
ARTICLE

Retrosynthetic planning with experience-guided
Monte Carlo tree search
Siqi Hong1, Hankz Hankui Zhuo 1✉, Kebing Jin1, Guang Shao2 & Zhanwen Zhou1

In retrosynthetic planning, the huge number of possible routes to synthesize a complex

molecule using simple building blocks leads to a combinatorial explosion of possibilities. Even

experienced chemists often have difficulty to select the most promising transformations. The

current approaches rely on human-defined or machine-trained score functions which have

limited chemical knowledge or use expensive estimation methods for guiding. Here we

propose an experience-guided Monte Carlo tree search (EG-MCTS) to deal with this pro-

blem. Instead of rollout, we build an experience guidance network to learn knowledge from

synthetic experiences during the search. Experiments on benchmark USPTO datasets show

that, EG-MCTS gains significant improvement over state-of-the-art approaches both in

efficiency and effectiveness. In a comparative experiment with the literature, our computer-

generated routes mostly matched the reported routes. Routes designed for real drug com-

pounds exhibit the effectiveness of EG-MCTS on assisting chemists performing retro-

synthetic analysis.
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Chemical synthetic analysis, i.e., retrosynthesis, aims at
designing a pathway to synthesize the target molecule
using a set of available building blocks1. Computer-

assisted approaches have been an active research topic since
Corey and Wipke2 created the first computer program for ret-
rosynthetic planning, after which great progress3–10 has been
made with the development of large reaction databases11. The
retrosynthetic task is challenging since the search space of
available reactions in each step is prohibitively large.

There have been approaches on single-step retrosynthesis, such
as template-based12–14 and template-free15–20 approaches, which
aim to predict all promising single-step decompositions for the
target molecule. Based on single-step retrosynthesis, in this paper
we investigate the problem of multi-step retrosynthesis, which is
challenging since we need to consider various combinations of
substantial reactions of multiple steps. There have been approa-
ches proposed to tackle this challenge by building score functions,
which are either human-defined or machine-trained, to guide the
search of reactions. The role of the score function is to assess the
value of a searching state, such as predicting the cost of a
molecule to be retro-synthesized or a reaction to be applied to
decompose molecules. For example, 3N-MCTS4 combined Monte
Carlo Tree Search (MCTS) with three networks to perform che-
mical synthesis planning, using Rollout to estimate the score
function of a searching state. Kishimoto et al.6 proposed a
human-defined score function to select reactions with the lowest
cost based on a depth-first proof-number search. Coley et al.21

proposed an approach toward fully autonomous chemical
synthesis that combines techniques in artificial intelligence for
planning and robotics for execution. Molga et al.22 proposed
Synthia program, a commercial software platform to design
synthetic pathways. Klucznik et al.23 executed the routes planned
autonomously by Chematica in the laboratory and provided the
validation of the computer approach in synthetic design. Chen
et al.7 proposed an approach, called Retro*, to do A* search of
reactions with the guidance of previously trained neural network
which predicts the synthetic cost of the molecule. Recently, Kim
et al.10 proposed a self-improving procedure to enhance the
existing approaches, such as Retro*. We call this enhanced
approach Retro*+ for simplicity. Reinforcement learning based
approaches5,9 were also proposed to build score functions with
the similarity of the retrosynthetic problems to strategy games24.

Despite the success of previous approaches, the learning
components they relied on are often based on existing single-step
reaction databases (such as USPTO11), such as the three networks
in 3N-MCTS4, the policy and value networks in Retro*7. The
knowledge they can acquire mainly depends on the quality and
quantity of the databases. More importantly, the existing data-
bases only contain single-step reactions. It is thus difficult for
current learning components to derive multi-step information
and knowledge directly from them. In other words, it is chal-
lenging to build a path-level and forward-looking score function
to accurately predict molecules or reactions.

Figure 1 shows the searching process for the target molecule A.
Approaches such as Retro* guide the search by learning a score
function that predicts synthetic cost of molecules. Retro* con-
structs multi-step synthetic routes from single-step reaction
datasets. Since there are reaction I+ J→H and reaction G+
H→ F in datasets, the score function learns that the cost of
molecules H and F are 1 and 2, respectively. Reaction D+ E→ C
is not, however, included in the datasets, so molecule C may have
a higher predictive cost than H and F. The base algorithm of
Retro*, A* search, prefers to search molecules with lower syn-
thetic cost, resulting in selecting template TA2

first. Once template
TA2

is proved to be successful, Retro*+ will further increase its

probability such that other potential better route, e.g., the one
going to template TA1

, will not be selected. In terms of route
length, the route going to template TA1

, which could be shorter
than the one going to TA2

, may not be explored by Retro*+.
Based on this observation, we conjecture that leveraging all
potential templates from the template library to help construct
synthetic routes could be helpful for guiding retrosynthetic
planning when doing the MCTS search.

Besides, we also observe that there are many experiences that fail
to construct successful route to synthesize target molecules with the
building blocks during self-play. For example, the synthetic route
through molecule K and L, shown in Fig. 1, is not a successful one,
since N does not belong to the building blocks. Those failed
experiences can be used to learn score functions for guiding ret-
rosynthetic planning without similar failures. Note that previous
approaches, such as Retro*, Retro*+, and those RL-based
approaches5,9 used the learned score function to estimate the
expected synthetic cost or value of any given molecule. Since Retro*
is only trained from successfully synthesized molecules, the failed
synthetic pathways, which could be helpful for improving the
synthetic performance, are neglected. RL-based approaches learn
the score function during self-play, considering failure experiences
by setting penalty values (high synthesis cost or low synthesis value)
for failed or unproven molecules while searching. Unlike setting
penalty values, our approach aims to make the score function reflect
the actual decomposition situation, especially those unproven.

Based on the above-mentioned two observations, we propose a
MCTS-based search approach, namely EG-MCTS, standing for
Experience-Guided Monte Carlo Tree Search, to generate routes
for synthesizing target molecules. We follow the common practice
to ignore the reagents and other chemical reaction conditions. We
first learn an Experience Guidance Network (EGN) to estimate
the score function of reaction templates by collecting retro-
synthetic experiences. We then generate retrosynthetic routes for
target molecules with the learnt EGN.

To explore the low-probability but potentially successful reaction
templates in the template library when collecting synthetic experi-
ences, EG-MCTS uses MCTS to explore reaction templates and
records the scores of these templates for training the score function.
Different from A* search, the core component of MCTS, “upper
confidence bound” (UCB), balances the trade-off between
exploration of infrequently-visited routes and exploitation of high-
value routes. It makes the composite score of high-value routes to
decrease as the number of visits increases. Even though EGN may
predict a higher score for TA2

in the random initial stage, the search
will later turn to explore TA1

due to the decreasing score of TA2

after multiple visits to TA2
. Therefore, our EG-MCTS approach will

find that template TA1
leads to a fewer-step route during the MCTS

exploration and record the experiences about TA1
for future

exploration. To leverage the failed experiences, we estimate the
scores of reaction templates with the failed experiences along with
the successful experiences. For example, in Fig. 1, the route through
molecule K and L fails (or has not been verified) to reach a suc-
cessful synthetic route. We estimate that the score of reaction
template TL1

is 1/2, considering it breaks molecule L intoM and N,
where M belongs to the building blocks while N does not.

In conclusion, we propose EG-MCTS, a MCTS-based search
approach, to deal with retrosynthetic planning problem. The
experimental results demonstrate our approach gains significant
improvement over existing approaches. The comparative experi-
ment with the literature confirms the validity and feasibility of our
computer-generated routes. The results of retrosynthetic planning
for realistic drugs or compounds also exhibit that EG-MCTS is
instructive.
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Results and discussion
Formulation of retrosynthetic planning. In general, the input of
retrosynthetic planning, or RS planning, is composed of a target
molecule m0, a building blocks set B, and a single-step retro-
synthetic model S(⋅). B is composed of a set of simple, commer-
cially available molecules. A single-step retrosynthetic model S(⋅)
takes a molecule m as input, predicts k reaction templates T with
the highest probability, and outputs their probabilities P as well. It
can be formulated as SðmÞ : fTj; Pðm;TjÞgkj¼1

, where P(m, Tj)

indicates the probability jth template Tj given molecule m. There
have been off-the-shelf approaches3,4,7,12 developed to build this
model effectively. In this work, we borrow the single-step model
developed by Kim et al.10. The output of RS planning is a synthetic
route from B to m0, i.e., a series of chemical reactions whose
reactants are directly from B or synthesized from B.

EG-MCTS overview. Our EG-MCTS approach is composed of
two phases, i.e., (I) learning an Experience Guidance Network
(EGN) for guiding the search, and (II) generating synthetic routes
for molecules with the learnt EGN (shown in Fig. 2a).

In order to deal with the difficulty in defining a score function
and the lack of path-level synthetic routes for learning, in Phase I
we aim to use a network-guided MCTS planning to collect
synthetic experience, and then use the experience to update the
network. Monte Carlo Tree Search25 as a general search
approach, has been demonstrated successful in games, such as
Go26–28. A variant of MCTS, PUCT29, has been successfully
applied for RS planning4. We use a neural network instead of the
traditional Rollout strategy to calculate heuristic values of
searching nodes. This network, namely Experience Guidance
Network, estimates a score Q for each template T acting on each
molecule m as the initial evaluation value.

In Phase I shown in Fig. 2a, we first initialize the EGN with
random weights. For each target molecule in training set, we build
a search tree using EG-MCTS planning with EGN and collect the
synthetic experience based on the search tree as the training data
of EGN. Then we update the EGN. After getting the new EGN,
we verify its performance on the validation set. If it reaches the
optimal performance, Phase I stops and returns the well-trained
EGN. Otherwise, the Phase I will loop in the order of experience
collecting, EGN updating and EGN validating.

So far we have obtained the well-trained EGN from Phase I and
in Phase II, we use it to guide EG-MCTS planning. After
generating the search tree for a new target molecule, we analyze
the synthetic routes from the tree.

The key part, EG-MCTS planning appears in both Phase I and
II, helping to collect synthetic experience and generate the
synthetic routes. The search tree built by EG-MCTS planning is
represented as an AND-OR tree. The OR node (molecule node)
contains a molecule and the AND node (reaction node) contains
a reaction template. The planning procedure can be found from
Fig. 2b, which is composed of three modules, i.e., Selection,
Expansion and Update. The Selection module selects the most
promising molecule node m, and the Expansion module expands
the selected node using the single-step retrosynthetic model and
predicts the initial value using EGN. After that, the Update
module updates upwards along the tree. These three molecule
modules loop continuously until the search cost is exhausted.

Experimental results. We evaluated EG-MCTS with comparison
to baseline approaches in the test set of 180 molecules we collect
and the test set of Retro*7 and Retro*+10, called Retro*-190. The
building blocks set B comes from eMolecules. We considered the
first route of each molecule generated by all approaches to cal-
culate the evaluation metrics, under the assumption that a good
algorithm should be able to find paths of high-quality as quickly
as possible in practice, as done by Retro*7, Retro*+10, and
DFPN-E6. Our evaluation metrics include the efficiency of the
planning and the quality of the solution routes. We also evaluated
the bias of our approach towards the search method.

For the efficiency of planning, since the call of S(⋅) occupies
most of running time, and there is always a model call in every
iteration, we use the average number of iterations (Avg iter) as a
measure of time and we compare the success rate of all
approaches under the same iteration limit, referred to others6,7,10.
We also compare the average number of molecule nodes (Avg M)
and reaction nodes (Avg T) expanded by the various approaches
during the searching processes.

Table 1 shows the planning efficiency performance of all
approaches on our test set and Retro*-190, respectively. The
metrics, Avg iter, Avg T, and Avg M are under the iteration limit
of 500. With the assistance of our EGN, the performance of EG-
MCTS is much better than the non-learning version in all
metrics, demonstrating the performance improvement brought
by our EGN. EG-MCTS is 3.88% more successful than the sub-
optimal approach, Retro*+ and uses 25.22 fewer iterations than
Retro*+ in our test set. In Retro*-190, our EG-MCTS also has a
great advantage in the metric avg iter. The success rate of iter
limit of the Table 1 show the effect of iteration limit on the
success rate of these algorithms. We can see that our EG-MCTS
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Fig. 1 The searching process for the target molecule A. Molecules in the dashed box belong to building blocks.
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performs super well at the beginning on both two test sets. These
phenomena indicate that our collected experience through self-
play is of better quality and more instructive. The EGN can help
the search to focus on more promising actions and to avoid
entering a hopeless path so that accelerate the searching process.

We explore the performance of EG-MCTS and Retro*+ under
the iteration limit of 5000. The result shows that the success rates
of both algorithms converge to the same value (98.42% in Retro*-
190 and 96.11% in our test set), while the average number of
iteration of EG-MCTS remains less than Retro*+. Theoretically,
if we do not limit the search cost, any search algorithm can find
the solution for a target molecule which can be solved.

Except Greedy DFS, there are 132 molecules successfully solved
by all approaches on our test set and 103 molecules successfully
solved on Retro*-190. To measure the quality of the solution
routes, we compare the route length, that is the number of
reactions in the route. The results are shown in Table 2. The
metric LRN (number of longest routes) of an approach indicates

the number of longest routes generated by the approach over all
of the successfully solved molecules. Specifically, for each
molecule successfully solved by all approaches, if an approach
generates the longest route over all approaches, the LRN of this
approach is increased by one. Similarly, the metric SRN (number
of shortest routes) of an approach indicates the number of
shortest routes generated by the approach over all of the
successfully solved molecules. The metric Avg indicates an
average of length of all routes generated by each approach.

Our approach has superior comprehensive performance
among all approaches, showing the guiding role of our EGN in
finding high-quality routes. Although Retro*+ and Retro*-0+
perform well in planning efficiency, but the quality of the routes
they give is not so good on both two test sets. We consider the
reason may be that when performing self-improvement, they
simply increase the probability of those paths which have been
proven successful. In our EG-MCTS, we learn a a comprehensive
score for the path, so we can fully consider all potential paths.

Phase I: Learning EGN

experience collecting
every training 

molecule

Phase II: Generating 
Synthetic Routes for 
New Target Molecules

a new target molecule

EG-MCTS planning 
with the trained EGN

synthetic routes 
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Fig. 2 Overview of experience-guided Monte Carlo tree search approach (EG-MCTS) and the procedure of the key part, EG-MCTS planning. a Two
phases of EG-MCTS approach. Phase I is to learn the Experience Guidance Network (EGN) and Phase II is to generate synthetic routes for new target
molecules. b Three modules of the EG-MCTS planning procedure. Selection, expansion and update are executed in a loop until the search cost is
exhausted. “circles” and “squares” indicate molecule nodes and reaction nodes, respectively. “Double circles” indicate the molecule nodes are selected by
the Selection module and the path marked orange shows the Selection process. Those nodes marked green are expanded by the Expansion module, and the
blue path shows the Update process.
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We illustrate two solution routes for the same target molecule
(CAS NO.:1374357-00-2) given by our EG-MCTS and Retro*+
in Fig. 3. The dashed box part shows the differences between EG-
MCTS and Retro*+. In terms of route length, our approach
leaves out one extra step in the middle. Note that in this paper we
do not consider other chemical criteria, such as the final yield,
which can be further investigated in the future, as mentioned in
the conclusion section.

To evaluate the sensitivity of our collected experience to the
chosen search method, we adapted DFPN by replacing the proof
number initialization with value Q predicted by our EGN, called
DFPN-E+. Similar to previous evaluation, we set the iteration
limit as 500. The experimental results are shown in Table 3. We
can see that with the guidance of our EGN, DFPN-E+ achieves
better results in both planning efficiency and route quality,
compared to the original DFPN-E. This suggests that our learned
experience can assist different search methods for retrosynthetic
planning and achieve performance improvements rather than
heavily biasing search methods used to gather experience.

Experiments on transferability. We would like to investigate the
transferability of our EGN model on different datasets. To do this,
we use ChEMBL as another set of building blocks, which consists

of 2.3M bioactive molecules with drug-like properties. After
extraction, we obtain 2396 molecules for training, 305 for vali-
dation, and 296 for testing. The detailed extraction process is in
the section “Datasets”. Furthermore, to see the change of per-
formance with respect to different sizes of training sets, we extract
two new training sets on ChEMBL using the same sampling
procedure. These two new training sets, denoted as T1 and T2,
having 2500 compounds, respectively, while the initial training
set, denoted as T0. In addition, we merge T0 with T1 to obtain
T0þ1 and T0 with T1 and T2 to obtain T0þ1þ2 to explore the
effect of training set size on EGN.

We compared EG-MCTS, Retro*+ to their non-learning
versions, EG-MCTS-0 and Retro*-0+. The experimental results
are shown in Table 4. Note that since the value network used in
Retro*+ is trained based on eMolecules, we used the same
process as described in the paper7 to extract synthetic routes from
ChEMBL and trained the value network based on the extracted
routes, denoted by Retro*+(ChEMBL). Similarly, we use EG-
MCTS(ChEMBL) and EG-MCTS(eMol) to denote the value
network of EG-MCTS is trained from ChEMBL and eMolecules,
respectively. And we use Retro*+(eMol) to denote the value
network of Retro*+ is trained from eMolecules. The experi-
mental results are all conducted with 500 iterations.

In the first part of Table 4, we show the experimental results on
the test set of 296 molecules from ChEMBL via transferring the
value network learnt from eMolecules. We can see that EG-
MCTS(eMol), which directly transfers the EGN network learnt
from eMolecules to synthesize routes for target molecules from
ChEMBL, outperforms all of the other approaches, which verifies
our proposed framework has better transferability, compared to
approaches without transferred value networks (i.e., EG-MCTS-0
and Retro*-0+) and Retro*+(eMol) that transfers the value
network learnt from eMolecules to synthesize routes for target
molecules from ChEMBL. We can also see that the “success rate”
and “Avg iter” of EG-MCTS(ChEMBL), marked with underline,
are better than EG-MCTS(eMol). This is consistent with our
intuition since retraining the value network from ChEMBL for
synthesizing routes for target molecules from ChEMBL should be
better than directly transferring the value network learnt from
eMolecules, provided that there are sufficient training data from
target ChEMBL. Note that we aim to evaluate the transferability

Table 1 Planning efficiency performance on our test set of 180 molecules and Retro*-190.

Success rate of iter limit(%)

Algorithm 100 200 300 400 500 Avg iter Avg T Avg M

Performance on our test set of 180 molecules
EG-MCTS 85.00 90.00 92.78 93.33 94.44 60.75 837.56 1133.90
EG-MCTS-0 77.78 78.89 80.56 80.56 81.11 128.96 1411.80 1904.21
Retro*+ 81.11 85.56 86.67 87.22 90.56 85.97 927.46 1396.27
Retro*-0+ 80.56 82.78 86.67 86.675 89.44 87.87 1056.01 1612.05
MCTS-rollout 73.33 77.78 74.21 74.21 78.89 133.69 – –
DFPN-E 56.11 62.22 68.89 72.22 76.67 170.34 2271.56 3012.49
Greedy DFS 45.00 48.89 50.00 51.11 54.44 268.59 – –

Performance on test set Retro*-190
EG-MCTS 85.79 92.63 94.21 95.79 96.84 55.84 869.59 1193.79
EG-MCTS-0 57.37 63.68 68.42 71.05 73.68 186.15 2525.20 3339.52
Retro*+ 71.05 85.26 88.95 90.00 91.05 100.15 1209.79 1767.81
Retro*-0+ 67.37 82.10 93.16 95.26 96.32 96.14 1421.90 2108.50
MCTS-rollout 43.68 47.37 54.74 58.95 62.63 254.32 – –
DFPN-E 50.53 58.42 64.21 68.42 75.26 208.12 3123.33 4635.08
Greedy DFS 38.42 40.53 44.21 45.26 46.84 300.56 – –

The metric Avg iter is the average number of iterations. The metrics Avg T and Avg M are the average number of reaction nodes and molecule nodes expanded by the various approaches during the
searching processes.
Values marked with bold are the best performance under each metric.

Table 2 Route quality performance on 132 molecules
successfully solved on our test set and 103 molecules
successfully solved on Retro*-190.

our test set Retro*-190

Algorithm LRN SRN Avg LRN SR Avg

EG-MCTS 7 117 5.85 13 51 5.07
EG-MCTS-0 90 20 8.15 20 23 5.87
Retro*+ 96 12 8.37 26 24 6.03
Retro*-0+ 104 10 8.48 40 24 6.25
MCTS-rollout 98 13 8.23 30 26 6.06
DFPN-E 100 15 8.31 23 17 6.00

The metrics LRN and SRN are the number of longest routes and the number of shortest routes.
The metric Avg is the average length of all routes.
Values marked with bold are the best performance under each metric.
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of our proposed framework under the condition that there are no
training data for learning the value network from target
ChEMBL. It is not our focus to compare to the case that there
are sufficient training data to learn the value network from the
target ChEMBL as done by EG-MCTS(ChEMBL), since transfer-
ability may not be needed when there are sufficient training data
for learning the network of high-quality.

We can also see that Retro*+(ChEMBL) and Retro*+(eMol)
perform similarly which indicates that Retro*+ is insensitive to
the value network. The success rate of the two approaches is less
than 50% and the retrained network on ChEMBL (i.e., Retro*
+(ChEMBL)) brings performance regressions compared to
Retro*+(eMol), which is inconsistent with our intuition, i.e.,
the value network learnt from the target ChEMBL is supposed to
be better than directly using the value network learnt from the
source eMolecules. We conjecture that the way of extracting
training routes (as done by Retro*+(eMol)) for learning Retro*
+(ChEMBL)) is not applicable to small datasets like ChEMBL.
Specifically, training set extracted from ChEMBL only has 93,369
items after data equalization process, which is far <299,202 items
extracted from eMolecules.

We also would like to see the transferability of our approach
from ChEMBL to eMolecules. We directly use the value network
learnt from ChEMBL as the one to synthesize routes for the
molecules in our test set and Retro*-190 with eMolecules as the
set of building blocks. The results are shown in the second part
and the third part of Table 4, respectively. We can see that EG-
MCTS(ChEMBL) performs better than EG-MCTS-0, which
means our EGN is able to learn knowledge that are transferable
from ChEMBL to synthesize routes for target molecules from
eMolecules. Likewise, we aim to evaluate the transferability of our

proposed framework under the condition that there are no
training data for learning the value network from target
eMolecules. It is not our focus to compare to the case that there
are sufficient training data to learn the value network from the
target eMolecules as done by EG-MCTS(eMol) (marked with
underline in Table 4), since transferability may not be needed
when there are sufficient training data for learning the network of
high-quality.

Table 5 shows the performance of EG-MCTS with EGN
trained from different training sets extracted from ChEMBL.
Although the performance of EG-MCTS varies with respect to
different training sets, i.e., T0, T1, and T2, there is obvious
improvement brought by EGN over EG-MCTS-0. Comparing the
performance of EGN trained on T0, T0þ1, and T0þ1þ2, whose
size is increasing in order, we can see that the increase of the size
of training set does not necessarily improve the performance.
This indicates that it would be more helpful to find representative
molecules with synthetic experience to constitute a modest
training set, instead of using all molecules as the training set
without principle. In other words, combining all training sets
altogether may not be helpful for improving the performance.

EG-MCT versus literature. In order to verify the validity of the
routes our EG-MCTS generated, we compare the routes generated
by EG-MCTS as well as others with the published routes for 30
testing molecules. The information of 30 testing molecules refer
to Supplementary Table 1. Similar to previous work7,10, we set the
maximal number of iterations to be 500 for each target molecule.
The difference is that we will not stop the search until 500
iterations have been run out, so for each target molecule, multiple
routes can be found. We only choose the route that best matches
the published route. Then we calculate the matching degree
between the best route and the published route for each test
molecule. The calculation procedure of the matching degree is
that if the step of the route appears in the published route, and is
in the same order as the published route, it is considered that the
step is matched. Note that we only match the decomposition
reactants and the main products, and do not care about the by-
products. We use the number of matching steps divided by the
number of steps of generated route as the matching degree.
Figure 4 shows the statistics of the matching degree over 30 test
molecules. 66.67% of the routes EG-MCTS generate match more
than 80%. MCTS-rollout is the second-best performing approach,
with 60% of molecules having a match rate ≥80%. Retro*+ and
DFPN-E perform relatively similarly, slightly behind MCTS-
rollout.

There are 40% of the generated routes by EG-MCTS that
almost exactly match the published routes. Note that “almost
exactly match” indicates the each step of generated routes appears
in the published routes but the final molecules (buliding blocks)
in the generated routes continue to be decomposed in the

Table 3 The performance of EG-MCTS and DFPN-E+ on our
test set of 180 molecules and Retro*-190.

Planning efficiency Route quality

Algorithm Success rate Avg iter Avg len

Performance on our test set of 180 molecules
EG-MCTS-0 81.11 128.96 8.15
EG-MCTS 94.44 60.75 5.85
DFPN-E 76.67 170.34 8.31
DFPN-E+ 85.00 116.59 5.75

Performance on Retro*-190
EG-MCTS-0 73.68 186.15 5.87
EG-MCTS 96.84 55.84 5.07
DFPN-E 75.26 208.12 6.00
DFPN-E+ 85.26 128.77 4.34

The metric Avg iter is the average number of iterations. The metric Avg len is the average of
length of all routes.
Values marked with bold are the best performance under each metric.

O

O
N

N

N
O

N

O
O

O

N
O

NN
HN

HN
NH

O

N
O

N

O
Cl

O
Cl

O

N
O

N

HO

O N
N

N
O

N

O

O
ON

HN

Retro*+

Fig. 3 Solutions given by EG-MCTS and Retro*+ for the same target (CAS NO.:1374357-00-2). The dashed box part shows the differences between EG-
MCTS and Retro*+. Retro*+ requires an extra step. The molecules over the arrow are from B. The atoms and bonds marked red are reaction center, which
change in the reaction.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00911-8

6 COMMUNICATIONS CHEMISTRY |           (2023) 6:120 | https://doi.org/10.1038/s42004-023-00911-8 | www.nature.com/commschem

www.nature.com/commschem


published routes. Figure 5 shows an exemplary 11-step route
generated by our EG-MCTS for the molecule (CAS NO.:1392842-
01-1) of inhibiting HIF hydroxylase enzyme activity reported in
2012, which fully matches the published route in the patent30.
The other three approaches choose other way in the last step as
shown in Fig. 5b.

Another 40% of the generated routes by EG-MCTS mostly
match the published routes, with an average matching ratio of
77.23%. We observe that the difference mainly occurs in the later
part of the retrosynthetic routes, while the routes are completely,
especially in the first 5 to 7 steps. We also observed that there are
two main differences. One is that because our EG-MCTS is goal-
oriented, i.e., to break target molecules into building blocks, EG-
MCTS gives priority to the successful decomposition ways which
are different from the published routes, as the step 8 in Fig. 6a
compared to steps 8 to 10 in Fig. 6b. Note that identical steps 1 to
7 are not shown in the Fig. 6. The route shown in Fig. 6b is
reported in the patent31. In step 8 of EG-MCTS in Fig. 6a,
compound a.2, methyl 4-chloro-2, 3-diaminobenzoate is reacted
with 3-Bromopropyl alcohol. But it may not work since EG-
MCTS chooses the less reactive amino group between the two
amino groups in compound a.2. We also observe that the other
three approaches generate the same routes as ours. Another is
that although the intermediate decomposition steps are different,
the final decomposition results are identical. As shown in Fig. 7,
the generated route given by EG-MCTS and the published route
reported in the patent32 have different intermediate steps, i.e.,
steps 8–11 in Fig. 7a and steps 8–10 in Fig. 7b, but have the same
intermediate decomposition compound b.12, which is in the red
dotted frame. In the generated route, the carboxylic ester (b.12) is
firstly reduced to the alcohol (b.11) in step 11, and in step 10 the
alkyl halide (b.10) is obtained from the alcohol (b.11) by
chlorination. These two reactions have been included in the
patent33. Step 9 is the substitution reaction of the alkyl halide
(b.10) with cyanide reagent and produces the nitrile-containing
compound b.9. Step 8 is the alcoholysis of nitriles to esters under
the catalysis of acids. The number of steps of the generated route
is one more than the published route, but each step also seems to
be acceptable. The other three approaches end early by choosing
other decomposition way at Step 7 as shown in Fig. 7c.

There are 6 of 30 generated routes by EG-MCTS whose
matching degree is lower than 60%. Figure 8 shows a route
different from the published route reported in the patent34. Step
10 is the acylation of acid chloride and the amine (c.11) to the
amide (c.10) and step 9 is the substitution reaction of alcohol
hydroxyl of compound c.10 with trifluoromethanesulfonic
anhydride to provide the trifluoromethanesulfonyl of compound
c.9. In step 8, the amide group of compound c.9 undergoes the
amidohydrolysis. Step 7 is the substitution reaction that turns the
secondary amine (c.8) to the tertiary amine (c.7). Step 6 is the
coupling of aryl compounds with arylboronic acid derivatives
(Suzuki Coupling) and step 5 is the halogenation of aromatic
compounds, both of which have been included in the patent. The
substitution reaction on alkyl halide (c.5) with cyanide reagent
gives the nitrile-containing compound c.4 in step 4. Compound
c.4 is then deprotected to the lactam by demethylation in step 3.
The ester group of compound c.3 is then hydrolyzed to the acid
in step 2. In the last step, compound c.2 is aminated to give the
amide (c.1).

Although each step of these routes follows some chemical
reaction principles, some intermediate molecules of these routes
may not exist in reality or have not yet been synthesized, due to
the failure to consider the chemical environment. For example,
the groups of the molecule itself cannot coexist and the positions
and groups at which reactions can occur are various and do not
definitely proceed as they do in the planning routes. After
searching, we could not find the CAS number of compounds c.2,
c.3, c.4, c.8, c.9, c.10 appearing in the route shown in Fig. 8,
which means that they may not exist in reality or have not yet
been synthesized. These disturbing problems are common in
existing retrosynthetic planning approaches.

Drug retrosynthetic planning. We apply our EG-MCTS
approach to the synthesis of some commercialized star drug
molecules with complex structures to find out whether the
planning synthetic routes have practical guiding significance.
Here are five used molecules in the drug retrosynthetic planning
experiments: mannopeptimycin aglycone, Paxlovid, Sofosbuvir,
Taxol, and Molnupiravir.

The first drug molecule is mannopeptimycin aglycone, which is
the cyclic hexapeptide aglycone of the mannopeptimycins, a
group of glycopeptides known for potent activity against drug-
resistant bacteria. The CAS number of mannopeptimycin
aglycone is 1622135-35-6. We ignore its stereochemical structure
to get the target molecule for EG-MCTS, as compound d.1 shown
in Fig. 9a. The generated retrosynthetic route for mannopepti-
mycin aglycone is shown in Fig. 9a. Note that template-based
approaches (including EG-MCTS) sometimes ignore some side

Table 5 The performance of EG-MCTS with respect to
different sizes of training sets on the test set of ChEMBL
using ChEMBL as B under the iteration limit of 500.

Planning efficiency Route quality

Algorithm Success rate Avg iter Avg len

EG-MCTS-0 59.12 278.44 11.56
EGN on T0 79.05 164.28 9.77
EGN on T1 75.00 200.14 9.55
EGN on T2 74.32 208.38 9.39
EGN on T0þ1 80.74 164.30 10.08
EGN on T0þ1þ2 80.41 156.78 10.11

The metric Avg iter is the average number of iterations. The metric Avg len is the average of
length of all routes.
Values marked with bold are the best performance under each metric.

Table 4 The results of experiments on transferability.

Planning efficiency Route
quality

Algorithm Success rate Avg iter Avg len

Performance on the test set of ChEMBL with ChEMBL as B
EG-MCTS-0 59.12 278.44 11.56
EG-MCTS(eMol) 62.16 272.08 8.36
EG-MCTS(ChEMBL) 79.05 164.28 9.77
Retro*-0+ 41.22 355.77 10.43
Retro*+(eMol) 48.65 327.67 10.22
Retro*+(ChEMBL) 47.97 332.03 10.44

Performance on our test set of 180 molecules with eMolecules as B
EG-MCTS-0 81.11 128.96 8.15
EG-MCTS(ChEMBL) 93.33 79.96 7.71
EG-MCTS(eMol) 94.44 60.75 5.85

Performance on Retro*-190 with eMolecules as B
EG-MCTS-0 73.68 186.15 5.87
EG-MCTS(ChEMBL) 84.21 123.27 6.63
EG-MCTS(eMol) 96.84 55.84 5.07

EG-MCTS(eMol) and Retro*+(eMol) use the EGN trained on eMolecules, while EG-
MCTS(ChEMBL) and Retro*+(ChEMBL) use the EGN trained on ChEMBL. The metric Avg iter is
the average number of iterations. The metric Avg len is the average of length of all routes.
Values marked with bold are the best performance under each metric.
Since we aim to evaluate the transferability, those retraining approaches, marked with underline,
are not involved in the comparison.
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intermediates, which may incur confusion for readers to under-
stand the generated routes. To help readers understand the
routes, we randomly specified one intermediate that can
participate in the reaction and marked it in blue.

The designed route starts from the esterification of compound
d.8 with ethanol (step 7). In step 6, the amine group of compound
d.7 undergoes the condensation reaction with the carboxyl group
of aid (the blue compound) to form the amid (d.6). Step 5 is the
hydrolysis of the ester into the carboxyl. Compound d.5 then
undergoes the acylation reaction with Methyl 2-amino-3-(4-
hydroxyphenyl)propanoate in step 4, followed by two successive
condensation reactions of carboxyl and amino groups in steps 3
and 2. The last step is the intramolecular acylation reaction, in
which the amine group and the ester group of compound d.2 are
involved to form a hexapeptide ring.

The second molecule is Paxlovid, which is the first oral
antiviral drug authorized by the FDA for the treatment of
COVID-19. The CAS number of Paxlovid is 2628280-40-8. We
also ignore its stereochemical structure and use our EG-MCTS to
get its retrosynthetic route as shown in Figure. Note that we also
add the necessary intermediates to the route and mark them
in blue.

The generated route starts with two building blocks, compound
e.7 and e.10. The hydroxyl group of compound e.10 undergoes
the esterification reaction with oxalyl chloride in step 8 and the
amide (e.9) is then hydrolyzed in step 7. On the other side,
compound e.7 first reacts with bromoacetic acid to produce the
acid derivative (e.6) in step 6 and then the carboxylic acid (e.6) is
reduced to the aldehyde (e.5) in step 5. In step 4, compounds e.5,
e.8 and cyanide participate in a ternary reaction to get the
compound e.4 with the cyano group and the amide group. Step 3
is the amide hydrolysis and generates compound e.3. In step 2, a
condensation reaction occurs between compound e.3 and the
compound, which is above the “step 2” arrow, and the amide
hydrolysis occurs at the same time, resulting in compound e.2.
The last step is also the condensation reaction of carboxyl group
and amino group, happening between compound e.2 and
trifluoroacetic acid.

The generated routes for the other three drugs are listed in
Supplementary Fig. 1. From the two routes, even ignoring the
stereochemical structure and some reactants, our generated
routes are definitely not perfect. There are many details to be
perfected, such as whether the presence of intermediate
compounds is reasonable and whether the reactions will go as

planned. For a specific example, the structural stability of
compound e.8 in the Fig. 9b is questionable, as acylation may
occur between the amine group and the acid chloride inside
compound e.8. Although the generated routes given by our EG-
MCTS are not mature enough, but they are heuristic for synthetic
organic chemists while performing retrosynthesis for complex
compounds and can guide them in which direction to consider. It
would be even more helpful if chemists could adjust the generated
routes according to these imperfect and inaccurate details and
finally get a relatively feasible path. For example, for the detail of
the structural instability of compound e.8, we can make minor
adjustments to the generated route as shown in Fig. 9c. In the
adjusted route, we use compound e.9 instead of compound e.8 to
participate in the ternary reaction with compound e.5 and
cyanide to generate new compound e.11 (step 3). The two amide
groups of compound e.11 are then hydrolyzed at the same time in
step 3, discarding the two tert-butyl hydrogen carbonate. Small
adjustments like this make the resulting routes more reasonable.

Conclusion
In this paper, we propose EG-MCTS, a novel MCTS-based ret-
rosynthetic planning approach. Different from existing machine-
trained approaches which are limited to the existing datasets, we
investigate the way of acquiring chemical synthetic knowledge
and experience. Our experimental results on real-world bench-
mark datasets exhibit our EG-MCTS gains significant improve-
ment over existing approaches. The comparison between the
generated routes and the published routes also confirms the
validity and feasibility of our approach. We use our EG-MCTS to
perform retrosynthetic planning for realistic drugs or com-
pounds, and the results exhibit that EG-MCTS is instructive. At
the same time, the experiments on real compounds have exposed
the inadequacies of our approach, which are also common pro-
blems of retrosynthetic planning approaches, that is, the under-
standing and learning of chemical reaction principles are not
thorough and comprehensive. It can be embodied as whether the
presence of compounds is reasonable and whether the reactions
will go as planned and so on. We believe that if these problems
are solved, the quality of the generated routes can be greatly
improved.

In this work, we did not consider reagents and other chemical
reaction conditions, which could be different from actual che-
mical reactions. In addition, in the input of our EGN, molecules
and reaction templates are represented as fixed-dimensional fin-
gerprints, which could incur bit collisions. In the future we will
investigate the possibility of exploring machine learning-based
approaches to making up for the above-mentioned limitations.
Finally, we measure route quality by the length of the route,
which is relatively simple and may cause the algorithm to choose
a strategy of removing some protection steps, making the routes
different from real reactions. In the future we will explore some
chemically-meaningful evaluation metrics.

In addition, in planning community, there have been techni-
ques of high-performance with respect to planning and learning
Zhuo and Kambhampati35, Zhuo and Yang36, Zhuo et al.37,38,
Shen et al.39. It would be interesting to investigate “borrowing”
those techniques to deal with the retrosynthetic planning problem
in the future.

Methods
We first describe the RS planning problem as a Markov Decision Process. Then we
introduce the key part, EG-MCTS planning and the two phases of EG-MCTS
approach in detail. Finally, we introduce the datasets and baseline approaches.

Retrosynthetic planning problem. RS planning can be viewed as a Markov
Decision Process (MDP)40, defined by a state space S, an action space AðsÞ, a
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transition model T ðs; a; s0Þ, a policy π(a∣s) and a reward function Rðs; a; s0Þ. In RS
planning, a state s 2 S is a set of molecules, and the initial state s0=m0 is com-
posed of the target molecule m0. Actions are reaction templates applied to one of
the molecules m in state s. The transition function T ðs; a; s0Þ is deterministic for
simplicity. The policy π(a∣s) is the probability distribution of all allowed functions.
The reward function Rðs; a; s0Þ can be simplified as Rðm;TÞ, indicating the reward
taken by applying reaction template T on molecule m.

EG-MCTS planning. We first introduce the key part, EG-MCTS Planning. We
observe that AND-OR tree structure is suitable for RS planning6,7,10,41, capturing
the relations between reactions and corresponding molecules.The result of EG-
MCTS planning can be represented as an AND-OR tree.

An AND-OR tree has two different types of nodes, i.e., AND node that
succeeds only if all of its child nodes are successful, and OR node that succeeds
only if at least one child node is successful. In RS planning, a molecule is viewed
as successful if there exists at least one reaction that can break it down to B. A
reaction is viewed as successful if all of its reactants are successful. The
retrosynthetic searching process can be represented as an AND-OR tree, whose
OR and AND nodes are molecules and reaction templates, respectively. Note that
a reaction template can be seen as a reaction relation among substructures of
reactants and products. For example, “�x ! �aþ �b” is a reaction template, where �x,
�a, �b are substructures of molecules x, a and b in reaction “x→ a+ b”,
respectively. In EG-MCTS planning, the OR node (molecule node) contains a
molecule and a value Vm, and the AND node (reaction node) contains a reaction
template and a value �Q. We denote a molecule node m as successful if its

molecule belongs to B or one of its child reaction nodes is denoted as successful.
We denote a molecule node as unsuccessful if all of its child nodes are denoted as
unsuccessful or there is no reaction template available to be applied to m.
Likewise, we denote a reaction node T as successful if all of its child molecule
nodes are denoted as successful, and denote it as unsuccessful if one of its child
nodes is denoted as unsuccessful.

We address the three modules of EG-MCST planning in detail below.

● Selection: in order to select a promising molecule node, we need to build a
selection module to repeatedly select reaction templates for molecule nodes
and (sub-)molecules for reaction nodes, until a leaf molecule node is found.
Intuitively, for a molecule node, we select the most promising reaction
templates based on the PUCT policy as used by29, as shown in Eq. (1):

T� ¼ argmax
T2childðmÞ

�Qðm;TÞ
NðTÞ þ cPðm;TÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
NðT 0Þ

p

1þ NðTÞ

 !

ð1Þ

In Eq. (1), �Qðm;TÞ is an average score over all previous scores, which will
be repeatedly updated according Eq. (3) given by the Update module.
P(m, T) is given by the single-step retrosynthetic model S( ⋅ ), and N(T)
records the number of times that node T has been updated. T 0 is the
grandparent reaction node of the reaction node T. The exploration
constant c is a hyper-parameter. For a reaction node, if it has child nodes
which have not been expanded, the algorithm will give priority to this kind
of child nodes and randomly choose one. Otherwise, randomly select one
among the child nodes which have not been proved successful.
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Fig. 6 A highly-matching example showing the differences between EG-MCTS generated route and the published one31. a Chemical solution route given
by EG-MCTS, Retro*+, DFPN-E and MCTS-rollout. b Published solution route. Steps 1 to 7 are the same and not shown in the figure. The intermediate
molecule a.1 are then decomposed in two different ways. The CAS Number of the target molecule is 1173980-10-3. The molecules over the arrow are from
B. The atoms and bonds marked red are reaction center, which change in the reaction.

Fig. 5 An exemplary 11-step route generated for the molecule (CAS NO.:1392842-01-1) by EG-MCTS which matches the published route. a Chemical
solution route given by EG-MCTS. b Chemical solution route given by other three approaches. The molecules over the arrow are from B. The atoms and
bonds marked red are reaction center, which change in the reaction. In b, the route from the target to the molecule in the dashed box is consistent with ours.
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● Expansion: The single-step retrosynthetic model S(⋅) is applied to the
molecule m contained in the selected molecule node, and it predicts the
top-k promising reaction templates. If the output set is empty, indicating
no available reaction templates, the node is unsuccessful. Otherwise, each
reaction template Tj is added to the tree as a child reaction node of the
selected molecule node with �Qðm;TjÞ ¼ Q0ðm;TjÞ given by the EGN. After

applying the template Tj on m, we get the corresponding reactant set Rj.
Each reactant r in Rj is also added as a child molecule node of the reaction
node Tj.

● Update: The update step starts from the selected molecule node and
upwards along the tree. At the molecule node, the algorithm checks
whether the node is successful or unsuccessful. If it is not proved to be
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unsuccessful, the algorithm updates its Vm to the highest �Q among its child
nodes:

VmðmÞ ¼ max
T2childðmÞ

�Qðm;TÞ ð2Þ

At the reaction node, the algorithm firstly updates its update count
N(T)=N(T)+ 1. Then the algorithm records its Q value in the N(T)th

update, denoted as QN(T)(m, T). QN(T)(m, T) is given by the reward function
Rðm;TÞ. The reward function returns z > 1 if the reaction node is proved
to be successful, and− z if it is unsuccessful. Otherwise, the reward
function calculates the average Vm among its child nodes. After getting the
reward in the N(T)th update, the algorithm updates the average score �Q of
the reaction node:

�Qðm;TÞ ¼ 1
NðTÞ þ 1

∑
NðTÞ

j¼0
Qjðm;TÞ ð3Þ

Note that Q0(m, T) is given by EGN when the reaction node T is added to
the tree, which is not counted in its update count, and Qj(m, T), j∈[1,
N(T)] is given by the reward function.

Phase I: learning EGN. The detailed learning procedure can be found from the
algorithm shown Fig. 10. We first initialize the EGN with random weights θ0,
which is denoted by f θ0 . At each training round i≥1, for each target molecule
m 2 Mtrain , we build a search tree T m using EG-MCTS planning with f θi�1

(Step
5). We then collect the training data based on T m (Step 6). After that we update the
EGN with the training data and get the new EGN f θi (Step 9). We verify the

performance of the new EGN on the validation molecule set, i.e., perform EG-
MCTS-planning for each molecule m 2 Mvalidation(Step 11). If the success rate and
average number of iterations can not satisfy the loop condition Lloop , then the
learning algorithm stops and return the well-trained EGN. In the following sub-
sections, we will address three procedures experience collecting, EGN updating and
EGN validating of the algorithm, respectively.

● Experience collecting: The Experience Guidance Network learns from
chemical synthetic experience and uses experience to guide the future
search. It takes a reaction template T and a molecule m as inputs, then
predicts the score of template T acting on molecule m. It works based on
the following assumptions:

1. The score of a reaction template acting on a molecule is independent of
others, so independent prediction is reasonable.

2. The same decomposition action (m, T) may appear in the search of different
target molecules, so EGN, which has learned the value of action (m, T) from
past searching, will give a more accurate value while meeting the same
action.

3. The most potential reaction templates of two similar compounds are likely
to be the same. The well-trained network which has learned from the past
synthetic experience showing that the reaction template T works well in
molecule m will encourage the search to select T when similar molecule m0 is
encountered.

Specifically, in the ith round of training of the EGN, for every molecule m in
the training set Mtrain , EG-MCTS planning builds a search tree T m . For
every reaction node T in the tree T m , it and its parent molecule node m
composes a decomposition action (m, T). We collect every decomposition
action (m, T) and the �Q stored in the corresponding reaction node T to form
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Fig. 9 Two example in drug retrosynthetic planning experiment. a The generated route given by EG-MCTS for mannopeptimycin aglycone, whose CAS
number is 1622135-35-6. b The generated route given by EG-MCTS for Paxlovid, whose CAS number is 2628280-40-8. c The adjusted route according to
b for mannopeptimycin aglycone. In experiment, we ignore their stereochemical structure. The molecules over the arrow are from B. The atoms and bonds
marked red are reaction center, which change in the reaction. We add the necessary intermediates to the route and mark them in blue.
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the experience set D i
train ¼ fðm;TÞ; �Qg. If the same decomposition action

(m, T) occurs multiple times in the experience set, we unify their Q values to
the mean of the scores according to the multiple occurrences.

● EGN updating: the EGN is a single-layer fully connected neural network
with input dimension of 4096 and hidden dimension of 256. It outputs a
scalar Q∈ (0, 1) representing the predicted value. At training round i, the
neural network Q ¼ f θi�1

ðm;TÞ is trained for 20 epochs on dataset D i
train to

minimize LMSE , using Adam optimizer42. We apply dropout43 as a means
of regularization with the dropout rate 0.1.

LMSE ¼ Q� �Qðm;TÞ� �2 ð4Þ
● EGN validating: we then verify the new EGN f θi on the validation set.

Specifically, the algorithm records the highest success rate Rsmax
and the

lowest average number of iterations Ramin
of the last five training round on

the validation set. At the training round i, the algorithm completes the
success rate Rsi

and the average number of iterations Rai
of EG-MCTS

planning with f θi on the validation set. The loop condition Lloop can be
expressed as: Lloop is true if Rsi

�Rsmax
>ε1 or Ramin

�Rai
>ε2. Otherwise,

it is false. ε1 and ε2 are hyper-parameters.

Phase II: generating synthetic routes for new target molecules. To generate
synthetic routes for the target molecule m0, we first exploit the EG-MCTS-planning
procedure, i.e., Step 5 of the algorithm shown Fig. 10, to generate a tree with the
learnt EGN fθ:

EG�MCTS�planningðm0;B; Sð�Þ; f θÞ:
We then initialize a queue with the root node of the tree and an empty reaction list.
The following process is repeated until the queue is empty:

● We get the first node m from the queue.
● If m is not from B and it has a successful child reaction node T, we put all

children frjgnj¼1
of this reaction node T into the queue and add the reaction

m ! frjgnj¼1
to the reaction list. If it is not from B and it does not have a

successful child reaction node, the search fails and the reaction list is set
to empty.

● If the queue is empty, the search succeeds and the algorithm returns the
reaction list.

With the above process, we have the reaction list as the synthetic
route of a target molecule.

Note that in our experiment, we empirically set the exploration constant c to be
0.5, the reward z to be 10 for a successful reaction node and− 10 for a failed
reaction node, respectively. We set ε1 of the loop condition Θ to be 0.015, and ε2 to
be 3, respectively.

Datasets. In order to train the single-step retrosynthetic model S(⋅), we use the
publicly available reaction dataset extracted from United States Patent Office
(USPTO) up to September 2016 provided by Lowe11. The single-step retrosynthetic
model S(⋅) is a template-based model that treats the template predictzion problem
as a multi-class classification problem following previous literature12,44. S(⋅) is
trained on the reaction dataset from USPTO with the assistance of RDChiral14, and
the training details refer to literature7,10. The input of S(⋅) is a molecule, and the
input of the EGN is the combination of a molecule and a reaction template. We
need to represent them by real vectors. For a molecule, we use the Morgan fin-
gerprint of radius 2 with 2048 bits. For a reaction template, its fingerprint could be
computed by rdkit, using the function CreateStructuralFingerprintForReaction and
the fingerprint is then folded into 2048 dimensions. Note that the function used to
calculate the template fingerprint can not encode all chemical information, e.g.,
number of explicit hydrogens, direct bonds, etc. Therefore, different reaction
templates may be represented by the same fingerprint. In practice, there is a
degeneration of some fingerprints because of bit collisions since the dimension of
fingerprints is fixed, so this issue might not affect the performance of the EGN.

For the experiments in Section 2.3, the building blocks set B comes from
eMolecules, a collection of 231M commercially available molecules. We hope the
EGN to have strong generalization ability through learning the synthetic experience
of molecules in training set. In order to obtain those molecules with rich and
valuable experience, we build a Network of Organic Chemistry (NOC)45–47 based
on USPTO and eMolecules. The NOC is a directed graph, where each node is a
molecule and each edge from one node to another, e.g., A to B, indicates that there
is a reaction where A belongs to its reactants and B to its products.

The outdegree of a node A is the number of edges out of A. The cost of a node A
is the length of the longest path among all the paths from A to the leaf nodes in the
synthetic tree. We first initialized the directed graph by viewing each molecule in
eMolecules as a node in the graph. We then repeated the following procedure until
the graph no longer changed:

● We first traversed each reaction in USPTO and added its products to the
graph as new nodes if all of its reactants are in the graph.

● For each new node in the graph, we added new edges from each reactant in
the graph to the new node.

There are 4650 molecules with outdegree ≥ 2 and cost ≥ 4 in the dataset, among
which 907 molecules that are difficult to be solved using Greedy DFS were selected.
Outdegree ≥ 2 means the molecule on the synthetic pathways with at least two
complex molecules, which is assumed it has richer experience. Since the molecules
with higher cost would be broken down to those with lower cost, we collected the
experience of those lower-cost molecules during the searching for those with higher
cost. We thus put a limit on the cost to avoid experience redundancy. In order to
enrich the synthetic experience, we also selected some molecules with higher cost.
There are 1499 molecules with cost≥9 in the dataset. To do this, we performed the
DFS search and kept the 631 molecules that could not be retro-synthesized
successfully within 100 iterations. We then randomly divided the 631 molecules
into three subsets: 286, 165, and 180, respectively. The 286 molecules were
combined with the 907 molecules mentioned above as the final training set of 1193.
The remaining 165 and 180 molecules were used as the validation set and the test
set, respectively.

We also use the test set of Retro*7 and Retro*+10, called Retro*-190, which
consists of 190 molecules. In order to ensure the fairness and effectiveness of the
experiment, we do some similarity statistical experiments: for a test molecule
m 2 Mtest , we calculate the highest similarity and the average similarity between it
and the molecules in the training set, denoted as Smax(m) and Savg(m). For all
molecules in our test set, the average of Smax is 0.62 and the average of Savg is 0.36.
And the average of Smax in Retro*-190 is 0.61 and the average of Savg is 0.35.

For the experiments in section “Experiments on transferability”, the building
blocks set B comes from ChEMBL, which consists of 2.3M bioactive molecules with
drug-like properties. Note that ChEMBL contains far fewer molecules than
eMolecules. If we use the same method, as done on eMolecules, to extract the
training set, validation set and test set, i.e., first constructing the NOC and then
filtering the eligible molecules, the number of eligible molecules is small.
Considering the difference of sizes between eMolecules and ChEMBL and the
scalability of the training set, we use a new method, which different from what we
did on eMolecules, as shown below:

Fig. 10 The algorithm of Phase I Learning EGN. The EGN is first randomly
initialized, and then experience collecting, EGN updating, and EGN
validating are performed sequentially in each iteration.
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1. We first randomly sampled the molecules that are viewed as products in the
USPTO reaction dataset.

2. We then randomly initialized the EGN and sought those molecules using
EG-MCTS planning with the initialized EGN.

3. We selected the molecules without any successful path being found within
100 iterations.

Since the number of molecules selected with the above-mentioned method is
large, about 60,000, we randomly picked 2396 molecules for training, 305 for
validation, and 296 for testing, which is almost the same as the number of the
training, validation and test sets on eMolecules. T1 and T2 use the same sampling
procedure as above.

Baselines. To verify the effectiveness of EG-MCTS, we compare our approach
against other representative baselines in RS planning problem:

1. Retro*+ and Retro*-0+10 are neural-based A*-like algorithms based on
Retro*7 with a self-improved single-step retrosynthetic model. Retro*+ uses
a neural value network trained in the USPTO and Retro-0*+ is its non-
learning version. Its code and test set is available.

2. DFPN-E6 combines the Depth-First Proof-Number (DFPN) Search with
Heuristic Edge Initialization. Following the implementation details and
parameter settings in the literature, we have implemented DFPN-E.

3. MCTS-rollout uses a basic tree structure whose nodes are molecule sets and
edges are reaction templates. The tree structure and search algorithm can be
referred to Segler et al.4. MCTS-rollout uses rollout to evaluate the values of
templates, i.e., algorithm randomly takes a few more steps forward and
reaches a future state, then uses the future state score as the current state
score. For the max rollout depth, which is the number of forward steps while
performing rollout, we used the default maximum depth used by 3N-MCTS,
i.e., 5. The exploration constant c is 0.5.

4. Greedy DFS always gives priority to the reaction with the highest
probability. We set its max depth to be 10, which is the max depth of the
expanded search tree. The node of DFS search tree is defined as a set of
molecules, similar to MCTS-rollout.

5. To understand more about the importance of the EGN, we also perform an
ablation study by testing the non-learning version EG-MCTS-0 set the
initial Q value to be 0.5 for all actions.

All experiments use the same building blocks set B. As for single-step
retrosynthetic model S(⋅), all algorithms use the model of Retro*+10, except
Retro*-0+ (because it has its own model).

Data availability
All related data in this paper are public. The eMolecules dataset can be downloaded from
http://downloads.emolecules.com/free/2019-11-01/. The ChEMBL dataset can be
downloaded from https://www.ebi.ac.uk/chembl/. The test set Retro*-190 can be
downloaded from https://github.com/binghong-ml/retro_star. The data used in the
experiment is available at https://github.com/jjljkjljk/EG-MCTS.

Code availability
The source code of EG-MCTS is available at https://github.com/jjljkjljk/EG-MCTS.
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