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A spirocyclic backbone accesses new
conformational space in an extended,
dipole-stabilized foldamer

William Edward Roe® !, Toyah Mary Catherine Warnock! & Peter Clarke Knipe® '™

Most aromatic foldamers adopt uniform secondary structures, offering limited potential for
the exploration of conformational space and the formation of tertiary structures. Here we
report the incorporation of spiro bis-lactams to allow controlled rotation of the backbone of
an iteratively synthesised foldamer. This enables precise control of foldamer shape along two
orthogonal directions, likened to the aeronautical yaw and roll axes. XRD, NMR and com-
putational data suggest that homo-oligomers adopt an extended right-handed helix with a
pitch of over 30 A, approximately that of B-DNA. Compatibility with extant foldamers to form
hetero-oligomers is demonstrated, allowing greater structural complexity and function in
future hybrid foldamer designs.
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to adopt well-defined conformations reminiscent of the

secondary (and sometimes tertiary and quaternary) struc-
tures of biomacromolecules! . Given the vast array of functions
displayed by Nature’s oligomers, there is potential for foldamers
to act as a platform for molecular recognition®~8, catalysis>1?,
transport!!, and signalling!>13, Efficient exploration of con-
formational space is required to broaden the range of biomole-
cular structure and function that can be recapitulated. This
necessitates moving beyond repetitive structures towards so-
called “hetero foldamers”, where the backbone monomers within
a given foldamer are dissimilar!4-16, Backbone heterogeneity has
been achieved in various ways. For example, many mixed o-/f-/
y-/8-peptides!’—3! and peptide-peptoid32 systems have been
reported, allowing conformational tuning of the resulting folda-
mers. Sanjayan pioneered mixed aliphatic-aromatic hybrid fol-
damers, incorporating phenols, BINOLs and benzamides
alongside aliphatic amides3-3. Recently, Baumann and Schmaltz
inserted tricyclic and spirocyclic diproline mimetics into a col-
lagen model peptide backbone and demonstrated that the native
triple helix is retained30-37. We38:39 and the Hamilton group0-42
developed foldamers based on alternating azenes and cyclic ureas,
leading to a predominantly planar backbone, with side-chains
positioned perpendicular to that plane. Inspired by the studies of
oligo-azines conducted by Lehn*3-4>, we have previously shown
that the backbone of such foldamers can be contorted into a
variety of shapes through judicious choice of aromatic linker
(Fig. 1a)3°. However, this general structure places limits on the
exploration of conformational space that can be achieved since it
is only possible to functionalise the foldamers along vectors in
one plane, rather than in perpendicular directions. Since the
frame of reference changes from each monomer to the next, a
useful description invokes the principal axes used in aviation,
where the direction of growth of the foldamer corresponds with
the direction of travel of an aircraft. Thus, our previous report
allows control of yaw only.

Spirocyclic linkages are rare but not unprecedented within
foldamers (Fig. 1b). In 1980 Magnus, Clardy et al. reported oli-
gospirotetrahydrofurans that possess an overall structure descri-
bed by the authors as a “primary helix™#0. Schafmeister’s
“spiroligomers” comprise a repeating spiro-linked diketopiper-
azine-pyrrolidine motif and have been highly successful in inhi-
biting protein-protein interactions and as enzyme mimetics’-%7,
though the limited flexibility in these systems has led to the
authors considering them a separate class from foldamers®2. In
2008 Rajamohanan, Hofmann and Sanjayan developed spir-
obi(indane) oligoamide foldamers which fold in a controlled
manner due to the formation of a bifurcated hydrogen bond,
though the monomers were racemic so likely a mixture of ste-
reoisomers were formed®8>°, Parrot, Martinez et al. have reported
urea-linked bis-spirolactams as PPII helix mimetics, though the
structures were not oligomeric®?.

We reasoned that introduction of a spirocyclic linker would
circumvent some limitations of prior foldamers, allowing adjacent
monomers to be rotated by 90° to each other along the long
molecular (roll) axis (Fig. 1c). We also considered that such a
system may form helices of a longer pitch than those previously
reported, enabling rudimentary mimicry of larger biomacromo-
lecules such as B-DNA.

Foldamers are artificial oligomers imbued with a preference

Results and discussion

Synthesis of foldamers. We set about synthesising a spirocyclic
bis-lactam that could act as a surrogate for the cyclic ureas used in
previous studies, to determine whether this would achieve the
desired control of the foldamer shape. The synthesis began with
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Fig. 1 Overview of this study and its precedent. a Dipole-controlled
foldamer allowing control of backbone shape by changing yaw angle.
Localised dipoles are indicated (maroon arrows). b Previous foldamers
incorporating spircocyles. € The merging of a spirocyclic monomer with the
dipole-controlled foldamer concept can allow greater exploration of
conformational space, and side-chain vectors along multiple axes.

the formation of 3 by the alkylation of 1 with phenylalaninol-
derived sulfamidate 2 under phase-transfer conditions according
to the method of Dixon et al.?!, which proceeded in 70% yield
and 3.6:1 d.r. (Fig. 2). The absolute configuration at the new
quaternary stereocentre is inferred from the single crystal struc-
ture subsequently obtained for 7. Removal of the tert-butyl and
Boc protecting groups was achieved in 91% yield upon treatment
with TFA. EDCI induced lactam formation in the resulting amino
acid 4 to form monoprotected bis-lactam spirocycle 5 in 75%
yield. Lastly, coupling of this spirocycle with 2,5-dibromopyrazine
(present in excess to disfavour double-addition) under
Buchwald-Hartwig coupling conditions generated 6, the mono-
mer required for iterative synthesis of the envisaged foldamer.
Synthesis of the foldamer commenced with 2-pyrrolidinone,
which was coupled with monomer 6 under Buchwald-Hartwig
conditions (Fig. 3). High temperatures and extended reaction
times were deleterious to the yield in this step, leading to
decomposition pathways. However, when the reaction was
conducted at 80 °C for just 45 min, the coupled product 7 was
obtained in 82% yield. Single crystals of 7 were obtained, and
allowed unambiguous assignment of the configuration at
the spirocyclic centre. Reductive methods for the removal of
the N-tosyl protecting group (SmI0%63; Mg/MeOH®%;
Na/naphthalene®, Bu;SnH/AIBN®®, electrochemistry®’-6%) were
low-yielding, but treatment with excess trifluoromethanesulfonic
acid at 80°C”0 cleanly achieved the deprotection in 63% yield
based on recovered starting material. In subsequent deprotections
the excess of acid was increased to account for the buffering effect
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of the increasing number of pyrazine linkers. N-Deprotected
monomeric foldamer 8 was coupled with monomer 6 in 60%
yield to form N-Ts dimer 9, which was deprotected to generate 10
in 83% yield based on recovery of starting material (brsm). Dimer
10 then underwent analogous coupling with 6 to afford trimeric
foldamer 11 in 69% yield. Wishing to observe conformational
behaviour in a longer oligomer, pseudo-hexamer 13 was rapidly
constructed by the deprotection of trimer 11 in 71% yield to form
12, followed by coupling with 0.5 equivalents of 2,5-dibromopyr-
azine. The C,-symmetrical product was obtained in 60% yield.

Conformational analysis. With the synthesis of the foldamers
thus established we sought to determine their conformational
preferences. This was achieved by examination of nuclear Over-
hauser effect (nOe) enhancements between lactam methylene and
methine and the adjacent pyrazine hydrogens (Fig. 4). For the
purpose of this analysis, we assume that if a dipole-opposed anti-
conformation were adopted (NC«NC dihedral angle = 180°,
Fig. 4 inset) such nOes would be absent. Conversely, in the
dipole-aligned conformation (NC£NC = 0°), or if the Cyyrazine-
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Fig. 2 Formation of spirocycle and synthesis of iterative monomer 6.
a1 (1 equiv.), 2 (1.2 equiv.), Cs,CO53 (1.5 equiv.), NBuyBr (0.1 equiv.),
PhMe:CHCls (9:1, viv), rt, 48 h, 70% vield, 3.6:1 d.r.; b TFA:CH,Cl, (111, viv),
rt, 24 h, 91% vyield; ¢ EDCI (1.1 equiv.), NMM (2.2 equiv.), CH,Cl, rt, 24 h,
75% yield, 11:1 d.r.; d 2,5-dibromopyrazine (5 equiv.), Pd,(dba)s (10 mol%),
Xantphos (30 mol%), Cs,CO3 (2.5 equiv.), PhMe, 110 °C, 18 h, 77% yield,
>30:1 d.r. The d.r. increases throughout the sequence due to partial
separation during purification. TFA trifluoroacetic acid, EDCI 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide; NMM N-methymorpholine.

)

COUPLE
iﬁNH (@)
82%

(2.5 equiv.)

L;?J cons

e
A L\S 69%

YL

B
11
R=Ts

(b)l71%

12 COUPLE q \(\ 1

R=H
DEPROTECT g,

A LTO,

Br

ot
Y

13

NLctam bond were freely rotating a stronger nOe would be
expected. Pyridine-derived control compounds 14 and 15 were
generated via Buchwald-Hartwig coupling of deprotected
monomer 8 and dimer 10 with 4-bromopyridine (Fig. 4). The
nOe between the pyridine meta-hydrogen and the adjacent
methylene served as an internal control for comparison with the
enhancements outlined above. The intensity of all peaks was
normalised relative to a geminal methylene cross-peak since this
distance is fixed across all compounds. According to this analysis,
monomer 14 and dimer 15 exhibited strong preference for an
anti-conformation about all rotatable C-N bonds, with anti: syn
ratios in all cases exceeding 99:1. This approach was extended to
foldamers not containing the 4-pyridyl internal control by direct
integration of the nOe cross-peaks relative to the geminal refer-
ence. In all instances, weak cross-peak intensities were observed
relative to the internal geminal coupling, consistent with a similar
conformation to those demonstrated for 14 and 15. The pre-
ference for an anti-conformation was only slightly diminished in
a more polar solvent: for example, 14 gave anti: syn ratios around
both ¢; and ¢, of 98:2 in ds-DMSO. The conformational pre-
ference was also retained at elevated temperatures (up to 348 K)
in de-DMSO (see Supplementary Discussion section 2.1.9).

Circular dichroism (CD) experiments were also conducted for
monomer 7 and foldamers 9, 11, 13 and 17 in CHCIl; (see
Supplementary Discussion section 2.2). Negative Cotton effects
were observed for all compounds between ~260 and 290 nm; the
fact these are observed even for 7 implies they are not indicative
of secondary structure, but reflect the behaviour of individual
monomers within the foldamer. However, a positive Cotton effect
emerges at ~340 nm for trimer 13 and 17, and is likely to be
characteristic of the overall helical fold. Variable temperature CD
experiments were consistent with NMR, showing no loss of
secondary structure at elevated temperature (up to 50 °C; see
Supplementary Figs. S12-S16).

The conformation of the foldamers was also investigated
computationally (Fig. 5). A combined molecular mechanics/semi-
empirical approach was validated by comparison of the computed
structure with the single crystal data for 7 (see Supplementary
Discussion section 2.3). The conformers obtained agreed with the
solution phase ROESY data outlined above, with the global
minimum in all cases having 9 angles of ~0° at all Cpyrazine-Niactam
linkages. These structures reveal that the molecules adopt an
extended right-handed (P)-helical conformation, comprising a
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Fig. 3 Iterative synthesis of spirocyclic foldamers. a 6 (1-1.2 equiv.), Pd,(dba); (10 mol%), Xantphos (30 mol%), Cs,CO3 (2.5 equiv.), PhMe, 80 °C;
b TfOH (5-9 equiv.), DCE, 80 °C, 8 h; ¢ 2,5-dibromopyrazine (0.5 equiv.), Pd>(dba)s (10 mol%), Xantphos (30 mol%), Cs,COs (2.5 equiv.), PhMe, 80 °C,
2 h, 60% vyield. Supplementary Data 2 and CCDC 2170496 contain the single crystal data for 7. TfOH trifluoromethanesulfonic acid, DCE 1,2-

dichloroethane; dba dibenzylidineacetone.
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Fig. 4 Analysis of ROESY spectral data for control compounds 14 and 15
(CDCl3, t,ix 0.2 s). Rotating Frame Overhauser Enhancement Spectroscopy
(ROESY) cross-peak intensities are indicated, and normalised relative to the
geminal enhancement (in green). anti: syn ratios about each C-N bond are
approximated by the formula provided in the inset. This assumes that
where cross-peaks are to a pair of diastereotopic methylene hydrogens the
average of these intensities is given. a 4-Bromopyridine hydrochloride (1.5
equiv.), Pd,(dba)s; (10 mol%), Xantphos (30 mol%), Cs,CO3 (3.6 equiv.),
PhMe, 80 °C, 14: 4 h reaction, 75% vyield, 15: 3 h reaction, 58% vyield; b the
average value of the nOe enhancements to both diastereotopic hydrogens
is given, ¢ cross-peaks overlap.
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W
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Fig. 5 Computed lowest energy conformation of pseudo-hexamer 13. Side-
chains are truncated to CHs. Semi-empirical: PM7 (MOPAC2016)75-77.
Pair-fitting of spirocycle substituents within monomers n and n + 4 with
phosphate oxygen atoms on surface of B-DNA (PDB 3BSE). For full details
see Supplementary Discussion section 2.3.

series of coplanar fragments with a 90° twist relative to their
nearest neighbouring fragments, reminiscent of the herringbone
foldamers reported by Huc”!. The helix has a large overall pitch
of ~32 A and four residues per turn. Pseudo-hexamer 13 therefore
has an overall length of ~60 A. To our knowledge this is the
largest pitch of sequence-defined helical foldamer yet reported
(though such values are known in helical polymers’>-74) and
gives an overall length scale closely matching that of B-DNA
(34 A).

Compatibility with existing foldamers. Lastly, it was demon-
strated that the spiro bis-lactam-containing foldamer is compa-
tible with the previous imidazolidinone-containing foldamers
developed within our group (Fig. 6). Coupling of dimer 10 with

10
M
Cl + ¢ Me
(@)
ol
kN/ NJ( _Ns l o)_N

N N
/Y
Me T N=n
Me (0]
N\(NB\ o o N Nﬁ;
16 T A R S GO

(1.2 equiv.) o

Bn 17

Fig. 6 Synthesis of hybrid spirolactam-imidazolidinone 17. a Pd,(dba)s
(10 mol%), Xantphos (30 mol%), Cs,CO3 (2.5 equiv.), PhMe, 80°C, 2h,
75%. Ns 2-nitrobenzenesulfonyl.

pyrimidine-imidazolidinone monomer 16 proceeded cleanly in
75% vyield, with nOe data indicative of the expected dipole-
opposed conformation in hybrid foldamer 17, where control over
both yaw (via the pyrimidyl-imidazolidin-2-one) and roll (via the
spirocycle) has been achieved.

Conclusions. Single crystal, ROESY and CD data confirm a
strong and predictable conformational preference in a spirocyclic,
dipole-controlled foldamer. This preference is reproduced by a
semi-empirical computational approach, which predicts homo-
oligomers to adopt an unusual helical conformation with a pitch
of over 30 A. Further work is required to develop functional
analogues of the foldamers explored here. The simplest manner in
which this may be achieved would be through incorporating
functional sidechains (alcohols, amines, carboxylic acids etc.).
Dixon has previously shown that spirocyclic bis-lactams bearing
hydroxymethylene sidechains may be formed using the phase-
transfer catalysed approach displayed in Fig. 26!. The strongly
acidic N-Ts deprotection and palladium-catalysed cross-coupling
conditions present a challenge for some protecting groups, so a
suitable strategy must be developed. Redox triggered protecting
groups may be appropriate, such as O-Bn groups cleaved by
hydrogenolysis. This report paves the way towards functional
macromolecules by allowing more complete exploration of con-
formational space than previously possible with related classes of
foldamer, and work is ongoing to achieve control over the third
principal axis—pitch. Once functional monomers and complete
conformational control are achieved, these scaffolds may find
applications as bespoke abiotic enzyme mimetics or as rationally
designed binders of biomacromolecules.

Methods

General procedure for palladium-catalysed coupling of lactams with aryl
halides. To a sealed tube under an inert atmosphere of argon and equipped with a
magnetic stir bar was added deprotected spirocycle (1.0 equiv.), aryl halide (0.5-5.0
equiv.), freshly recrystallized Pd,(dba); (10 mol%), Xantphos (30 mol%) and
Cs,CO; (2.5 equiv.). Anhydrous toluene (0.1 M) was added to the flask, and the
resulting suspension was then simultaneously sonicated and de-gassed by sparging
with argon gas for 15-30 min. The reaction mixture was then heated at the spe-
cified temperature (80-110 °C). After complete consumption of the spirocyclic
starting material by TLC analysis, the reaction was cooled to room temperature,
diluted with dichloromethane (ca. 20 mL/mmol deprotected spirocycle) and filtered
over Celite®, which was washed with ethyl acetate and the organic solvents were
removed in vacuo. The crude product was purified by flash column chromato-
graphy on silica gel.

General procedure for removal of tosyl protecting group. To a sealed tube
under an inert atmosphere of argon and equipped with a magnetic stir bar was
added N-Ts spirocycle (1.0 equiv.) and anhydrous DCE (0.04 M). The solution was
then cooled to 0 °C and trifluoromethanesulfonic acid (3 equiv. + 2 equiv. per
pyrazine nitrogen) added to the reaction mixture. The solution was then heated to
80 °C for 8 h, cooled to RT and quenched with a few drops of 1,2-diaminopropane,
followed by addition of NaOH (1 M aq., 20 mL/mmol N-Ts spirocycle). The
reaction mixture was transferred to a separatory funnel and extracted with CH,Cl,
(3 x ca. 20 mL/mmol N-Ts spirocycle). The combined organic layers were dried
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over MgSO,, filtered under gravity and concentrated in vacuo. The crude product
was purified by flash column chromatography on silica gel.

Data availability

All data generated or analyzed during this study are included in this published article
(and its supplementary information files). Supplementary Data 1 contains NMR data for
all compounds; Supplementary Data 2 contains single crystal X-ray data for 7. The X-ray
crystallographic coordinates for 7 have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition number 2170496. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.
uk/data_request/cif. Computed lowest energy structures as shown in Fig. 3, S17-S21 are
available in .mol format from https://doi.org/10.6084/m9.figshare.22270771. All other
data are available from the corresponding author on reasonable request.
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