AlphaFold 2.0 predicted structures.

MdrDB offers several key advantages over existing publicly
available protein mutation databases. Firstly, MdrDB offers

massive and diverse data. With over 100,000 samples, MdrDB
integrates information from multiple sources, includes various
mutation types beyond single site-point mutation and covers
mutations across a broad range of protein families, which is the
largest mutation-induced drug resistance database to our
knowledge. Secondly, MdrDB provides 3D structural information
on all wild-type and mutant proteins along with 146 associated
biochemical features, which are useful and important in accurate
drug resistance modeling. Furthermore, we evaluated the classical
drug resistance prediction machine learning models’ performance
on three standard benchmarking scenarios. By using MdrDB as a
training set, nearly all models gain significant performance
improvement. In summary, MdrDB has the size, breadth, and
complexity to offer new resources for protein mutation studies
and drug resistance modeling.

Results
Database statistics. At the time of writing, MdrDB contains
100,537 samples, generated from 240 proteins (5119 total PDB
structures), 2503 mutations, and 440 drugs. In all, 95,971 of the
total samples are based on available PDB structures, with the
remaining 4566 samples predicted with AlphaFold 2.0. In addi-
tion to single-point substitution mutations and multiple-point
substitution mutations, MdrDB also contains complex mutations
including deletion, insertion, and indel (insertion-deletion)
mutations, as well as multiple-site mutations containing a num-
ber of the aforementioned mutations. Table 1 summarizes the
data contained in MdrDB, and an overview of the data sources is
shown in Supplementary Table 1. Figure 1A shows MdrDB
samples categorized by their mutation types. Approximately
83.6% of the samples are single substitution mutations; 11.9% are
multiple substitution mutations; and 4.5% are complex muta-
tions, of which deletion mutations account for the largest
proportion.

The distribution of mutation-induced ligand binding affinity
changes, measured by ΔΔG, is shown in Fig. 1B. A standard for
defining resistant samples was given in18, where samples with a
larger than 10-fold drop in binding affinity, corresponding to
ΔΔG >1.36 kcal mol−1, are considered to be resistant. Based on
this standard, 8197 (8.2%) samples in MdrDB are mutation
resistant.

We analyzed the distribution of amino acid types in
substitution mutation samples, before and after mutation, to
shed light on mutation preferences. The 20 natural amino acids
were divided into five groups: positively charged, negatively
charged, polar, hydrophobic, and three amino acids classified as
special cases (Fig. 1C, Supplementary Fig. 1A, and Supplementary
Tables 2 and 3). Overall, 30.8% of mutations are observed within
the same amino acid group, while 69.2% of mutations occur
across different amino acid groups. Arginine (R) is the most
frequently mutated amino acid, followed by glycine (G) and
valine (V), which are reported to contribute to human genetic
diseases26. Leucine (L), alanine (A), serine (S) and cystenine (C)
are the most frequently mutated amino acids. Similar conclusions
hold for the MdrDB_CoreSet (Supplementary Figs. 1B and 2 and
Supplementary Tables 4 and 5), where non-repetitive samples
considering only unique “protein-drug-mutations” are kept.

The mutation frequencies of different amino acids at the
mutation sites are highly correlated with the frequencies
calculated based on codon frequencies (Pearson r= 0.945,
Supplementary Figs. 3A–C and Supplementary Table 6)26.
However, the frequencies of amino acids after the mutation show
a lower correlation with the frequencies calculated based on codon
frequencies (Pearson r= 0.633, Supplementary Figs. 3D–F)26.
Many complex factors could contribute to this, such as epigenetic
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modifications27, disease preferences28, co-evolution29, and experi-
mental assay biases30. In addition, we analyzed the mutation
spectrums for each type of amino acid, which revealed mutation
preferences. Interestingly, as shown in Supplementary Fig. 4, most
of the amino acids have a mutation spectrum that is similar to the
one based on codon frequencies (Pearson r > 0.8). For the amino
acids which deviate the most from this expected spectrum, a
higher ratio proportion of lysine (K), glutamine (Q), cysteine (C),
and tryptophan (W) are mutated to A, which may come from the
loss of function mutation experiments, such as alanine scanning
mutagenesis30. We carried out the same analyses on susceptible/
resistant samples (Supplementary Fig. 5), and observed an obvious
decrease in the frequency correlation of resistant samples before
mutation (Pearson r= 0.874), where serine (S), lysine (K), and
tyrosine (Y) showed the largest differences. For the frequency of
each amino acid after mutation in the susceptible /resistant
samples, although the correlations are similar, their distributions
vary greatly.

Furthermore, we analyzed the secondary structure elements
where mutations occurred across all samples (Supplementary
Fig. 6) as well as in resistant samples (Supplementary Fig. 7). As
shown in Supplementary Figs. 6 and 7, the ΔΔG value
distributions were not significantly different across samples
whether mutations are located in α-helices, β-sheets or loops.

Annotations for the proteins and drugs are provided for each
sample in MdrDB. For proteins, a total of 160 kinds of protein
domains, 154 protein families and 143 protein superfamilies can
be found in MdrDB. The protein domains with at least
100 samples are shown in Fig. 1D and Supplementary Table 7.
Protein kinase domains account for the largest proportion
(39.5%) of all samples, followed by DNA-binding domains
(18.5%), retroviral matrix proteins (4.8%) and bromodomains
(4.7%). For drug mechanism annotations, a total of 20 FDA-
documented pharmacological classes, 60 Medical Subject Head-
ings (MeSH) pharmacological classes and 9 PubChem drug
classes can be found in MdrDB. 67 (15.2%) out of all 440 drugs
have known FDA pharmacological classes, and the corresponding
samples were counted and shown in Fig. 1E and Supplementary
Table 8. The largest proportion of samples takes kinase inhibitors
as drugs (12.0%), followed by HIV-1 reverse transcriptase
inhibitors (4.5%).

Model performance evaluation. Rapid and accurate computa-
tional methods could impact clinical decision making by pro-
viding oncologists with an initial indication of whether an
observed protein mutation may lead to drug resistance to certain
inhibitors. Molecular dynamics (MD)-based free-energy calcula-
tions and physics- and knowledge-based potential scoring func-
tions (e.g., Rosetta) are two common types of computational
methods for estimating affinity changes in proteins with
mutations31–36. Although these two types of methods can achieve
remarkable performance and serve as a gold standard, they suffer
from high computational overheads. Data-driven machine
learning methods have recently been developed to predict the
impact of ligand binding affinity changes upon protein mutations
and identify resistance-causing mutations19,37, and can make
predictions within seconds once the features associated with
protein mutation affinity changes are input. Current machine
learning methods, however, are prone to overfitting, and limited
training data—expensive to acquire—reduces their performance
stability in real applications. For instance, Aldeghi et al.19

employed extremely randomized regression trees to predict TKI
affinity change values. Their model—trained on a subset of Pla-
tinum database (no tyrosine kinase) with 484 training samples
and then tested on the TKI dataset—achieved low performance inT
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terms of correlation and classification ability. To alleviate the
overfitting problem, our previous work38 incorporated additional
physics-based structural features and protein family information
as inputs to learn more comprehensive knowledge from limited
training data. The empirical results show that the method we
previously proposed is slightly superior to MD simulations with
the Amber force fields. In this section, we investigated three

scenarios to test whether using the MdrDB_CoreSet as the
training dataset (using 146 calculated biochemical features) can
improve the model generalization performance in predicting
mutation-induced drug resistance in the TKI dataset.

We conducted experiments on the TKI dataset under three
scenarios. The first scenario was to train the machine learning
methods on the subset of the Platinum dataset, which had no
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tyrosine kinase samples, and then test them on the TKI dataset.
This setting is consistent with the setting in work19,38. The second
scenario was to train the machine learning methods on the
Platinum dataset, and test them on the TKI dataset. The third
scenario was to train the machine learning methods on a subset of
MdrDB_CoreSet, removing samples derived from the TKI dataset
and selecting samples corresponding to single substitutions, and
then test them on the TKI dataset. Since the TKI dataset contains
only the single substitution type, we select samples belonging to a
single substitution in MdrDB_Coreset. Compared with Scenario
1, the latter two scenarios evaluate whether adding a small
amount of tyrosine kinase information or increasing samples and
protein family information in the training dataset can improve
the capability of the model in predicting affinity changes in Abl
kinase mutants. Detailed information on the training datasets for
the three scenarios is given in Supplementary Table 9. According
to the feature calculation section, 146 features were calculated as
model inputs, carrying potentially useful information for
predicting affinity changes introduced by protein mutations.

Four families of methods were used to evaluate the drug
resistance prediction performance under three scenarios. The first
family is tree-based methods, including decision tree
(DecisionTree)39, random forest (RandomForest)40, and extremely
randomized regression trees (ExtraTrees)41. The second family is
linear-based methods containing support vector regression
(SVR)42, elastic net linear regression (Elastic Net)43, and lasso
regression (Lasso)44. The third family of baselines is ensemble-
based methods including bagging regressor (Bagging)45,
AdaBoost46, and gradient boosting (GradienBoost)47. The fourth
family is neural network-based methods such as multi-layer
perceptron48.

Root mean square error (RMSE), Pearson correlation coeffi-
cient (Pears), and the area under the precision-recall curve
(AUPRC) were used to evaluate the model performance under
three training scenarios19. Consistent with the previous work19,38,
resistant mutations are defined as the affinity changes for mutants
by least 10-fold, i.e., ΔΔGexp >1.36 kcal mol−1.

We train the machine learning methods on different training
datasets (i.e., Platinum (no tyrosine kinase), Platinum, and
MdrDB_Coreset (single substitution)) and report the test
performance averaged over five repetitions for each method on
the TKI dataset in Fig. 2A. We can clearly see that the machine
learning methods obtained poor performance in terms of
correlation and classification ability when training on Platinum
(no tyrosine kinase). For instance, ExtraTrees achieved low
accuracy on TKI dataset with weak correlation (Pearson= 0.075),
and poor classification performance (AUPRC= 0.198). When the
training dataset provided a small amount of tyrosine kinase
information, i.e., training on the Platinum dataset, the test
prediction performance of most machine learning methods
improved slightly. ExtraTrees obtained slightly better estimates
(RMSE= 0.907, Pearson= 0.094, and AUPRC= 0.243) com-
pared with its training on Platinum (no tyrosine kinase). When
the machine learning methods were trained on the subset of
MdrDB_CoreSet, we found that the prediction accuracy of most

machine learning methods was improved on the TKI dataset
compared to the previous two scenarios, except for AdaBoost,
DecisionTree, and SVR. In particular, ExtraTrees, GradienBoost,
Bagging, and RandomForest have significantly improved prediction
performance. For instance, ExtraTrees achieved highly accurate on
the TKI dataset when training on the subset of MdrDB_CoreSet with
low absolute errors (RMSE= 0.656 kcal mol−1), strong correlation
(Pearson= 0.607), and good classification performance (AUPRC=
0.538). This result outperformed MD simulations with the Amber
force fields (e.g., A99 and A99l) reported in the work19 by a
considerable margin, demonstrating that MdrDB_CoreSet could
improve the generalization of the machine learning method in
predicting affinity changes in Abl kinase mutants. Figure 2B
shows the scatter plots of the experimental versus calculated
ΔΔG values of each machine learning method obtained at a
certain time by training on the subset of MdrDB_CoreSet and
testing on the TKI dataset. The scatter plots of the experimental
versus calculated ΔΔG values in the first and second scenarios
are shown in Supplementary Figs. 8 and 9.

In addition, we also provide a comprehensive evaluation of 10
common machine learning models in several different scenarios
(Supplementary Figs. 10–23 and Tables 10–23), and provide
baseline prediction results on the MdrDB database. It is our hope
that this will help further the development of new machine
learning algorithms using the MdrDB database and facilitate drug
resistance research. Please refer to Supplementary Note 1 for
details.

Conclusion
Here we have introduced MdrDB, the largest drug resistance
database to provide all information highly relevant to protein
mutation-induced drug binding affinity changes. In addition to
basic information regarding the proteins, drugs, mutations and
changed affinity, and structural data for wild-type and mutant
complexes, 146 calculated biochemical features and extra anno-
tations are also provided. These features and annotations were
chosen to be convenient to use for model training and sample
splitting in machine learning algorithms for drug resistance
prediction38. In addition, MdrDB is also the first database that
includes drug resistance-related mutation types beyond sub-
stitution mutations, and the availability of wider and more
complex mutation types can be used to test the generalization of
machine learning models.

A comprehensive resource providing a variety of information
for studying protein mutation, predicting drug resistance and
discovering novel chemical compounds, MdrDB will be updated
regularly and include more public data in the future.

Methods
The MdrDB database construction pipeline is shown in Fig. 3. Data preparation
includes four steps: (1) data collection from the seven publicly available datasets.
(2) Data preprocessing and integration of information from other databases, so that
each sample contains information on the protein, drug, mutation and ΔΔG. (3) 3D
structure generation for the wild-type and mutant protein-drug complexes. (4)
Calculation of biochemical features based on the complex structures.

Fig. 1 MdrDB mutation statistics, ΔΔG distribution, and protein and drug annotations. A Number of samples of each mutation type, where a sample
corresponds to a (Uniprot, PDB, mutation, drug) combination. “Others” includes four mutation types: deletion, insertion, indel, and complex. B Histogram of
protein mutation-induced ligand binding affinity changes measured by ΔΔG (kcal mol−1). Line at ΔΔG= 1.36 kcal mol−1 separates mutations defined as
resistant from susceptible. C Number of amino acid changes from substitution mutations. Left: heatmap shows the number of amino acid changes from
substitution mutations, with different colors corresponding to the number of changes in different amino acids. The number of samples for each amino acid
in the wild-type (mutation) is displayed as a bar chart along the left axis (bottom) of the plot. Right: donut charts show the number of amino acids in the
samples corresponding to substitution mutations. The proportion of each amino acid in wild-type (mutated) samples is displayed top (bottom). D Number
of samples annotated by protein domains. X-axis gives protein domain, with Y-axis the corresponding sample number on logarithmic scale. E Number of
samples annotated by pharmacological mechanisms.
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Data collection. MdrDB contains data from seven publicly available datasets:
Platinum17, AIMMS20, TKI18, RET21, KinaseMD22, GDSC23, and DepMap24.
These datasets differ slightly in terms of the information they contain.

● Platinum: provides data on affinity changes upon site mutation (ΔΔG)
and experimental cocrystal structures of protein-drug complexes from
the RCSB PDB. It contains more than 1000 manually curated
mutations17.

● AIMMS: a web server for predicting site mutation-induced drug resistance,
and contains a dataset of 17 protein-ligand complexes involving 311 ΔΔG
values and mutations20.

● TKI: a database of TKIs resistances in ABL tyrosine kinase site mutations.
A total of 144 ΔΔG values are included, along with ABL-TKI complex
structures from PDB18.

● RET is a dataset specifically related to drug resistances between three drugs
(cabozantinib, lenvatinib, vandetanib) and the RET kinase mutants. 56
IC50 measurements and protein-drug complex structures were reported in
the research21.

● KinaseMD: focuses on kinase mutations, and integrates information from
the Cancer Cell Line Encyclopedia (CCLE)49 and GDSC23 databases, and
provides various annotations of drug responses on kinase mutants. In all,
79 ΔΔG values were collected from this database22.

● GDSC: the largest public resource for information on drug sensitivity in
cancer cells. The database contains 4.4 million drug sensitivity (IC50)

values across 518 drugs and 1000 cancer cell lines. It also records
information related to basal expression, mutation, copy number variation,
and gene methylation in the cell lines.

● DepMap: similar to GDSC, and contains drug sensitivity data on cell lines
from the Achilles50 and CCLE projects51.

For Platinum, AIMMS, TKI, RET and KinaseMD, mutation information and
mutation-induced binding affinity changes are directly obtainable from the
datasets. However, for GDSC and DepMap, extra steps are required to obtain the
mutations and ΔΔG values (see next section).

GDSC/DepMap raw data processing. Mutation and ΔΔG values were obtained
from these two datasets via a process similar to that used by KinaseMD: (i)
mutation information acquisition; (ii) drug-cell line response calculation; and (iii)
ΔΔG calculation.

Cell lines were first grouped into wild-type and mutated samples for a specific
protein, and mutation information for the protein was gathered. Specifically, for a
particular protein, cell lines that did not have mutations on them were considered
to be control (wild-type samples), while cell lines with mutations were considered
to be mutant. Mutations were then filtered to retain only six types of mutation in
terms of amino acid changes in protein sequences:

● Single substitution mutation: replacement of one amino acid in a protein
with a different amino acid.

Fig. 2 Machine learning methods performance evaluation. A Summary of the test performance of the ΔΔG prediction across machine learning methods
under three training scenarios in terms of RMSE, Pearson correlation, and AUPRC. Means with error bars (standard deviation) for all competing methods.
B Scatter plots of the experimental versus calculated ΔΔG values in Scenario 3. X-axis denotes the experimental ΔΔG values (kcal mol−1). Y-axis denotes
the calculated ΔΔG value (kcal mol−1). Each ΔΔG estimate is color-coded according to its absolute error w. r. t. the experimental ΔΔG value; at 300 K, the
1.4 kcal mol−1 error corresponds to a 10-fold error in the Kd change and 2.8 kcal mol−1 error corresponds to a 100-fold error in the Kd change.
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● Multiple substitution mutation: more than one amino acid substitution in a
protein.

● Deletion mutation: removal of one amino acid or an amino acid sequence
in a protein.

● Insertion mutation: addition of one amino acid or an amino acid sequence
in a protein.

● Indel mutation: a deletion mutation followed by an insertion mutation, i.e.,
replacement of an amino acid sequence in a protein with another amino
acid sequence.

● Complex mutation: combinations of the above five amino acid
mutation types.

Then, we filtered the drugs with known protein targets and queried drug
sensitivity (IC50 values) data on all cell lines. For drugs with multiple known
protein targets, each protein was considered individually. If, in the cell line, only
one of these proteins was mutated, the cell line was kept. Otherwise, the cell line
was discarded. After this, for each (protein, cell line, drug) mutant sample, the
mutation string was generated by merging all mutations of the mutant protein
to obtain a (protein, cell line, drug, mutation) sample. Then IC50 values were
averaged over all cell lines for the (protein, cell line, drug, mutation) sample
following the sensitivity data processing in KinaseMD22. This average value was
taken as the mutant protein-drug affinity value IC50(mut). A corresponding
wild-type sample was similarly assigned and IC50s again averaged over cell
lines, and this average value was taken as the wild-type protein-drug affinity
IC50(wt).

Finally, these affinity pairs were used to calculate ΔΔG according to the
formula18,37:

ΔΔGexp ¼ RT ln
K i;mut

K i;wt
� RT ln

IC50;mut

IC50;wt
ð1Þ

Sample data consolidation. From all seven datasets, five basic pieces of infor-
mation were collected and consolidated: protein name, UniProt ID, mutation

string, drug name, and ΔΔG value. UniProt IDs were identified by querying
UniProtKB52 with protein names. The consolidated data was then divided into
separate tables, with samples of the same mutation type kept together. For samples
from Platinum and TKI, wild-type and mutant protein-drug complex structures
were also obtained from the original datasets. For protein annotations, we used the
Interpro API53 to query the protein family, homologous superfamily and domain
information. For drug annotations, we used the PubChem PUG REST API54 to
query the CID, Depositor-Supplied Synonyms, FDA mechanism, MeSH and Drug
Classes information.

Three-dimensional structure generation. With the exception of samples from
Platinum and TKI, which already directly include 3D structure information, we
prepared 3D structures of wild-type proteins, mutant proteins and drug binding
poses for all samples from the other datasets.

For the preparation of wild-type protein structure, first for each protein
(UniProt ID), all associated PDBs were identified with the RCSB REST API55. The
.pdb or .cif for 3D structures and .fasta for sequences were downloaded from
RCSB PDB. Then, all water, solvent, and ions were removed from the PDB files.
Next, the protein chains and ligands were split into separate files. Each chain was
annotated and only the chains corresponding to the UniProt ID were kept. If
multiple chains were found to exist for protein, the longest one was kept.
Meanwhile, the largest ligand was kept as the docking box generation reference.
Finally, each mutation for a protein was checked against all available PDBs. If the
mutation sites could be found in the PDB, the mutation and drug would be
assigned to the PDB.

For the mutant protein structure generation, we generated mutant structures
from wild-type structures using PyMOL56 or from wild-type sequences using
AlphaFold 2.025. Specifically, the Mutagenesis Wizard module of pymol-open-
source v2.5.0 was used to generate a mutation by replacing a residue with a new
amino acid type, sample several rotamers from the rotamer library and generate
several non-clashing conformations. Then, the most likely rotamer was chosen as
the mutated residue. For AlphaFold 2.0, we used the protein amino acid sequence

Fig. 3 The MdrDB database construction pipeline. A Data collection from public datasets. B Data preprocessing to extract sample information. C 3D
structure generation of protein-drug complexes for both wild-type and mutant proteins. D Feature calculation. E Downstream task: mutation-induced drug
resistance prediction. F Website construction for browsing, search and downloading of the data. Color-coded boxes: red—the collected publicly available
datasets, the number of original samples is shown; yellow—annotations, mutation information and ΔΔG values, provided in MdrDB in .tsv file format; green
—structural information provided in MdrDB.
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as the input to predict the structures. A length threshold of 2000 was set for
computing resource considerations. For Multiple Sequence Alignment searching,
“reduced_db” was used. For inference, the “monomer_ptm” models were used.
Five models were generated and the one with the highest averaged pLDDT
(predicted lDDT-Cα) value was chosen as the predicted structure for further
procedures. Several rules were followed to decide which tool was used for mutant
structure generation. For proteins with known PDBs containing the mutation
sites:

● For single substitution and multiple substitution mutations, PyMOL was
used for mutant protein generation.

● For deletion, insertion, indel and complex mutations, AlphaFold 2.0 was
used for mutant protein structure prediction. For fair comparison and
feature calculation, post-processing was carried out to keep the residue
numbers the same except at the mutated sites.

For proteins with no known PDBs containing the mutation sites, AlphaFold
2.0 was used for both wild-type protein and mutant protein structure
prediction. Structures with an average pLDDT larger than 70 for the whole
structure were kept, which was a confidence threshold for the predicted
structures in AlphaFold 2.0. In addition, if a mutated site was located in a region
that was poorly predicted (pLDDT < 50), the sample was also discarded. After
structure generation, the mutant protein was aligned with the wild-type protein.
This alignment was carried out by only taking the backbone atoms of both wild-
type and mutant residues whose pLDDTs were larger than 70 into
consideration.

For drug structure generation, SMILES strings for all drugs were first obtained
using the PubChem PUG REST API54 (several drugs that could not be directly
identified via PubChem were manually checked and assigned). Ions and salts were
then removed from the SMILES, the structures neutralized, and the resulting
SMILES strings rewritten in canonical format. 3D structures were first generated
using Open Babel 3.1.157, using the “–gen3D” flag, and non-polar hydrogens were
added to the generated structures with the “–addpolarH” flag. After structure
generation, molecular docking was carried out with smina58, using default docking
parameters:

● If the wild-type PDB contained a known in-pocket ligand, then
“–autobox_ligand” was selected.

● If no ligand was present, the whole protein was used to generate the
docking box.

After docking, the conformation with the best smina score was kept.

Feature calculations. Based on the structures of the wild-type and mutant protein-
ligand complexes, we calculated a total of 146 biochemical features relevant to
machine learning prediction of mutation-induced affinity changes. These features
were first used in the work of Aldeghi et al.19, and we follow the procedures in their
original paper for their calculation:

● Eighteen ligand properties such as logP, molecular weight, number of
hydrogen acceptors and donors were calculated using RDKit.

● Twelve features describing the changes for the mutated amino acids were
calculated (again with RDKit), such as hydrophobicity, number of heavy
atoms, and the change in side-chain volume.

● Twenty-one features describing the mutation environment were calcu-
lated with Biopython, including the distribution of ligand and protein
atoms around the mutation site and the number of residues in different
property groups.

● Six features related to the protein-ligand interactions were calculated
using the Protein-Ligand Interaction Profiler59: hydrogen bonds, hydro-
phobic contacts, salt bridges, π-stacking, cation-π interactions, and
halogen bonds.

● The Vina binding score as well as 58 scoring function terms were calculated
using Delta-Vina XGBoost60,61.

● Thirty pharmacophore-based solvent accessible surface area features are
calculated using Delta-Vina XGBoost61.

With the exception of the ligand property features, the numerical values x of all
other features given in MdrDB correspond to the difference between the mutant
(xmt) and wild-type values (xwt), i.e., x= xmt− xwt.

Website interface. The web interface of MdrDB was implemented using caddy2
and Bootstrap v5.0. All processed data, structure files, biochemical features and
annotations were stored in Tencent Cloud Object Storage. Interactive charts
were implemented using Apache ECharts. A full tutorial for MdrDB is available
at https://quantum.tencent.com/mdrdb/tutorial. A user-friendly website pro-
vides access to the curated data and structure information on wild-type and
mutant complexes, and provides functions for browsing, searching, displaying
and downloading the data. For detailed information on the constructed website,
please see Supplementary Note 2: web design and interface. Supplementary

Fig. 24 shows the search page, browse page and sample display page of the
MdrDB website.

Data availability
All data are available to browse and download on the MdrDB website: https://quantum.
tencent.com/mdrdb/.

Code availability
The code is available at https://github.com/tencent-quantum-lab/MdrDB/.
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