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Quantifying label enrichment from two mass
isotopomers increases proteome coverage for
in vivo protein turnover using heavy water
metabolic labeling
Henock M. Deberneh1, Doaa R. Abdelrahman2,3, Sunil K. Verma1, Jennifer J. Linares1, Andrew J. Murton2,3,

William K. Russell1, Muge N. Kuyumcu-Martinez1,4,7, Benjamin F. Miller5,6 & Rovshan G. Sadygov 1✉

Heavy water metabolic labeling followed by liquid chromatography coupled with mass

spectrometry is a powerful high throughput technique for measuring the turnover rates of

individual proteins in vivo. The turnover rate is obtained from the exponential decay modeling

of the depletion of the monoisotopic relative isotope abundance. We provide theoretical

formulas for the time course dynamics of six mass isotopomers and use the formulas to

introduce a method that utilizes partial isotope profiles, only two mass isotopomers, to

compute protein turnover rate. The use of partial isotope profiles alleviates the interferences

from co-eluting contaminants in complex proteome mixtures and improves the accuracy of

the estimation of label enrichment. In five different datasets, the technique consistently

doubles the number of peptides with high goodness-of-fit characteristics of the turnover rate

model. We also introduce a software tool, d2ome+, which automates the protein turnover

estimation from partial isotope profiles.
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Protein turnover plays a key role in maintaining protein
homeostasis1. It is important to healthy biological
functioning2 and is often dysregulated in diseases3,4.

Metabolic labeling of live animals with stable isotopes followed by
liquid chromatography coupled with mass spectrometry (LC-MS)
and combined with sophisticated data processing algorithms has
been a powerful tool for estimating the turnover of individual
proteins in high-throughput and large-scale studies5,6. The
labeling agents can be divided into two groups. The amino acid-
based labeling7–10 uses a diet enriched in stable isotope labeled
essential amino acids such as 13C6-Lys. The label incorporation
results in separate mass profiles of unlabeled and labeled forms of
a peptide. Only peptides containing the heavy amino acid are
useful for protein turnover rate. Non-canonical amino acids have
also been used to study the protein turnover in LC-MS11,12.

The atom-based labeling uses a diet enriched in heavy13–17

(such as 13C, 15N, 2H) or light18 (12C) atoms. In a strategy named
SILAM5 (stable isotope labeling of mammals), rats and mice have
been metabolically labeled with a diet containing 15N-labeled
spirulina. Turnover rates of individual proteins in mouse brain
and liver have been reported14. The atom-based labeling results in
composite spectra of unlabeled and labeled forms of a peptide.
Therefore, the estimation of label enrichment resulting from
atom-based labeling agents is computationally more complex13.

An alternative approach to protein turnover study is to char-
acterize a protein based on its expression as a fusion protein with
an appropriate tag19. Fluorescent proteins (FPs) have been widely
exploited tags. Bleach-chase and photoactivation/photoconver-
sion of FPs permit monitoring fluorescence (and estimating
protein half-live) after the bleaching or change in fluorescent light
color from the newly synthesized proteins in cell culture20.
Tandem fluorescent proteins have also been developed and
applied21. However, in living animals, photoactivation may not be
easily achieved. SNAP-tag22 overcame this problem and was used
to measure protein turnover in transgenic mice. FP tagging allows
the detection of expression levels of target proteins. A technique
termed Global protein stability, integrated fluorescence-based
protein stability analysis, and the DNA microarray technology23.
The stabilities of thousands of proteins in cell culture have been
estimated23.

A classical method for estimating protein degradation in
eukaryotes is the chemical inhabitation of the ribosome translo-
cation with cycloheximide24. Protein abundances are measured
by Western blot, using antibodies for target proteins. The
dependence on antibody-based quantification limits the
throughput of the method. A comprehensive review of the
techniques used for protein turnover studies can be found
elsewhere25–27.

Among the stable isotope labeling agents, heavy water (2H2O)
is easy to use, biologically safe at low enrichments, relatively
inexpensive, and does not require diet adaptation28. The deu-
terium (2H) incorporation from heavy water labeling has been
monitored in vivo by stimulated Raman scattering microscopy29.
The vibrational frequency of C-D bond is located in a cell-silent
spectral window in which no other Raman peaks exists30. The
technique is non-invasive and non-destructive. It allows for
microscopic imaging of lipid and protein synthesis in vivo.
However, currently, it does not provide the ability to determine
the turnover rate of individual proteins.

Deuterium in heavy water is incorporated into all non-essential
amino acids31. The gradual incorporation of the deuterium into a
peptide decreases the relative isotope abundance (RIA) of its
monoisotope. The monoisotopic RIA is computed from the
complete isotope profile, which comprises up to six mass iso-
topomers. The time course of the RIA is modeled with an
exponential decay function32–36. The coefficient of determination,

R2, is often used as a measure of the goodness-of-fit (GOF)
between the experimental data and theoretical curve fitting36,37.
This approach can produce turnover rates of thousands of pro-
teins; however, it has been observed that only 35–45% of all
quantified peptides have been useful for the estimation of protein
turnover rates37,38. For the rest of the quantified peptides, the R2

is too low (R2 < 0.8). One of the factors affecting the estimation of
label incorporation is the complexity of the mammalian pro-
teome; the isotope profiles of many peptides overlap in LC-MS.
Since abundances of up to six mass isotopomers of a peptide are
required for most approaches36,39, the chances of co-elution
affecting the estimation of monoisotopic RIA are high.

This work develops an approach to increase the proteome
coverage for protein turnover by using partial isotope profiles.
The basis of this strategy is the estimation of label enrichment of a
peptide from any pair of its mass isotopomers. We provide the-
oretical formulas for the time courses of six mass isotopomers.
Here, the formulas are utilized to determine label enrichment,
followed by protein turnover rate estimations. Previously,
Papageorgopoulos32 and colleagues have shown that the label
enrichment during metabolic labeling can be modeled as linear
regression on the ratios of pairs of mass isotopomers. The mass
isotopomer abundances, in turn, were modeled as polynomials of
the enrichment. The formulas presented in this work provide the
polynomials and their coefficients analytically. They allow com-
putationally efficient estimations of label enrichment in data
analysis of large-scale datasets.

We applied the method to five datasets acquired on Orbitrap
Eclipse and Orbitrap Q Exactive HF mass spectrometers. The
Orbitrap Eclipse dataset (acquired for this study from murine
liver tissue) was used as the developmental dataset to compute
RIA from partial isotope profiles and compare it with the tradi-
tional approach. The other datasets (Orbitrap Q Exactive HF) are
from a recent study36, which generated LC-MS data of heavy
water labeled samples of four murine tissue types. The approach
using two mass isotopomers (partial isotope profiles) has con-
sistently increased the number of quantified peptides in both
datasets and across all tissue types.

Results
Protein turnover rates are computed using the monoisotopic RIA,
I0(t), obtained from LC-MS data of heavy water metabolically
labeled peptides. At every time point of labeling, the mono-
isotopic RIA is determined as the normalized abundance of the
monoisotope from the complete isotope profile of a peptide36,37,
Supplementary Eq. (1). The time series of the monoisotopic RIA
of a peptide is modeled as an exponential decay function to obtain
the turnover rate, Fig. 1.

I0 tð Þ ¼ Iasymp
0 þ I0 0ð Þ � Iasymp

0

� �
e�kt ð1Þ

In Eq. (1), I0(0) is the monoisotopic RIA of the unlabeled
peptide, I0asymp is the monoisotopic RIA achieved at the plateau
of labeling, t is the labeling duration, and k is the turnover rate
(also referred to as degradation rate constant26,40). I0asymp is
calculated from the number of hydrogens accessible to deuterium
from heavy water (NEH), the deuterium enrichment of body water
(pW), and the natural abundance of deuterium (pH) as shown in
Supplementary Eq. (10). GOF characteristics such as the coeffi-
cient of determination (R2), Pearson correlation, and residual
standard error are used to evaluate the quality of the theoretical fit
to the experimental data. Normally, R2 > 0.8 is used to filter
peptides36,37. The residual standard error is used to compute the
confidence interval of the turnover rate, k (Supplementary Eqs.
(8), (9), and (11)).
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The exponential decay model relies on the accurate estimations
of the monoisotopic RIAs. Since mammalian proteome samples
are complex, their peptides often coelute, and isotope profiles
overlap. Examples of overlapping isotope profiles are provided in
Supplementary Figs. 1–5. The overlaps resulted in inaccurate
estimations of the monoisotopic RIA when complete isotope
profiles were used. However, the label enrichment could accu-
rately be estimated from the non-affected mass isotopomers
which can then be used to reconstruct the monoisotopic RIA (as
will be shown below). For example, the deuterium enrichment,
pX(t), is obtained, in the equation for the ratio of abundances of
the second (A2(t)) and first heavy mass isotopomers (A1(t)):

A2 tð Þ
A1 tð Þ ¼

I2 0ð Þ
I0 0ð Þ �

I1 0ð Þ
I0 0ð Þ b1 0ð Þ þNEH þ 1

NEH � 1
b2 0ð Þ � b2 tð Þ� �� �

I0 tð Þ þ b1 tð Þ ð2Þ

bn(t) is defined as:

bn tð Þ ¼ NEH

n

� �
pX tð Þ þ pH

1� pH � pX tð Þ

� �n

In the above equation, Ai(t) is the raw (non-normalized)
abundance of the ith mass isotopomer. Numerically, pX(t) is
determined by minimizing the absolute value of the difference

between experimental, Aexpr
2 ðtÞ

Aexpr
1 ðtÞ, and theoretical A2 tð Þ

A1 tð Þ, ratios from
Eq. (2):

pXðtÞ ¼ argmin
pX tð Þ

A2 tð Þ
A1 tð Þ �

Aexpr
2 ðtÞ

Aexpr
1 ðtÞ

���� ����subject to : pXðtÞ 2 0;pW
	 


The analytical formulas for the ratios of other mass iso-
topomers (A2(t)/A1(t), A1(t)/A0(t), A3(t)/A0(t), and A4(t)/A0(t))
are provided in the Supplementary Notes. We have implemented
this technique in the software tool d2ome35. The updated version
of the tool will be referred to as d2ome+ . The main differences
from the previous version are the ability to quantify the label
enrichment from two mass isotopomers and the computation of
the confidence intervals. d2ome+ is available at GitHub, https://
github.com/rgsadygov/d2ome.

Once pX(t) is determined from a ratio of pair of raw abun-
dances (from Eq. (2), and Supplementary Eqs. (2), (3) for A1(t)/

A0(t), A2(t)/A0(t)), the RIA of the monoisotope, gI0 tð Þ, is

Fig. 1 An approach to estimate protein turnover rates from the abundances of two mass isotopomers. a Experimental and workflow of metabolic
labeling, LC-MS, and data processing. b Relative abundances of mass isotopomers shifted during the gradual incorporation of deuterium from heavy water.
Shown are the isotope profiles of peptide, NLDKEYLPIGGLAEFCK, at three labeling durations: 0, 3, and 21 days. The turnover rate is determined from the
depletion of the monoisotopic RIA, I0(t). c The monoisotopic RIA is traditionally obtained as normalized monoisotopic abundance from the complete
isotope profile (red bar). This work determines the monoisotopic RIA from only two mass isotopomers (green bars). At first, the deuterium enrichment of a
peptide is determined from two mass isotopomers. Then the deuterium enrichment is used to calculate the monoisotopic RIA. The time course of I0(t) is fit
to an exponential decay function to obtain the turnover rate. d The RIAs of the first five mass isotopomers of the peptide as a function of deuterium
enrichment. The Ik-1(t)/Ik(t) ratios. The experimental values (black circles) and theoretical fit (purple) for the I0(t) of the peptide. I0(0) is the monoisotopic
RIA of the unlabeled peptide. NEH is the number of hydrogens accessible to deuterium in drinking water. pX(t) is the deuterium enrichment of a peptide at
the labeling time point t. Ai(t) is the raw (non-normalized) abundance of the ith mass isotopomer measured in LC-MS. L– labeled, Uunlabeled, LC liquid
chromatography, MS mass spectrometry.
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reconstructed as:

gI0 tð Þ ¼ I0 0ð Þ 1� pX tð Þ
1� pH

� �NEH

ð3Þ

The value of gI0 tð Þ is used in the time course data to fit the
exponential decay function, Eq. (1). Thus, the monoisotopic RIA
is estimated from the abundances of two mass isotopomers,
instead of the completed isotope profile used by the traditional
approach.

Figure 2 presents an example of the implementation of the
approach for the CPMS_MOUSE peptide, GTTITSVLPKPAL-
VASR. It shows the monoisotopic RIAs estimated from the
complete isotope profile (black circles), A1(t)/A0(t) (blue pluses),
A2(t)/A0(t) (green stars), and A2(t)/A1(t) (yellow crosses) ratios.
The rates computed using the time series of reconstructed gI0 tð Þ by
utilizing the label enrichment estimations from the ratio of raw
abundance of two mass isotopomers ranged from 0.117 day−1 to
0.137 day−1. The turnover rate computed from the complete
isotope profile was 0.135 day−1. In the Supplementary Data 1,
there are RIA time series data for 1227 distinct peptide sequences
(amino acid sequence, charge, post-translational modifications)
which showed improvements in the GOF characteristics (R2)
after the application of the method. The first page of the file
includes improved RIAs estimations of peptides from Supple-
mentary Figs. 1–5.

The validations of monoisotopic RIAs and turnover rates
estimated from partial isotope profiles. The Orbitrap Eclipse
dataset was used to validate the use of partial isotope profiles for
estimation of the monoisotopic RIAs and turnover rates. First, we
compared the values of I0(t) from complete isotope profiles with
those obtained by using a pair of mass isotopomers. The com-
parison was made for peptides with high GOF characteristics to
the experimental data (R2 ≥ 0.95). Further filtering was done to
restrict the peptides to those whose turnover rates fit the range of
shortest (1 day) and longest durations of the labeling (21 days),
e.g., 0.05 ≤ k ≤ 0.6. There were 1928 distinct peptides that passed
the thresholds. It is assumed that the estimations of the mono-
isotopic RIAs from the complete isotope profiles were accurate,

and the isotope profiles of these peptides served as a validation set
for the method using only two mass isotopomers. At every time
point of labeling, gI0 tð Þ was computed using Eq. (3) and compared
with that obtained from full isotope profile, Supplementary Eq.
(1). The density of the relative differences, ðI0ðtÞ � gI0ðtÞÞ=I0ðtÞ, is
plotted in Supplementary Fig. 6. As the figure shows, the dis-
tribution is bell-shaped with a single mode at zero. The relative
RIA differences did not exceed 10% of the RIA computed from
the complete isotope profile, Supplementary Eq. (1). The final
width of the distribution is attributed to the fluctuations in
measurements of the mass isotopomer abundances41. The results
showed that for high-quality spectral data, the values of the
monoisotopic RIA, I0(t), computed from complete or partial
isotope profiles, agreed well and validated our approach for using
partial isotope profiles for estimating the monoisotopic RIA in
experimental data.

Next, the turnover rates obtained from partial and complete
isotope profiles were compared. For the high-quality dataset
(R2 ≥ 0.95), we used Eq. (3) to compute turnover rates obtained
from the reconstructed RIAs. The rates were compared with those
obtained from RIAs computed from complete isotope profiles.
Supplementary Fig. 7 shows the relative differences between
turnover rates obtained by the original approach (using a full
isotope profile to compute the monoisotopic RIA) and those
obtained by using a pair of mass isotopomers, gI0 tð Þ. The density of
the distribution was zero-centered with a width about 20%. These
data show that our approach using two mass isotopomers for
computing the monoisotopic RIA can, in practice, be used to
estimate the protein turnover rates. Supplementary Fig. 8 is the
scatter plot of the relative errors of the turnover rates and I0(t)
estimations from a pair of mass isotopomers. As seen from the
figure, the joint distribution is centered around zero on both axes.
The Pearson correlation between the relative differences was 0.11.
It indicates that there was no systematic error in estimation of the
turnover rate from the reconstructed monoisotopic RIA.

The monoisotopic RIAs obtained by using the A1(0)/A0(0),
A2(0)/A1(0), and A2(0)/A0(0) ratios and complete isotope profiles
were tested to determine how often each one of them improved
the RIA estimations. The test determines if there is any

Fig. 2 An approach using two mass isotopomers accurately reproduces the monoisotopic RIA from the complete isotope profiles. The time series of
monoisotopic RIAs (y-axis) is shown along the labeling duration (x-axis). The turnover rates, which were computed by using the reconstruction of the RIAs
by each one of the three ratios, A1(t)/A0(t) (blue pluses), A2(t)/A0(t) (yellow crosses), and A2(t)/A1(t) (green stars), agreed to up to 14% with the
turnover rate (0.135 day−1) calculated using the complete isotope profile. Solid lines show the fits from the corresponding (based on the color of the data
points) label enrichment determination technique. CPSM_MOUSE – mouse protein carbamoyl-phosphate synthase (ammonia), mitochondrial.
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redundancy in the estimations. Isotope profiles of non-labeled
peptides were used because, for them, the accurate isotope profile
is that of the natural isotope distribution, and a direct comparison
can be made between the theoretical prediction and experimental
observation. For this test, isotope profiles of peptides with R2

larger than 0.75 were used, (15700 peptides). Supplementary
Fig. 9A shows the heat map and scatter plot of the experimentally
(from complete isotope profiles) and theoretically (from the
natural isotope distributions of atoms) computed monoisotopic
RIAs. The ideal distribution would be the identity line (shown in
red). Supplementary Fig. 9B–D show the heat map and scatter
plots of monoisotopic RIAs obtained by using A1(0)/A0(0), A2(0)/
A1(0), and A2(0)/A0(0) ratios versus the theoretical monoisotopic
RIAs. As is seen from the figures and the correlation analyses, the
best matches to the theoretical RIAs are obtained by using A1(0)/
A0(0). Supplementary Fig. 10A shows the result obtained from
choosing the best fit from any of the ratios, and Supplementary
Fig. 10B shows the best fit from either a complete isotope profile
or any of the ratios. The mean and standard deviation of the
relative differences of RIAs from complete isotope profiles and
theoretical calculations (using atomic isotope distributions) were
0.0427 and 0.093, respectively, Supplementary Fig. 9A. After
combining the data from the complete mass isotopomer profiles
and the ratios of abundances of mass isotopomers, the mean and
standard deviation of the relative differences (from the theoretical
values) were reduced to 0.0097 and 0.037, respectively, Supple-
mentary Fig. 10B. Pearson correlation between the RIAs
computed from only complete isotope profiles was 0.95. It
increased to 0.99 when the ratios and complete isotope profiles
were used. The greatest number (34%) of RIA estimations came
from the A1(0)/A0(0) ratio, Supplementary Fig. 11. The other
ratios and complete isotope profile estimations contributed
approximately equally. In the d2ome+ workflow section of
Supplementary Information, we provide additional data and
analyses of the performances of complete and partial isotope
approaches for the unlabeled sample. In particular, we provide
the density plots of the relative errors of RIA estimations from all
methods (Supplementary Fig. 12), the complementarity of the
various isotope ratios (Supplementary Fig. 13), and improve-
ments for the peptides whose monoisotopic RIAs are under or

over-estimated by complete isotope profiles and were improved
by partial isotope profiles (Supplementary Table 1). The
description also contains the substantiation for using six mass
isotopomers in the protein turnover study based on the
deuterium labeling, Supplementary Fig. 14. In Supplementary
Data 2, we provide the results of the estimations of the
monoisotopic RIAs from each of the methods for all peptides
in an unlabeled sample. The proportions of erroneously estimated
RIAs were higher for the low abundance peptides, Supplementary
Table 1. The relative error of the RIA estimation was higher at the
start and end of the chromatographic peak elution, which is
shown in the box plot, Supplementary Fig. 15. The analyses
provide the characteristics of the monoisotopic RIA estimation
from complete and partial isotope profiles with mass accuracy
(Supplementary Table 2), chromatographic elution window
(Supplementary Table 3), and sample fractionation (Supplemen-
tary Table 4).

The approach using two mass isotopomers doubles the number
of high-quality model fits. The Orbitrap Eclipse dataset was used
to determine the performance of the approach using only two
mass isotopomers, identify mass spectral characteristics of pep-
tides for which the quantification was improved, and analyze the
accuracy of the rate constant estimations for these peptides. The
number of quantified peptides that passed the R2 threshold of 0.8
before and after the use of two mass isotopomer ratios are shown
in Fig. 3. The time course of peptides that were quantified in at
least four labeling durations were considered36,39. In the dataset,
there were 22468 such peptides in total. d2ome+ increased the
number of peptides with the improved theoretical fit (R2 ≥ 0.8) to
the experimental data by 60%. The exact numbers of peptides are
shown in Supplementary Table 5. To detail the improvements by
the ranges of the R2 values, the latter were divided into four
groups (R2 < 0.8; 0.8 ≤ R2 < 0.9; 0.9 ≤ R2 < 0.95; R2 ≥ 0.95). It is
important to detail the improvements, as R2 ≥ 0.8 may mean
0.8 ≤ R2 < 0.85 or R2 ≥ 0.95. The latter interval indicates the most
accurate fit to the experimental data. These results are shown in
Fig. 4a (original d2ome) and B (d2ome+ ). The improvement
was in the category of peptides for which the R2 ≥ 0.95, where the
number of peptides more than doubled, Supplementary Table 5.

Fig. 3 The number of peptides useful for protein turnover quantification increases by 60% after processing with d2ome+ (two mass isotopomer
approach). The blue bars show the number of peptides for which the coefficient of determination (R2) of the theoretical fit to the experimental data was
equal to or larger than 0.8. The red bars show the number of peptides for which R2 is less than 0.8. From the estimations using complete isotope profiles
(original d2ome), theoretical fits for 10644 distinct peptides had R2≥ 0.8. The use of partial isotope profiles (d2ome+) increased the corresponding
number to 16708. The number of distinct peptides with R2 < 0.8 was reduced from 14610 to 8546.
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The improvements were achieved by each one of the ratios. It is
shown in Fig. 5 which depicts proportions that each specific ratio
(out of the three) had contributed to the improvements in the R2

coefficients. This finding indicates that all three mass isotopomers
were important for improvement of the isotope enrichment
estimations.

The results were analyzed to find out for which type of mass
spectral data the two mass isotopomer approach improves the
GOF of the exponential decay model. The focus was on the
spectral accuracy (SA) of the complete isotope profiles and its
effect on the R2. For this, at first, the distributions of SA of the
data for which the R2 was high (R2 ≥ 0.95, 3106 peptides) and low
(R2 ≤ 0.25, 7372 peptides) were computed. Since the isotope

profiles of peptides change during the labeling, theoretical natural
isotope distributions are not sufficient for estimating the SA. It
was assumed that at the time point of labeling, t, the mass
isotopomer distribution of a peptide is a composite spectrum,
SðtÞ, of unlabeled (with the proportion θ), Sunlabeled, and labeled
(with the (1– θ) proportion), Slabeled, forms of the peptide42:

SðtÞ ¼ θ Sunlabeled þ 1� θð ÞSlabeled ð4Þ
where Sunlabeled is the isotope profile of the unlabeled (natural)
form of a peptide, and Slabeled is the isotope profile of the fully
labeled form of the peptide. Slabeled is determined from the body
water enrichment (pW) and the number of exchangeable
hydrogens (NEH), using the formulas for mass isotopomers
abundances (Eqs. (5)–(9) in the “Methods” section). θ can be
between 0 to 1; zero corresponds to the unlabeled peptide, one is
the fully labeled peptide. This is an often-used form of
representation of a composite spectrum43, but here isotope
profile of the labeled peptide is computed from a formula instead
of the simulation, e.g., by Fourier transforms. θ is obtained from
the minimization of the sum of squares of differences between
computed, SðtÞ, and experimental, SexprðtÞ, isotope profiles:

θ ¼ argmin
θ

SexprðtÞ � SðtÞð Þ2 ¼ argmin
θ

∑
5

k¼0
SðtÞexprk � SðtÞk
� �2

subject to : θ 2 0;1½ �

The minimum sum of the squares of the differences (SSD)
between the theoretical profile from Eq. (4) and the experimental
mass isotopomer profile of peptides characterizes the SA of the
experimental mass isotopomer at the labeling time point t. The
SSDs were calculated for two groups of peptides with R2 ≥ 0.95
and R2 ≤ 0.25. Supplementary Fig. 16 shows the density plots of
the natural log-transformed values of SSDs for each group. The
densities of the SSDs for these two groups were well separated. It
shows that high GOF characteristics are obtained from isotope
profiles that have better SAs. Our approach corrects the
estimations of the label incorporation for peptides with
moderate-to-low GOF characteristics.

Accuracy of turnover rates obtained from the ratios. Since the
real turnover rates of proteins are unknown, it is not possible to
directly estimate the accuracy of the turnover rates. However, one
can use the turnover rates of proteins quantified by multiple
distinct peptides, as a basis for the comparison. In general, the
estimations of turnover rates of proteins quantified by many
peptides are robust. For this analysis, we used only proteins that

Fig. 4 The number of peptides for which the coefficient of determination (R2) is 0.95 or higher has more than doubled when using d2ome+ (two mass
isotopomer approach). Shown are the pie charts of detailed percentages of the results turnover rates from d2ome (a) and d2ome+ (b) approaches. The
percentages of quantified peptides with respect to four different R2 intervals are shown. The percentage of peptides for which R2≥ 0.95 (blue color) has
increased from 16 to 40%. This group has become the largest category of peptides after the theoretical fit using the monoisotopic RIAs obtained from the
ratios of two mass isotopomers. The percentages of peptides with R2 < 0.8 (red color) decreased by 24%. The number of peptides in the other two
categories remained unchanged.

Fig. 5 Each of the three ratios contributed about equally to the improved
estimations of the monoisotopic RIA. The pie chart shows the percentages
of data points for which the estimations of labeling enrichment from each
ratio type were optimal. For 34% (~61000 data points) of improved
estimations of the label enrichments, the improvements were achieved by
using A2(t)/A0(t) ratio.
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had at least six distinct quantified peptides that passed the
R2 ≥ 0.8 threshold (using complete isotope profiles). Turnover
rates, whose GOF characteristics were improved with the com-
putation using the ratios, were compared with the distribution of
the rates obtained from the complete isotope profiles. For the
comparison metric, a normalized difference between the protein
turnover rate, kprot (the median of turnover rates of all peptides of
the protein), and the peptide turnover rate, kpep, was used. The
metric was ðkpep � kprotÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpep

2þkprot
2

p
. The histograms of the

metric before and after using the ratios are shown in Supple-
mentary Fig. 17. The addition of the peptides improved the mean
and median, while the standard deviation of the distribution of
the metric slightly increased. Thus, the median and mean of the
test metric in the updated distribution were 0.02 and 0.04,
respectively. In the original distribution, the corresponding values
were 0.04 and 0.06. The standard deviation of the distribution
before and after the update was 0.16 and 0.2. The numbers of

distinct peptides that passed the R2 threshold before and after the
use of the ratios for label enrichment were 7210 and 10543,
respectively. The results show that using the ratios in peptide
turnover rate calculations increased the number of distinct pep-
tides and did not affect the accuracy of the turnover rate esti-
mations for proteins.

Murine liver protein turnover. In the Orbitrap Eclipse dataset,
there were 2392 proteins, which had at least one peptide quan-
tified in four or more experiments. As summarized in Supple-
mentary Table 5, for 1769 of the proteins, there were at least one
peptide with R2 ≥ 0.8 from time courses computed with complete
isotope profiles. The number increased to 2108 for the approach
using partial isotope profiles. The number of proteins with at least
one peptide with R2 ≥ 0.95 increased by 80% when the mono-
isotopic RIA was computed from partial isotope profiles.

Fig. 6 The turnover rates of histones are accurately computed by the approach using two mass isotopomers. Slow turnover rates of Histones are
reflected in the time series of label incorporation obtained using complete (experimental) isotope profiles and reconstructed isotope profiles (using a pair
of mass isotopomers). Shown are the labeling time series data of a peptide of histones: (a) H2A1B (histone 2A type 1-B), (b) H2B1B (histone 2B type 1-B),
(c) H3.2 (histone H3.2), (d) H4 (histone H4), (e) H1.4 (histone H1.4), and (f) H2AY (core histone macro-H2A.1).
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The global turnover rate of murine proteins has been reported
to be 2–3 days8, which corresponds to turnover rates
0.23–0.35 day−1. The median and mean of the turnover rates
in the dataset were 0.28 day−1 and 0.22 day−1, respectively. The
density plot of the turnover rate distribution is shown in
Supplementary Fig. 18. Proteins such as Major Urinary Protein
and APOE turnover very fast44—by the time the data was
collected for the first labeling time point, 1 day. For these
proteins, it can accurately be stated that their turnover rates are
faster than 0.69 day−1. The rates of all quantified proteins are
reported in Supplementary Data 3. The tables also include the CIs
for protein turnover rates which are computed from standard
deviations of the rate constants of their constituent peptides
(Supplementary Eq. (12)).

Long-lived proteins. There existed a group of murine liver
proteins with computed half-lives longer than 21 days (turnover
rate smaller than 0.033 day−1). In general, long-lived proteins
have received prominent attention in protein turnover
studies45,46. Intracellular proteins with long lifespans have been
linked to age-dependent defects, which include decreased fer-
tility and functional decline in neurons45. We analyzed the list
of proteins with half-lives longer than 21 days using the
STRING47 database. The list included histones, lamins, col-
lagens, nuclear pore proteins, hemoglobins, cytoskeletal kera-
tins, Band 3 anion transport protein (major integral membrane
glycoprotein of the erythrocyte membrane), and carbonic
anhydrases. The STRING47 analysis generated the protein
network shown in Supplementary Fig. 19. There are a few

subnetworks that are made of interacting histones, cytoskeletal
keratins, collagens, carbonic anhydrases, and hemoglobins.
Figure 6 shows the representative time series data and the
corresponding theoretical fits for different Histone proteins.
Members (H2A1B_MOUSE, H2B1B_MOUSE, H31_MOUSE,
H4_MOUSE) of the four histone families (H2A, H2B, H3, H4)
that are the core components of nucleosome had slower turnover
rates ranging from 0.024 day−1 to 0.043 day−1, Fig. 6A–D. His-
tones of the H1 family bind to the linker DNA between the
nucleosomes. The H14_MOUSE variant had a faster turnover rate,
0.0715 day−1, Fig. 6E. Time series data from peptides of these and
other slow turnover proteins obtained from time series of 96 dis-
tinct peptide sequences are shown in Supplementary Data 4. The
approach using partial isotope profiles increased the number of
distinct peptides that passed the GOF threshold by 60%.

One group of proteins provides a positive control for zero
turnover rate computations. The contaminants, e.g., trypsin and
various human keratins, are introduced into proteomic samples at
each sample preparation48. They are not labeled with heavy water;
their “turnover rate” should be zero. Supplementary Data 5
contains labeling time series of 123 distinct peptides from the
contaminant proteins. These peptide sequences are not shared with
any of the murine protein sequences in the SwissProt database. As
seen from the figures, the computed turnover rates were practically
zero. It is noted that for very slow turnover proteins (turnover rate
less 0.01 day−1), the R2 is not an appropriate measure of the
GOF37. For these proteins, the standard error of the theoretical fit
(≤0.05) was used as a GOF measure.

Fig. 7 Proteins of a complex have similar turnover rates. Turnover rates of proteins in protein complexes obtained from Gene Ontology and CORUM
databases. x-axis is the base-10 logarithm of the protein turnover rates. Shown are the boxplots of turnover rates of proteins for each complex. Each box
comprises turnover rates between the 25th and 75th percentiles of the complex proteins. The vertical bar in each box is the median turnover rate of the
proteins in the corresponding complex. The blue dot in each box is the mean turnover rate of the proteins in the complex. The horizontal blue line indicates
the standard error of the mean. The dashed vertical line is the median protein turnover rate in the liver sample. COPI coatomer complex, ATP adenosine
triphosphate, ER endoplasmatic reticulum, rRNP ribosomal ribonucleoprotein, COP9 Constitutive photomorphogenesis 9. 1—complexes obtained from the
Gene Ontology database (cellular component). 2—complexes obtained from the CORUM database.
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Turnover of proteins in complexes. In general, proteins that
form a physical complex are expected to have similar turnover
rate. CORUM49 and Gene Ontology (GO)50 databases were used
to determine the protein enrichments of complexes. A GO
complex was included when the complex was not defined in
CORUM. Figure 7 shows the boxplots of the ten-based loga-
rithms of protein turnover rates in each complex. The number of
quantified proteins in each complex is shown inside the par-
entheses. The vertical dashed line is the median of protein
turnover rates (0.28 day−1). It corresponds to the median half-life
of 2.5 days. The median turnover rate of each one of the mito-
chondrial respiratory chain complexes was smaller than the liver
median. The observation agrees with mouse brain protein turn-
over, where the mitochondrial respiratory chain proteins were
reported7 to turn over slower than the median protein turnover.
The ribosomal proteins, too, had slower turnover rates than the
median. This is different from the reported result in mouse
brain7, where the median turnover rate of the ribosomal proteins
was similar to that of all proteins. The Wilcoxon rank sum test
was used to identify statistically significant differences in turnover
rates of the complexes. The p values were adjusted for the mul-
tiple hypothesis testing. The proteins of the mitochondrial ribo-
some had statistically significant turnover rates from those of the
large ribosomal subunit. The differences in turnover rates of the
proteins of respiratory chain complex V (mitochondrial proton
transporting ATP synthase) from those of the respiratory chain
complexes I and III were statistically significant. While the
median turnover rate of the complex V proteins was smaller than
those of the complexes II and IV, the results were not statistically
significant. The sample size in complex II was too small (three
proteins out of four listed in the CORUM database). Therefore,
the p value of the difference is not significant. In mouse brain,
proteins in the complexes III and V had been reported7 to have
similar behavior of the median turnover rates. Their turnover
rates were slower than those of proteins in the other complexes of
the mitochondrial respirator chain.

The FDR of the Wilcoxon rank sum test (p_value was equal to
0.04) for the comparison of turnover rates of the regulatory
particle and core (20 S proteasome) complex of the proteasome
was 0.07. The median turnover rate of the core complex proteins
was smaller than that of the regulatory particle proteins. This
result agrees with the corresponding result for turnover rates
from several cell types51. The regulatory particle consists of the lid
and base subcomplexes. It recognizes proteins destined for
degradation by the proteasome. It is turned over faster than the
core complex proteins (includes proteins for the catalytic subunit
for the proteolysis). All Wilcoxon rank sum test results are
provided in the Supplementary Data 6.

Validations of the approach on datasets from four murine
tissue types acquired on Orbitrap Q Exactive HF mass spec-
trometer. Since the Orbitrap Eclipse dataset was used for devel-
opment and testing, we also used other datasets to confirm that
d2ome+ increased the proteome coverage for protein turnover
rate estimations. A recent study36 provided heavy water-labeled
LC-MS dataset for analyses of protein turnover in four tissues of
the C57/BL6J mouse strain. The data was acquired on Orbitrap Q
Exactive HF. In addition to the liver, the study included kidney,
heart, and muscle tissues. The latter two have slower protein
turnover and differ in that regard from liver tissue analyzed in
this study. We have processed the LC-MS data from all four tissue
types for improvements in the GOF characteristic of the theo-
retical fit to the experimental time course data. Protein turnover
rates are reported in Supplementary Data 3. The changes in the
numbers of peptides that passed the R2 threshold for each tissue

type are shown in Supplementary Fig. 20A–D. It is noteworthy
that the percent of the peptides for which R2 ≥ 0.8 using the
complete isotope profiles obtained in the Orbitrap Q Exactive HF
mass analyzer was at least 50%, which was higher than that in the
data acquired on Orbitrap Eclipse. For these data, the percent of
high (R2 ≥ 0.8) GOF peptides ranged from 51% (muscle) to 62%
(liver). Nonetheless, d2ome+ improved the quantification results
in all four datasets. In each dataset, it has increased the number of
peptides with R2 ≥ 0.8 by at least 30%. The peptide turnover rates
for each tissue type obtained using heavy water and amino acid
labeling matched closely. The correlation coefficients ranged from
0.96 (muscle proteome) to 0.87 (liver proteome). The scatter plots
of the peptide turnover rates are shown in Supplementary
Fig. 21A–D. All peptides contained at least one Lys amino acid, as
the original study36 compared the turnover rates obtained from
labeling with Lys with those using heavy water. In summary, the
estimation of label enrichment from abundances of a pair of mass
isotopomers improved the proteome coverage of turnover rate
estimations from Orbitrap Q Exactive mass spectrometer for all
four tissue types (with varying turnover rates). The result indi-
cates that the approach taken in this work generalizes to slow
(heart, muscle) and fast (liver, kidney) protein turnover tissues.

Discussion
This work reports on the development of an approach to compute
protein turnover from partial isotope profiles. It is based on the
estimation of label enrichment from raw abundances of only two
mass isotopomers. The enrichment was used to re-construct the
corresponding monoisotopic RIA. The newly generated RIAs
were used in the time series data to fit the exponential decay
model to extract the turnover rate. The developments were
necessitated by the observations37,38 that the traditional
approach, which estimates the monoisotopic RIA from the
complete isotope profiles, results in many quantified peptides that
are not used for protein turnover rate estimations. Their GOF
characteristics to experimental time series from these peptides
were low, R2 < 0.8.

The ratios from three pairs of mass isotopomers were exam-
ined in the study, A1(t)/A0(t), A2(t)/A0(t), and A2(t)/A1(t). The
best fit from all pairs of the ratios resulted in a 60% increase in the
number of peptides that passed the R2 ≥ 0.8 thresholds. The
number of peptides for which R2 ≥ 0.9 more than doubled. The
examination of the contribution from each one of the ratios
revealed the improvements resulted from all ratios with nearly
equally contributions. It has been previously reported52,53 that
contaminant peptides affect the quantification in protein turnover
studies that included SILAC54 labeling. For example, a “prior ion
ratio” was introduced as a metric for co-elution with the target
peptide52. The prior ion was defined as an ion whose mass is one
neutron less than that of the target peptide’s monoisotopic mass.
The prior ion ratio was defined as the ratio of the abundance of
the prior ion to the sum of the abundances in the isotopic cluster
of the target. The ratio served as an indicator for contamination
of the target peptides’ isotope cluster. In our approach, this (prior
ion) co-elution will mainly describe the interferences with the
monoisotope. In this case, the label enrichment estimation and
follow-up quantification will be done using the A2/A1 ratio.

The spectral data, which improved the estimation of label
enrichment from a pair of mass isotopomers, were analyzed to
identify their common properties. The spectral accuracy of these
peptides was poor. They are contrasted with the corresponding
data for peptides with high R2, which showed good spectral
accuracy. It was concluded that the approach for estimating label
enrichments from a pair of mass isotopomers improves the
labeling time series data for peptides whose mass profiles had
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inferences from contaminants. Since the complete isotope profile
of a peptide requires measurements of up to six mass iso-
topomers, the co-elutions are likely in complex mammalian
samples.

The approach was applied to other datasets from four tissue
types with varying turnover rates. In all cases, the number of
quantified peptides was increased, and the number of high-
quality peptides was doubled. It shows that the method general-
ized well to slow and fast turnover proteins.

Previous studies have examined approaches for using partial
isotope profiles to estimate label incorporation43,55,56. Thus,
determination43 of the label enrichment from the first two mass
isotopomers had been used for samples labeled with 12C. An
approximation to Supplementary Eq. (2) was used to estimate the
protein turnover in heavy water labeling from a single labeled
sample and two mass isotopomers55. An approximate expression
for the A2(t)/A0(t) ratio and a “fudge” factor for it were used in
another study56. Another use of the ratios was to estimate the
label enrichment from a regression model32. Regression coeffi-
cients of several ratios were determined from theoretical simu-
lations of isotope profiles using known label enrichments. The
regression coefficients then were used to determine the label
enrichment from experimental isotope profile. From the accurate
formulas, a single pair of mass isotopomers is enough to estimate
the label enrichment. In addition, the applications in this work
showed (Fig. 5 and Supplementary Figs. 9–13) that the estima-
tions separately from each pair of mass isotopomers are necessary
to improve the quality of the label quantification. The ratios are
chosen from the first three mass isotopomers as they are often the
most abundant for peptides. To the best of our knowledge, this
work is the first to systematically implement the use of partial
isotope profiles for computing the monoisotopic RIA in stable
isotope labeling.

We compared the murine liver protein turnover rates from
heavy water labeling (Orbitrap Eclipse)14 and heavy amino-acid,
13C6-Lys, labeling36. In both studies, the C57/BL6J mouse strain
was used. In heavy amino acid-based labeling, protein turnover is
calculated from peptides that contain at least one labelable amino
acid. The scatter plot and heat map of protein turnover rates from
all proteins are shown in Supplementary Fig. 22A. There were 984
proteins common to both datasets in the turnover rate range
[0.01, 1.0] day−1. The turnover range was restricted based on the
shortest and the longest durations of labeling. The Pearson cor-
relation between the rates was 0.71. For proteins quantified by
multiple peptides, the turnover rate estimations are expected to be
accurate. When we filtered the proteins to require at least three
unique peptides, the correlation increased to 0.85, and the
number of common proteins reduced to 340. The corresponding
scatter plot and heat map showed a structure in the data, Sup-
plementary Fig. 22B. It was observed that for proteins whose
turnover rate falls into the [0.01, 0.3] day−1 range, the differences
between the turnover rates from the two labeling approaches were
mainly smaller than 20%. In this range, there were 214 proteins,
and for 164 of them, the turnover rates computed by the two
labeling approaches differed by less than 20%. For the proteins in
this turnover range, the largest relative deviation of rates between
the two methods was 70%. We conclude that for abundant pro-
teins in the [0.01, 0.3] day−1 range, both labeling methods pro-
duced similar and reproducible results. It is noted that the
structure in the heat map was noticeable in the unfiltered (by the
number of quantified peptides) data as well, Supplementary
Fig. 22A.

In summary, we developed an approach to estimating protein
turnover from two mass isotopomers. The approach improved
the GOF characteristics of the protein turnover model in various
tissue types with slow and fast turnover proteins. The

implemented tool, d2ome+ , is publicly available. It increases the
proteome coverage in protein turnover studies using heavy water
metabolic labeling and LC-MS. We expect that it will be useful to
a broader community as a data processing tool and promote the
applications of the heavy water labeling platform for protein
turnover studies.

Here the approach was applied to a deterministic and one-
compartment model of the depletion of monoisotopic RIA. There
are more complex (such as stochastic and two-compartment)
models for the time course of depletion and turnover rate57,58.
The stochastic model accounts for the correlations in the time
course data, and the two-compartment model incorporates label
enrichment kinetics of amino acids. The suggested approach to
estimating the label enrichment from a ratio of two mass iso-
topomers reconstructs the monoisotopic RIA. The reconstructed
RIA can be used in complex models for protein turnover rate
computation.

Methods
Animal experiments, sample preparation, LC-MS experiments, protein identifica-
tion, and d2ome+ workflow are described in the correspondingly named sections
of Supplementary Information.

The time course of the monoisotopic RIA was given in Eq. (3) in the main text.
The normalized abundances of the first three heavy mass isotopomers were pre-
viously derived59:

I1 tð Þ ¼ 1� pH � pXðtÞ
� �

pXðtÞ
1� pH
� � NEHI0 tð Þ þ 1� pXðtÞ

1� pH

� �NEH

I1 0ð Þ ð5Þ

I2 tð Þ ¼ I0 tð Þ I2 0ð Þ
I0 0ð Þ �

I1 0ð Þ
I0 0ð Þ

pHNEH

1� pH
� �þ b2 0ð Þ � b2 tð Þ

( )
þ b1 tð ÞI1 tð Þ ð6Þ

In Eq. (7), cn denotes the following coefficient:

cn ¼ NEH þ n� 1

n

� �
pH

1� pH

� �n

bn(t) was defined in the main text.
For this work, we derived equations for the heavy mass isotopomers I4(t) and

I5(t), and finalized the derivation of I3(t), which made it independent of the
number of all hydrogens unlike the previous formula59. The heavy mass iso-
topomers are important because their relative abundance significantly increase
even for small peptides (<1100 Da mass) after labeling with 5% enriched heavy
water, Supplementary Fig. 14.

I3ðtÞ ¼ b3ðtÞI0ðtÞ þ b2ðtÞðI1ðtÞ � b1ðtÞI0ðtÞÞ
þ b1ðtÞ I2ðtÞ � b1ðtÞðI1ðtÞ � b1ðtÞI0ðtÞÞ � b2ðtÞI0ðtÞ

� 
þ I3ð0Þ

I0ð0Þ
� c1

I2ð0Þ
I0ð0Þ

þ c2
I1ð0Þ
I0ð0Þ

� c3

� �
I0ðtÞ

ð7Þ

I4ðtÞ ¼ b4ðtÞI0ðtÞ þ b3ðtÞfI1ðtÞ � b1ðtÞI0ðtÞg
þ b2ðtÞfI2ðtÞ � b1ðtÞðI1ðtÞ � b1ðtÞI0ðtÞÞ � b2ðtÞI0ðtÞg þ b1ðtÞfI3ðtÞ
� b1ðtÞ½I2ðtÞ � b1ðtÞðI1ðtÞ � b1ðtÞI0ðtÞÞ � b2ðtÞI0ðtÞ� � b2ðtÞ½I1ðtÞ
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I5ðtÞ ¼ b5ðtÞI0ðtÞ þ ðb4ðtÞ � b1ðtÞb3ðtÞÞfI1ðtÞ � b1ðtÞI0ðtÞg
þ ðb3ðtÞ � b1ðtÞb2ðtÞÞfI2ðtÞ � b1ðtÞðI1ðtÞ � b1ðtÞI0ðtÞÞ � b2ðtÞI0ðtÞg
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It is emphasized that the formulas for the dynamics of RIA of the six mass

isotopomers are applicable to any metabolic labeling enrichment resulting from
atom-based stable isotope enrichments, such as 15N or 13C. The only change that is
needed to make is to replace NEH with the number of atoms in a peptide which are
accessible to the labeling agent. For example, in 15N labeling, NEH is replaced with
the number of exchangeable Nitrogens in a peptide. In addition, the formulas are
also applicable to accurately estimate deuterium enrichment in hydrogen/deuter-
ium exchange mass spectrometry for studying protein structure60.
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The above equations are used to obtain the ratios of raw abundances of the ith

and jth mass isotopomers, Ai(t)/Aj(t), since the normalization coefficient cancels
out:

Ai tð Þ=Aj tð Þ ¼ IiðtÞ=IjðtÞ
The ratios are simplified and shown in the Supplementary Notes, where the

outlines of the derivations for I4(t) and I5(t) are also presented.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw mass spectral data (Orbitrap Eclipse), Mascot search results, and d2ome+
data analysis results of the murine liver dataset generated in this work have been
deposited in the MassIVE repository with the identifier MSV000090148 (http://
massive.ucsd.edu). The results of the peak detection and quantification for every
peptide of every protein (Protein_Name.csv) and their corresponding rate constants
(Protein_Name.RateConst.csv) are available in the repository. Supplementary Data 1
shows examples of monoisotopic RIA time series that are improved by the two mass
isotopomer approach. Peak detection and quantification results for all peptides from
an unlabeled sample are presented in Supplementary Data 2. Turnover rates and
confidence intervals of all proteins and their peptides are provided in Supplementary
Data 3. Supplementary Data 4 shows the monoisotopic RIA time series and theoretical
fits for slow turnover proteins. Supplementary Data 5 shows the monoisotopic RIA
time series and theoretical fits for the “turnover” of contaminant proteins.
Supplementary Data 6 contains Wilcoxon rank sum test results for protein complexes
presented in Fig. 7.The raw mass spectral datasets from samples of murine liver,
kidney, heart, and muscle tissues were downloaded from ProteomeXChanger using the
identifier (PXD029639) provided in the original publication36. The mass spectral data
in the mzML file format (from MSConvert), database search results (from Mascot),
and protein turnover analysis results (from d2ome+) have been uploaded into
MassIVE under the identifier shown above.

Code availability
The code and instructions for d2ome+ software are available on GitHub, https://github.
com/rgsadygov/d2ome/releases/tag/v1.05.
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