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Synthesis of substituted pyridines with diverse
functional groups via the remodeling of (Aza)
indole/Benzofuran skeletons
Kannan Vaithegi1,2, Sihyeong Yi 1,2, Ji Hyae Lee 1, Begur Vasanthkumar Varun1 & Seung Bum Park 1✉

Substituted pyridines with diverse functional groups are important structural motifs found in

numerous bioactive molecules. Several methodologies for the introduction of various bio-

relevant functional groups to pyridine have been reported, but there is still a need for a single

robust method allowing the selective introduction of multiple functional groups. This study

reports a ring cleavage methodology reaction for the synthesis of 2-alkyl/aryl 3-electron-

withdrawing groups (esters, sulfones, and phosphonates) 5-aminoaryl/phenol pyridines via

the remodeling of 3-formyl (aza)indoles/benzofurans. Totally ninety-three 5-aminoaryl

pyridines and thirty-three 5-phenol pyridines were synthesized showing the robustness of the

developed methodology. The application of this methodology further provided a privileged

pyridine scaffold containing biologically relevant molecules and direct drug/natural product

conjugation with ethyl 2-methyl nicotinate.

https://doi.org/10.1038/s42004-023-00914-5 OPEN

1 CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. 2These authors contributed
equally: Kannan Vaithegi, Sihyeong Yi. ✉email: sbpark@snu.ac.kr

COMMUNICATIONS CHEMISTRY |           (2023) 6:112 | https://doi.org/10.1038/s42004-023-00914-5 | www.nature.com/commschem 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-00914-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-00914-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-00914-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-023-00914-5&domain=pdf
http://orcid.org/0000-0003-3995-5106
http://orcid.org/0000-0003-3995-5106
http://orcid.org/0000-0003-3995-5106
http://orcid.org/0000-0003-3995-5106
http://orcid.org/0000-0003-3995-5106
http://orcid.org/0000-0002-4527-4174
http://orcid.org/0000-0002-4527-4174
http://orcid.org/0000-0002-4527-4174
http://orcid.org/0000-0002-4527-4174
http://orcid.org/0000-0002-4527-4174
http://orcid.org/0000-0003-1753-1433
http://orcid.org/0000-0003-1753-1433
http://orcid.org/0000-0003-1753-1433
http://orcid.org/0000-0003-1753-1433
http://orcid.org/0000-0003-1753-1433
mailto:sbpark@snu.ac.kr
www.nature.com/commschem
www.nature.com/commschem


Pyridine is a simple six-membered heterocyclic scaffold found
in various natural products, drug molecules, vitamins, and
materials (Fig. 1a)1–12. The biological activities and physical

properties of pyridine analogs can be improved by introducing
various functional groups into the pyridine scaffold. For example,
vitamin B3, also known as nicotinic acid and with multiple biolo-
gical activities, contains the carboxylic acid moiety at the C-3
position of the pyridine13–15. Furthermore, di- and tri-substituted
pyridines are frequently found in numerous drug molecules, natural
products, and agrochemicals, including pyridoxine, epibatidine,
fusaric acid, nicoboxil, vismodegib, phenoxynicotinamide,

anabasamine, and clonixin10–12. In particular, pyridyl sulfones are
widely present in diverse bioactive molecules16,17 showing anti-
inflammatory and anti-viral activities18–20. Pyridyl phosphonates
are also valuable in the field of medicinal chemistry. Specifically,
PAK-104P is a pyridyl phosphonate that alleviates drug resistance
to paclitaxel and doxorubicin21. Therefore, the development of a
robust synthetic route enabling the incorporation of sulfone and
phosphonate moieties on the pyridine scaffold is highly needed in
medicinal and agricultural chemistry22–27.

Poly-substituted pyridine moieties have been obtained by the
traditional Hantzsch pyridine synthesis (Fig. 1b), Chichibabin
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Fig. 1 Overview of bioactive pyridines and hypothesis of this work. a Bioactive natural products and drug molecules containing substituted pyridines.
b Previous synthetic strategies for substituted pyridines. c Proposed synthetic strategy of substituted pyridines with diverse functional groups (esters/
sulfones/phosphonates).
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pyridine synthesis, Bohlmann–Rahtz pyridine synthesis, etc28–35.
However, the introduction of electron-withdrawing groups on the
pyridine moiety is still challenging. For instance, pyridyl sulfones
are generally synthesized by the metal-catalyzed coupling of
sulfinate salts with halopyridines36, 37 or pyridyl boronic acids38

(Fig. 1b). Other synthetic routes include the oxidation of
sulfides39,40, pyridine modification using sulfoxylate reagents41 or
organometallic reagents42, and displacement reactions of the
sodium salts of the corresponding sulfones with pyridyl
halides43,44. However, these synthetic protocols require stench
thiol compounds45 and hazardous byproducts are formed. In the
case of pyridyl(heteroaryl) phosphonates, a cross-coupling reac-
tion is still the best synthetic method, but these coupling reactions
require hydrophosphorous derivatives and pyridyl(heteroaryl)
halide, tosylates, and boronic acids in the presence of transition
metal catalysts, including palladium46–53, nickel54, and silver55.
Michaelis-Arbuzov reaction56,57 and metal-free Sandmeyer-type
phosphonylation58 are alternative synthetic protocols for the
formation of aryl-phosphorous bonds. However, these methods
require expensive metal catalysts and ligands under harsh con-
ditions. All of these mentioned methods have mainly focused on
the synthesis of aryl sulfones and phosphonates, and a few studies
have reported the heteroaryl(pyridyl) functionalization.

In the presence of ammonium acetate, β-keto ester/sulfone/
phosphonate can be transformed in situ to substituted enamines
that undergo aldol-type addition to N-substituted (aza)indole
carboxaldehydes and the subsequent ring cleavage reaction to
produce substituted pyridines in conjugation with o-amino(he-
tero)aryl moieties (Fig. 1c) and our group has previously reported
the synthesis of heterobiaryls via the ring cleavage reaction of
(aza)indoles59,60. This study reports a single methodological
approach for introducing various bioactive functional groups on
the pyridine scaffold. The synthesis of m-aryl-conjugated ο-sub-
stituted nicotinic esters and pyridine analogs with sulfone or
phosphonate groups through the remodeling of (aza)indoles/
benzofurans via ring cleavage reaction was investigated to address
drawbacks and limitations of previous methods.

Results and discussion
Working hypothesis and plausible mechanism. Initially, we
investigated the synthesis of m-aminopyridyl-o-methyl-sub-
stituted ethyl nicotinates (3aa) via the proposed ring cleavage
reaction of N-phenylsulfonyl 3-formyl 7-azaindole (1a) with ethyl
acetoacetate (2a) as a model system. Ammonium acetate was the
nitrogen source for the substituted enamines, which are the key
intermediates of the (aza)indole ring cleavage reaction (Fig. 2).

From the β-keto ester(I) and ammonium acetate is generated
substituted β-amino acrylate intermediate (II). Then, aldol-type
condensation between the β-amino acrylate intermediate and
3-formyl (aza)indole (III) forms intermediate (V) by dehydration
of the (IV). Sequential intramolecular cyclization (VI) and C-N
bond cleavage generates the desired m-aminopyridyl-o-methyl-
substituted ethyl nicotinates (VII).

Reaction optimization and substrate scope. The developed
methodology proceeded smoothly, even in the absence of an acid
catalyst. However, the yields were significantly reduced with other
β-ketoesters (2b–2f). Therefore, the reaction conditions were
optimized by changing various parameters (see Supplementary
Table 4): N-Phenylsulfonyl 7-azaindole 3-carboxaldehyde (1a)
and ethyl acetoacetate (2a) were heated in dichloroethane (DCE)
in the presence of NH4OAc and trifluoroacetic acid (TFA) at
120 °C for 16 h to deliver the desired m-aminoaryl-o-methyl
nicotinate 3aa in a 70% yield. Under the optimized conditions,
the substrate scope of this methodology was then investigated
with various β-ketoesters (2b–2 f; see Supplementary Fig. 7), such
as alkyl and aryl β-keto esters, using N-phenylsulfonyl 3-formyl
7-azaindole (1a) and indole (1a’) (Fig. 3). The ring cleavage
reaction of 3-formyl (aza)indoles (1a and 1a’) with n-propyl
β-ketoester (2b) afforded m-aminoaryl-ο-propyl ethyl nicotinates
(3ab and 3a’b) in good yields. Isopropyl (2c) and cyclopropyl
(2d) β-ketoesters were also applicable to this methodology and
yielded the desired substituted nicotinates (3ac–3a’d) in moderate
yields. In fact, cyclopropyl-substituted pyridine analogs have been
extensively used in medicinal chemistry. As shown in Fig. 1a,
LG100268 is an agonist of retinoid X receptor (RXR)61. This (aza)
indole cleavage reaction was also compatible with cyclohexyl (2e)
and phenyl (2f) β-ketoesters, and provided ο-cyclohexyl and ο-
phenyl nicotinate analogs (3ae–3a’f) from the corresponding
(aza)indoles (1a and 1a’).

Next, we investigated the substitution effects of indole substrates
(1b–1k; see Supplementary Fig. 6) in the ring cleavage reaction
with ethyl acetoacetate (2a) and confirmed the formation of desired
substituted pyridine analogs in good yields, regardless of the
electronic effects of the substituents (Fig. 3). N-Phenylsulfonyl
3-formyl indoles containing electron-withdrawing bromo (1b–1d)
and nitro (1e–1g) group at the C-4, C-5, and C-6 positions,
respectively, provided the desired substituted pyridines (3ba–3ga)
in moderate to good yields. In the case of electron-donating
methoxy group (1h–1k), the desired substituted pyridines
(3ha–3ka) were obtained in comparable yields. Furthermore,
the substrate scope of this methodology was also examined
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Fig. 2 Working hypothesis and plausible mechanism. Plausible mechanism of the synthesis of 2-alkyl/aryl 3- esters 5-aminoaryl pyridine based on the
aldol-type reaction between 3-formyl (aza)indole and β-aminoacrylate generated from β-ketoester and ammonium acetate in situ is proposed.
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using regioisomeric azaindoles (1l–1n) to generate diverse o-
aminopyridyl-conjugated pyridine analogs (3la–3na).

The compatibility and substrate scopes of this methodology
with diverse N-substituted (aza)indoles (1o–1x; see Supplemen-
tary Fig. 6) using ethyl acetoacetate (2a) were then investigated

(Fig. 3). 3-Formyl (aza)indoles containing N-benzyl substituents
(1o–1q), regardless of the functional groups on the benzene ring,
successfully proceeded the desired reaction in good to excellent
yields. Furthermore, when the benzene ring was substituted with
thiophene (1r and 1r’), the desired transformation was well
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achieved. 3-Formyl (aza)indoles containing alkyl groups, such as
methyl (1s), cyclohexylmethyl (1t and 1t’), 2-morpholinoethyl
(1u and 1u’), were also converted to the desired pyridine analogs
(3sa–3u’a). It is worth mentioning that N-aryl-substituted
3-formyl azaindoles, such as phenyl (1v), pyridyl (1w), and
pyrimidyl (1x) moieties, suited well with this ring cleavage
methodology, and N-aryl-substituted aminopyridyl nicotinates
(3va–3xa) were obtained in moderate to good yields.

Use of β-keto sulfones and β-keto phosphonates. We next
examined the robust synthesis of pyridine analogs containing
various sulfones and phosphonates using our methodology (Fig. 4).
The reaction compatibility of N-substituted 3-formyl (aza)indole
(1a and 1a’) with phenyl sulfonyl acetone (4a; see Supplementary
Fig. 2) was initially explored, but the undesired o-methylsulfonyl
pyridine (6aa’) was formed along with the desired o-methyl-m-
sulfonyl pyridine analog (6aa) due to the regioselectivity of
enamine formation (see Supplementary Fig. 2). A similar reactivity
pattern was observed in the case of diethyl (2-oxopropyl)phos-
phonate (5a; see Supplementary Fig. 3). To address this issue, we
used 3,3-dimethyl phenylsulfonyl acetone (4b) as the source of
sulfonyl enamine, and successfully obtained the desired o-iso-
propyl-m-sulfonyl pyridine (6ab) without forming its regioisomers
(see Supplementary Fig. 4). Unlike β-ketoesters, the corresponding
sulfones and phosphonates were not sufficiently reactive.

Therefore, we further optimized the reaction conditions, and
confirmed that isopropyl (4b) and phenyl β-ketosulfones (4c) were
less reactive than their phosphonate analogs (5b and 5c). A higher
reaction concentration was thus needed. Under the re-optimized
conditions (as shown in Fig. 4), the reactivities of N-phenylsulfonyl
3-formyl 7-azaindole (1a) and indole (1a’) with β-keto sulfones
(4b–4c) or phosphonates (5b–5c) were investigated. The desired
m-(hetero)aryl pyridyl sulfones (6ab–6a’c) and phosphonates
(7ab–7a’c) were obtained in moderate to good yields. In the case of
the N-alkyl substituents, N-p-methoxybenzyl (1q and 1q’) and
N-(2-morpholinoethyl)-3-formyl (aza)indoles (1u and 1u’) affor-
ded the desired ring cleavage products (6qb–6u’c and 7qb–7u’c) in
moderate yields. This reactivity pattern was further confirmed with
N-pyrimidyl (1x and 1x’), N-p-nitrophenyl (1y and 1y’),
N-p-methoxyphenyl (1z and 1z’) 3-formyl (aza)indoles. Compared
to the electron-donating N-p-methoxyphenyl analogs (6zb–6z’c
and 7zb–7z’c), the electron-withdrawing N-pyrimidyl and
N-p-nitrophenyl 3-formyl (aza)indoles provided the desired pyr-
idyl sulfones and phosphonates in better yields (6xb–6x’c and
7xb–7x’c; 6yb–6y’c and 7yb–7y’c).

Use of benzofurans as substrates. Once the general reactivity of
N-substituted 3-formyl (aza)indoles with a series of enamines (in situ
generated from β-keto esters, sulfones, and phosphonates) was
confirmed for the synthesis of highly functionalized pyridines, the
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scope of the ring cleavage methodology was extended to benzofuran
derivatives. Benzofuran is an oxygen-containing heterocycle found in
diverse natural products and bioactive molecules62, but up to our
knowledge the remodeling of benzofuran skeletons toN-heterocycles
has not yet been reported. The reactivity of 3-formyl benzofurans
with representative β-ketoesters using this methodology to harness
o-substituted-m-phenol-conjugated nicotinates was investigated
(Fig. 5). In fact, the phenol and heterobiaryl moieties are one of the
most abundant structural units found in numerous bioactive natural
products and therapeutic agents63,64. Unlike indoles and azaindoles,
most of 3-formyl benzofurans are not commercially available.
Therefore, the substituted 3-formyl benzofuran analogs (8b–8j) were
prepared from their corresponding salicylaldehydes (see Supple-
mentary Fig. 14). As a model system, methyl (2a), cyclopropyl (2d),
and phenyl (2f) β-ketoesters were chosen as the enamine sources.
Under the optimized conditions, 3-formyl benzofuran (8a) was
reacted with three representative β-ketoesters to deliver the desired
ring cleavage product containing methyl (9aa), cyclopropyl (9ad),
and phenyl (9af) moieties at the C-2 position. We then examine the
substrate scope of this ring cleavage reaction using various 5- and
6-substituted 3-formyl benzofurans (8b–8i) and obtained highly
functionalized nicotinate derivatives (9ba–9ia, 9bd–9id, and
9bf–9if) in moderate to good yields. In particular, the reaction of
3-formyl benzofurans with both electron-withdrawing groups

(chloro, bromo, and nitro; 8b–8e) and electron-donating groups
(methyl and methoxy; 8f–8i) at the C-5 and C-6 positions afforded
the desired (hetero)biaryl products. 3-Formyl naphthofuran (8j) also
provided the o-substituted nicotinate analogs containing a naphthol
moiety (9ja, 9jd, and 9jf).

Synthetic application. This (aza)indole ring cleavage reaction was
then applied to the synthesis of analogs of various bioactive pyr-
idines. Initially, privileged structural units were extracted from
bioactive natural products (fusaric acid and epibatidine) and drug
molecules (clonixin, nicoboxil, and vismodegib). These privileged
pyridine scaffolds were then synthesized using (aza)indole ring
cleavage methodology. Highly functionalized pyridine analogs
(10a–10e) were synthesized from N-substituted 3-formyl (aza)
indoles (Fig. 6a) with diverse β-ketoesters/sulfones (2a, 2g, 2h, 2i,
and 4d; see Supplementary Fig. 7). For example, N-aryl 3-formyl
azaindole (1aa) was reacted with ethyl acetoacetate (2a) to furnish
the non-steroidal anti-inflammatory drug (NSAID) clonixin analog
(10a) in a 59% yield. Other bio-relevant molecules were synthesized
in a single step from N-phenylsulfonyl 3-formyl indole (1a’) via the
ring cleavage reaction with the corresponding β-ketoesters (2g–2i)
to afford the nicoboxil analog (10b), the fusaric acid analog (10c),
and the epibatidine analog (10d) in 78%, 60%, and 62% yields,

O

O

N

CO2Et

OH

R1

NH4OAc (4.0 equiv.)
TFA (1.0 equiv.)

DCE (0.1 M)
120 ˚C, 16 h

OEt

O

(1.2 equiv.)

R
1

O

8a–8j 2a: R1 = Me
2d: R1 = 
2f:  R1 = Ph

R
2

N

CO2Et

OH

R1

Cl N

CO2Et

OH

R1

Br

N

CO2Et

OH

R1

Me

N

CO2Et

OH

R1

MeO

N

CO2Et

OH

R1

9aa: R1 = Me   (60%)
9ad: R1 =        '(55%)
9af:  R1 = Ph   '(40%)

N

CO2Et

OH

R1

N

CO2Et

OH

R1

O2N

N

CO2Et

OH

R1

9ba: R1 = Me ' (62%)
9bd: R1 =        '(58%)
9bf:  R1 = Ph '' (30%)

9ca: R1 = Me ' (68%)
9cd: R1 =        '(64%)
9cf:  R1 = Ph ' '(39%)

9fa: R1 = Me  '(63%)
9fd: R1 =        '(57%)
9ff:  R1 = Ph''  (33%)

9ha: R1 = Me'' (70%)
9hd: R1 =        '(56%)
9hf:  R1 = Ph '' (47%)

9ea: R1 = Me  '(70%)
9ed: R1 =        '(50%)
9ef:  R1 = Ph''  (43%)

9da: R1 = Me  '(60%)
9dd: R1 =        '(40%)
9df:  R1 = Ph '' (30%)

9ja: R1 = Me ' (62%)
9jd: R1 =        '(51%)
9jf:  R1 = Ph''  (38%)

O2N

N

CO2Et

OH

R1

Me

9ga: R1 = Me'' (81%)
9gd: R1 =        '(64%)
9gf:  R1 = Ph''  (35%)

N

CO2Et

OH

R1

9ia: R1 = Me ''(45%)
9id: R1 =        '(35%)
9if:  R1 = Ph''  (20%)

MeO

R
2

9
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respectively. Nicoboxil is an FDA-approved drug used for the
treatment of acute back pain. Fusaric acid and epibatidine are
pyridine scaffold-containing natural products whereby fusaric acid
is an antibiotic isolated from the fungus Fusarium heterosporium
and used for the synthesis of vasodilator bupicomide65, while epi-
batidine is known as a modulator of the nicotinic acetylcholine
receptor66, 67. The ring cleavage reaction of N-phenylsulfonyl
3-formyl indole (1a’) with aryl β-ketosulfone (4d) also furnished the
desired vismodegib analog (10e). Vismodegib is an FDA-approved
drug used for the treatment of basal cell carcinoma.

Consequently, we applied this late-stage transformation
method to the field of drug-drug or drug-natural product
conjugation (Fig. 6b). Substituted 3-formyl benzofurans (8k and
8l) were reacted with ethyl acetoacetate (2a), which allowed the
formation of sesamol-conjugated 2-methyl nicotinate (10g,
natural product-drug conjugate) and julolidine-nicotinate con-
jugate (10h) in 60% and 58% yields, respectively. Naturally
occurring sesamol exhibits anti-fungal activity and can be used to
synthesize paroxetine (sold under the brand names Paxil® and

Seroxat®), a type of antidepressant drug under the class of
selective serotonin reuptake inhibitors (SSRI). Julolidine is a
heterocyclic aromatic moiety extensively used in therapeutic
agents, photoconductive materials, and chemiluminescence sub-
stances. Paracetamol-conjugated 2-methyl nicotinate (10f, drug-
drug conjugate) was also obtained from the corresponding
3-formyl benzofuran (8m) in a 51% yield. Paracetamol, or
acetaminophen, is used as an analgesic and antipyretic. These
examples demonstrated that the proposed ring cleavage reaction
could be beneficial for synthesizing highly functionalized
privileged pyridines via the late-stage remodeling of (aza)indoles
and benzofurans.

Conclusions
In conclusion, this study reported the successful application of the
proposed ring cleavage strategy for the synthesis of o-substituted
m-aminoaryl-conjugated pyridines from N-substituted 3-formyl
(aza)indoles. In fact, this reaction afforded diversely substituted
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pyridine analogs containing multiple functional groups, such as
esters, sulfones, and phosphonates, at the C-3 position of pyridine
with a wide range of substrate scope, which is not easily accessible
by conventional methods. Furthermore, this ring cleavage reac-
tion was extended to benzofuran derivatives for synthesizing
m-phenol-conjugated (hetero)biaryl nicotinates. Though o-ani-
line/phenol were inevitably incorporated on the m-position of
pyridine, these moieties can enhance the bio-relevancy of the final
biaryl structures due to their abundancy in drugs and bioactive
molecules. synthetic methodology allowed access to various
analogs of drugs and biologically relevant molecules containing
privileged pyridine scaffolds. Finally, this methodology allowed
the late-stage conjugation of substituted nicotinates with para-
cetamol, sesamol, and julolidine as drug-drug and natural
product-drug conjugates from 3-formyl benzofurans. Biological
studies on all the synthesized compounds are currently in pro-
gress, and the outcomes will be reported in due course.

Methods
General methods. For instrumentation and materials, see Supplementary Method
- General Information. For Additional experiments concerning optimization of the
reaction conditions, see Supplementary Figures – (2) Reaction Optimization.

General procedure for the reaction of N-substituted 3-formyl (aza)indoles
with diverse β-ketoesters (2a–2f). A 4-mL vial equipped with a magnetic bar
and a Teflon-lined screwed cap was charged with 1 (0.2 mmol), β-ketoesters
(2a–2 f, 1.2 equiv.), trifluoroacetic acid (TFA, 22.80 mg, 14.86 μL, 1.0 equiv.), and
NH4OAc (61.66 mg, 4.0 equiv.) in dichloroethane (DCE, 2.0 mL). The vial was then
sealed and heated at 120 °C for 16 h. Upon reaction completion checked by LC-MS
and TLC analysis, the reaction mixture was diluted with dichloromethane (DCM),
quenched with saturated aqueous NaHCO3 solution, and extracted with DCM
(3 × 10 mL). The combined organic layer was washed with brine (10 mL), dried
over anhydrous Na2SO4(s), filtered, and concentrated under reduced pressure. The
crude mixture was purified by silica-gel flash column chromatography to obtain the
desired product.

Note: The general procedure for the above methodology was slightly modified
in the case of ethyl benzoylacetate (2f); the reaction was performed in ethanol
without TFA.

General procedure for the reaction of N-substituted 3-formyl (aza)indole with
β-ketosulfones (4b–c)/β-ketophosphonates (5b–c). A 4-mL vial equipped with a
magnetic bar and a Teflon-lined screwed cap was charged with 1 (0.2mmol), β-keto
sulfones/phosphonates (4b–c/5b–c, 1.2 equiv.), TFA (22.80mg, 14.86 μL, 1.0 equiv.),
and NH4OAc (92.50mg, 6.0 equiv.) in DCE (1.0mL (4b–c)/2.0mL (5b–c)). The vial
was then sealed and heated at 120 °C for 16 h to 48 h. Upon reaction completion
checked by LC-MS and TLC analysis, the reaction mixture was diluted with DCM,
quenched with saturated aqueous NaHCO3 solution, and extracted with DCM
(3 × 10mL). The combined organic fraction was washed with brine (10mL), dried
over anhydrous Na2SO4(s), filtered, and concentrated under reduced pressure. The
crude compound was purified by silica-gel flash column chromatography to obtain
the desired product bearing 3-pyridylsulfones (6)/3-pyridyl phosphonates (7).

General procedure for the reaction of benzofuran-3-carboxaldehydes with β-
ketoesters. A 4-mL vial equipped with a magnetic bar and a Teflon-lined screwed
cap was charged with 8 (0.2 mmol), β-ketoesters (2a, 2d, or 2f, 1.2 equiv.), TFA
(22.80 mg, 14.86 μL, 1.0 equiv.), and NH4OAc (61.66 mg, 4.0 equiv.) in DCE
(2.0 mL). The vial was then sealed and heated at 120 °C for 16 h. Upon reaction
completion checked by LC-MS and TLC analysis, the reaction mixture was diluted
with DCM, quenched with saturated aqueous NaHCO3 solution, and extracted
with DCM (3 × 10 mL). The combined organic fraction was washed with brine
(10 mL), dried over anhydrous Na2SO4(s), filtered, and concentrated under
reduced pressure. The crude compound was purified by silica-gel flash column
chromatography to obtain the desired phenol-conjugated product (9).

Preparation of substrates. See SupplementaryMethod - Supplementary Figs. 9–22.

Spectroscopic data of products. See Supplementary Data 1.

Data availability
All data generated and analyzed during this study are included in this article, its
Supplementary Information, and Supplementary Data, and also available from the
authors upon reasonable request.
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