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LipidOz enables automated elucidation of lipid
carbon–carbon double bond positions from ozone-
induced dissociation mass spectrometry data
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Lipids play essential roles in many biological processes and disease pathology, but unam-

biguous identification of lipids is complicated by the presence of multiple isomeric species

differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/

stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry

(LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some

cases sn position) and number of double bonds, but not carbon-carbon double bond posi-

tions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces

characteristic fragments from lipids containing double bonds. OzID can be incorporated into

ion mobility spectrometry (IMS)-MS instruments for the structural characterization of lipids,

including additional isomer separation and confident assignment of double bond positions.

The complexity and repetitive nature of OzID data analysis and lack of software tool support

have limited the application of OzID for routine lipidomics studies. Here, we present an open-

source Python tool, LipidOz, for the automated determination of lipid double bond positions

from OzID-IMS-MS data, which employs a combination of traditional automation and deep

learning approaches. Our results demonstrate the ability of LipidOz to robustly assign double

bond positions for lipid standard mixtures and complex lipid extracts, enabling practical

application of OzID for future lipidomics.
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Lipids play important roles in the formation of cellular
structure1 and take part in complex signaling as part of both
homeostatic processes and disease pathology2. Lipidomics,

the study of all lipids in a biological sample, is an important
approach for elucidating insight into complex biological pro-
cesses. A critical component of lipidomics analyses is lipid
identification, which can be performed at multiple levels of
structural detail (i.e. including information about lipid class, fatty
acid composition, etc.), each having implications on the biological
interpretations and underlying mechanisms3. Advances in ana-
lytical technologies in recent years, including increased adoption
of high-resolution mass spectrometry (HRMS)4, have increased
the level of structural detail that can be routinely achieved for
lipid identifications in lipidomics studies. However, the assign-
ment of double bond positions within lipids is not possible using
most conventional analyses. Lipid double bond positions are an
important structural characteristic, with the double bond position
determining whether signaling molecules derived from the oxi-
dation of fatty acids mediate pro- or anti-inflammatory
responses2. and differentiating breast cancer cell lines5.

Ozone-induced dissociation (OzID) or ozonolysis is an effec-
tive means of identifying double bond positions in unsaturated
lipids6–8. OzID leverages a gas-phase oxidation reaction between
a carbon–carbon double bond within an unsaturated lipid
molecule and the ozone molecule, resulting in cleavage of the
double bond and yielding a characteristic pair of fragment ions
called aldehyde and criegee ions with a mass difference of 16 Da,
which can be used for unambiguous determination of double
bond positions in lipids (Fig. 1a). Depending on the position and
index of the double bond along the fatty acyl chain (Fig. 1b),
OzID at each double bond in a lipid precursor ion will result in a
pair of fragment ions as neutral losses with masses that are
diagnostic for the double bond position and index (Fig. 1c).
Double bond positions (and indices) can therefore be assigned for
a lipid precursor by examining the mass spectrum for all such
pairs of diagnostic fragments (Fig. 1d). Given the success of OzID,
the technique has been incorporated with different mass spec-
trometry platforms. More recently, OzID has been shown to
perform efficiently in timescales that are compatible with ion
mobility spectrometry (IMS) separations without sacrificing
throughput8. In addition to the benefit of isomer separation
capability from IMS9,10, the high-pressure feature in IMS
instrument also enables a greater reaction efficiency for OzID and
therefore results in fragment ions with a much higher abundance
for confident identification. Thus, multi-dimensional analyses
incorporating liquid chromatography, OzID and IMS-MS (LC-
OzID-IMS-MS) can be used to generate structurally rich lipi-
domics data that allows in-depth identification of lipids that
includes separation of isomers and assignment of double bond
positions8–11.

One challenge that has been limiting the broad application of
OzID for routine lipidomics studies comes from the complexity
of the data analysis. The data analysis is currently manual and
involves several steps of data extraction and processing which
must be repeated for dozens of putative OzID fragments per lipid
precursor, making interpretation of the results highly time- and
labor-intensive. Thus, there is a need for informatics tools that
streamline the analysis of OzID data in order to perform data
analysis in an automated and higher throughput manner. To
address the gap and accelerate the structural elucidation of lipids,
we developed LipidOz: a Python tool for the automated identi-
fication of lipid double bond positions from complex LC-OzID-
IMS-MS data using a combination of traditional automation and
deep learning (DL) approaches. In this work, we demonstrate the
ability of the LipidOz tool to robustly assign lipid double bond
positions for lipid standards and complex tissue lipid extracts.

Results
Overview of OzID data analysis workflow for determining lipid
double bond positions. The pipeline for structure elucidation of
lipids including the double bond positions is shown in Fig. 2 and
individual steps are described in detail in the later sections.
Briefly, identification of lipid double bond positions is achieved in
two steps (Fig. 2a). First, initial lipid identifications are obtained
and validated from traditional liquid chromatography-tandem
mass spectrometry (LC-MS/MS) data12, where the lipid class
identity and the fatty acyl composition of the lipids are confirmed
and an associated target list, containing initial lipid identifications
and corresponding retention times, is constructed. Next, this
target list is used to identify lipids for double bond assignment
from the LC-OzID-IMS-MS data. The individual data analysis
steps are described in detail in the “Methods” sections, but briefly,
this the process of identifying the double bond position consists
of iterative data extraction and processing to validate precursor
identity and assign diagnostic OzID fragments that can be used to

Fig. 1 Schematic of OzID reaction chemistry for lipid double bond
determination. a Ozone molecule reacts with carbon–carbon double bonds
in unsaturated lipids, resulting pairs of characteristic fragment ions differing
in mass by 16 Da. b The nomenclature for C=C double bond locations: the
position(s) of unsaturation is indicated to be x carbons from the methyl end
of the acyl chain with the nomenclature (n-x), multiple double bonds in
polyunsaturated lipids are indicated with index number counting from the
methyl end of fatty acyl chain. c, d OzID produces pairs of fragment ions (as
neutral losses from the precursor m/z, M) with masses that allow
assignment of double bond positions and indices.
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assign double bond positions (Fig. 2B). For each lipid precursor
ion, an extracted ion chromatogram (XIC) is extracted using the
precursor m/z and fit to obtain a retention time. This retention
time is then used to extract a mass spectrum including the M,
M+ 1, and M+ 2 isotopes, from which the identity of the pre-
cursor ion can be verified based on agreement between observed
and predicted isotope abundances. Then, all possible double bond
positions and their corresponding pairs of OzID fragment ions
are predicted based on the composition of the fatty acids in the
precursor ion. For each pair of putative OzID fragment ions, XICs
and mass spectra are extracted and processed in a similar fashion
to the precursor ion. The carbon–carbon double bond positions
are assigned based on agreement between observed and theore-
tical isotope distributions for the corresponding diagnostic OzID
fragment pairs, in addition to agreement between their retention
times and that of the precursor ion. This process is repeated for
all precursor ions in the target list.

Automated OzID data analysis. A set of lipid standards with
known double bond positions (Lipidomix SPLASH and UltimateS-
PLASH, Avanti Polar Lipids) were initially used to validate the
automated data processing workflow in LipidOz. LC-MS/MS data of
these samples were generated using a Velos Orbitrap mass spectro-
meter and used to construct the target list consisting of lipid class
identity and assign the fatty acyl composition. LC-OzID-IMS-MS data
of the same samples were generated using an Agilent 6560 drift tube
IMS-QTOF MS platform modified to incorporate the OzID capability
for the double bond identification (see following “Methods” section
and ref. 8 for experimental details). The results for one of these
standards in UltimateSPLASH, D5-PG(17:0/20:3), which contains a
polyunsaturated fatty acyl chain with double bonds at the n-6, n-9,
and n-12 positions, is shown in Fig. 3 as an example for demon-
stration. The XIC for the precursor ion shows a single clean peak and
the retention time (RT)-selected MS1 spectrum contains only the M,
M+ 1, and M+ 2 isotope peaks with masses and abundances that
match the theoretically predicted distribution (red dashed lines),
supporting the identification of the precursor ion. The next set of plots
depict XICs and MS1 spectra for pairs of OzID fragments (aldehyde

and criegee with a mass difference of 16Da), corresponding to each of
the three double bonds in this lipid standard. The XICs for all of these
OzID fragments display a single peak, matching the retention time of
the precursor. The MS1 spectra for these fragments also display M,
M+ 1, and M+ 2 isotope masses and abundances that agree with
theoretically predicted isotope distributions, indicating that this set of
fragments can be used to confidently assign double bonds at the n-6,
n-9, and n-12 positions. Cosine distance was used as a metric to
quantify agreement between all fragment XICs versus the precursor,
as well as agreement between theoretical and observed isotope dis-
tributions (overlaid on XIC and MS1 spectra as purple numbers). All
scores for this set of fragments are very low (<0.1), indicating a high
degree of similarity between fragment and precursor XICs and like-
wise for theoretical and observed isotope distributions, supporting the
correct assignment of double bond positions for this lipid standard. In
contrast, the signals for putative fragments corresponding to other
plausible double bond positions from this lipid displayed higher scores
with an average of 0.4176 (see Table S1), indicating that their XICs
and MS1 spectra do not support assignment of their corresponding
double bond positions for this lipid standard. Taken together, these
scores quantitatively reinforce that this OzID data supports correct
assignment of the known double bond positions from this lipid
standard and excludes other plausible double bond positions.

In order to develop a more useful heuristic for assignment of
double bond positions based on the chromatographic and isotope
distribution scoring components described above, we examined
the distributions of cosine distances for putative OzID fragments
of double bond containing lipids from two sets of deuterium-
labeled standards and one well-characterized commercial porcine
brain total lipid extract (see Table 1). True examples of OzID
fragments consisted of fragment pairs for known double bond
positions, while False examples consisted of all putative fragment
pairs for all other double bond positions from a precursor that are
plausible given its fatty acid composition. Figure 4a shows the
distribution of cosine distances corresponding to the similarity
between precursor and fragment XICs for OzID fragments from
all lipids in this dataset (gray histogram), as well as the individual
distributions from True and False examples (blue and red
boxplots, respectively). Figure 4b shows the same distributions

Fig. 2 OzID data acquisition and analysis workflows. a Schematic representation of lipidomics workflow. Initial lipid identifications are made at the
molecular lipid level from LC-MS/MS analysis. These initial identifications are used as a target list to search for lipid precursors and identify double bond
positions from the LC-OzID-IMS-MS data, yielding identifications at the structurally defined molecular lipid level. b Schematic representation of OzID data
extraction and processing. First, raw data is extracted and processed for a lipid precursor, which involves extracting and fitting XICs and MS1 spectra to
obtain observed retention time and isotope distributions. This information is used to validate the identity of the precursor, then all possible OzID fragments
are predicted using the fatty acid composition of the precursor. For each of these putative OzID fragments, raw data is extracted and processed in the same
fashion as for the precursor, then double bond position(s) may be assigned based on the extracted chromatographic and mass spectral information.
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Fig. 3 OzID data analysis results for a polyunsaturated lipid standard. Results shown for D5-PG(17:0/20:3) [M-H]- lipid standard, with plots of extracted
and processed data for precursor ion and pairs of OzID fragments for each of the 3 double bonds. On the left side of the figure, XICs annotated with fits
(blue crosses) and extraction window (shaded region). The right side of the figure shows the RT-selected MS1 spectra with theoretical (red dashed
crosses) and observed (blue crosses) isotopic distributions. The chromatographic and isotope distribution scoring components (cosine distance) for all
OzID fragments are noted with purple numbers.
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but corresponding to similarity between theoretical and observed
isotope distributions from fragment MS1 spectra. Figure 4c shows
a scatter plot of these two scores, with colors indicating True and
False examples (blue and red, respectively), demonstrating the
orthogonality of these two scoring components. The individual
scoring components alone each show clear distinction between
known True/False examples (Fig. 4a, b, gray dashed lines), but
better discrimination is possible when these components are used
in conjunction (Fig. 4c, gray dashed lines). By applying a simple
cutoff of 0.25 for both cosine distances (i.e., putative OzID
fragments with RT and m/z cosine distances below 0.25 are
accepted), we observed 90% accuracy and 15% false discovery rate
in assignment of double bond positions for this set of deuterium-
labeled standards and porcine brain total lipid extract.

LipidOz GUI for automated OzID data processing and visua-
lization. To increase the accessibility of LipidOz, a GUI appli-
cation was developed for setting up OzID data processing and
visualizing the results. For ease of use, the application is packaged
into an executable file (available for Windows and MacOS) that is
bundled with all dependencies and its own Python interpreter.
When the application starts, it presents the Setup window
(Fig. S1) where the user is prompted to select input data files (in
the original instrument format, or in MZA format)13 and set data
extraction/processing parameters. The user may optionally select
an existing results file and proceed directly to viewing the results
as well. After setting parameters and pressing the “Process Data”
button, the OzID data analysis will proceed, and a different
window will appear that displays messages indicating the data
processing progress (Fig. S2). When data processing is complete,

the user may proceed to the Results window (Fig. 5), where they
can interactively browse and view the OzID data analysis and
results. There is the option to reannotate incorrect assignments
and save the results to a binary format so that they can be viewed
later with this application, in addition to the option to export the
results into an Excel spreadsheet. This GUI application facilitates
analysis of OzID data and makes LipidOz accessible to users
without Python programming experience.

Training a deep learning model for assignment of double bond
positions from OzID data. The analysis of OzID data described
above ultimately boils down to comparisons of 2-dimensional
LC-MS profiles between putative OzID fragments and a lipid
precursor, with the assignment of double bond position being
based upon which pair of putative OzID fragment profiles dis-
plays the most “correct” profiles. In this context, a “correct”
fragment profile would be one in which the chromatographic
component matches that of the precursor and the mass spectral
component contains peaks at the appropriate masses and with
relative intensities corresponding to the theoretically predicted
isotopic distribution. This assessment of fragment profiles can be
formulated as a classification task, with the input being LC-MS
profiles for a pair of putative OzID fragments and the corre-
sponding precursor, and the output being a Boolean label indi-
cating whether the data for the fragment pair supports
assignment of a double bond at that position. Since the input to
this classification task consists of three 2D LC-MS profiles (i.e.,
pseudo-image data), we can treat each profile as a single channel
of a RGB image. Figure 6b shows one such RGB image for a set of
profiles from a True example, where the precursor profile is
assigned to the red channel and the OzID fragment profiles are
assigned to the green and blue channels. In these profiles, the m/z
component is represented in the x dimension and the retention
time component is represented in the y dimension. The m/z
values for the M, M+ 1, and M+ 2 isotopes are aligned across all
three channels and are similarly aligned in the center of the y
dimension, as expected for a True example. Figure 6c shows a
different set of profiles for the same precursor but a different pair
of OzID fragments, corresponding to a False example. In this
case, poor alignment is observed in both dimensions for the OzID
fragment profiles relative to the precursor. Constructing the LC-
MS profiles of as RGB images in this fashion decomposes the task
of assigning double bond positions from OzID data into a classic
image classification task for which there is already a wide variety
of deep learning (DL) architectures and models available.

The process of training a deep learning (DL) model for the
assignment of double bond locations for lipids from OzID data is
consists of two major steps: curation of training data and
training/characterizing the model (Fig. 6a). Training a DL model
requires a significant amount of labeled training examples, which
we constructed from the deuterated lipid standards and well-
characterized BTLE (Table 1). We used the automated OzID data
analysis workflow in LipidOz to extract and process the OzID

Table 1 Summary of lipid data used for training DL model.

Sample Replicates Target Lipids Lipids Validated Assigned Double Bond Positions (T/F)

Positive Ion mode SPLASH (SPLA) 1 10 8 8/120
UltimateSPLASH (ULSP) 2 76 39 68/904
Brain total lipid extract (BTLE) 1 84 32 91/905

Negative Ion mode SPLASH (SPLA) 4 24 24 136/1810
UltimateSPLASH (ULSP) 4 140 73 73/1863

Total 376/5602

For each sample, a proportion of the known target lipid double bond positions were validated, and those validated lipids were used as training examples.

Fig. 4 Distributions of chromatographic and mass spectral scoring
components for OzID fragments. Distribution of chromatographic (a) and
mass spectral (b) cosine distances from lipid standards and commercial
porcine brain total lipid extract data. Gray traces correspond to the total
distribution of all examples, while overlaid boxplots (depicting median and
interquartile range) show individual distributions for examples assigned as
True (blue) or False (red), with decision boundaries as gray dashed lines.
c Scatter plot of both cosine distances, demonstrating orthogonality
between the two scoring components. Individual examples are colored
according to whether they are assigned as True (blue) or False (red). The
overlaid gray dashed lines indicate the decision boundaries for both
dimensions.
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data for these samples, then manually verified the results and
curated a collection of data that could be used for training the DL
model. In order to increase the number of examples for training,
~10-fold data augmentation was performed by resampling the RT
dimension of the LC-MS profiles in several ways that simulated
shifted/narrower/broader chromatographic peaks. Prior to data
augmentation, there were 376 True and 5602 False double bond
assignments, and after augmentation there were 3024 True and
44816 False examples for DL model training. The DL model was
trained with the complete dataset (SPLA+ULSP+ BTLE), in
addition to two subsets which included either all deuterium-
labeled lipid standards (SPLA+ULSP) or only the smaller set of
monounsaturated labeled lipid standards (SPLA). The prediction
performance of each of these models was assessed with each of
the training data subsets in isolation (i.e., SPLA, ULSP, or BTLE),
and Fig. 6d contains confusion matrices corresponding to each
comparison. Confusion matrices in the section highlighted gray
background denote prediction performance for models on
individual datasets that were not included during model training.
Overall, we found that as long as the subset was present during
model training, the DL model was able to achieve nearly 100%
prediction accuracy across all examples. When we examine the
performance of models on subsets not included during the model
training, we begin to see prediction errors, with a distinct bias

toward false-negative errors (red arrows in Fig. 6d). Taken
together, these results suggest that DL-based double bond
assignment can reliably assign double bond positions directly
from minimally processed OzID data with high accuracy,
provided that the model has seen sufficient representative True
examples during training.

OzID analysis of complex lipid extracts from tissues. To
demonstrate the utility of LipidOz for analysis of OzID data from
real samples, we analyzed four complex lipid samples including
commercial total lipid extracts from liver and heart (Avanti Polar
Lipids, Inc), and NIST SRM 1950 human plasma and SRM 1953
human milk. Initial lipid target lists were constructed from ana-
lysis of LC-MS/MS data using LIQUID12. The OzID data were
analyzed in an automated fashion using LipidOz and double bond
positions were validated by manual verification. Figure 7a sum-
marizes the counts of lipid targets with identified double bond
positions for all tissue extracts, organized by lipid class, in both
positive and negative ion modes (the target lists and identified
double bond positions for all samples analyzed are summarized
and provided as Supplementary Data files: Supplementary
Data 1.xlsx and Supplementary Data 2.xlsx, respectively). At a
high level, these results demonstrate that this tool enables detailed

Fig. 5 Screenshot of result window in the LipidOz GUI application. The Results window allows interactive viewing of OzID analysis results. The panel on
the left contains a browsable tree menu with all lipid targets and their putative double bond positions. Each list of putative double bond positions for a
single target and double bond index is sorted in descending order of confidence (also reflected by colored squares), as determined by composite score
from both corresponding OzID fragments. When a putative double bond position is selected, the panels on the right are populated with plots of the XICs
and MS1 spectra for the corresponding precursor and diagnostic pair of aldehyde and criegee fragments, along with all of the individual scoring
components. This interface presents all the information necessary for assigning double bond positions from OzID data.
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characterization of biological samples with broad lipid class
coverage in both ionization modes. We also examined the fatty
acid isomers that were identified from this analysis to assess the
validity of identifications from the LipidOz tool. Figure 7b sum-
marizes the counts of fatty acids identified from liver extract. The
most common fatty acid identified in this liver sample was oleic
acid and components of the biosynthetic pathway between lino-
leic acid and arachidonic acid14,15 (Fig. 6c), which bolsters con-
fidence in the validity of fatty acids identified by OzID data
analysis in LipidOz. Distinct fatty acid profiles were identified
between the different tissue extracts (Fig. S3), further demon-
strating the potential biological insights that may be garnered
from knowing lipid double bond positions. This demonstration
involved processing data from four different complex samples in
positive and negative ionization modes with hundreds of lipid
targets per run, a scale that would make manual analysis of this
complex data practically impossible.

Observation of sphingolipid backbone fragments. The analysis
of tissue lipid extracts also yielded multiple observations of

sphingolipid backbone fragments that were not previously
observed in OzID studies. Figure 8 shows two examples of these
backbone fragments for a ceramide (Fig. 8a) and sphingomyelin
(Fig. 8b) species detected in negative and positive ionization
modes, respectively. Both the aldehyde and criegee fragments
were observed for the ceramide species for double bond position
n-14, however, the criegee fragment was not observed for the
sphingomyelin species, possibly due to presence of an inter-
fering peak and/or low abundance of the expected fragment.
Interestingly, among the several examples of sphingomyelin
backbone fragments observed in this study, the expected criegee
fragments were consistently not observed. This led to the
hypothesis that the chemistry of this backbone double bond,
specifically the presence of an alpha-OH group, may affect the
kinetics of the OzID reaction such that formation of the alde-
hyde is preferred. This apparent preferential formation of the
aldehyde fragment was also observed among the ceramide
examples, but less consistently which may indicate the chem-
istry of the head group having additional influence on OzID
kinetics.

Fig. 6 Deep learning-based assignment of double bond positions. a DL model training workflow. b, c 2D LC-MS profiles of precursor, aldehyde, and
criegee ions for a True (b) and False (c) training example. Each LC-MS profile consists of an m/z and retention time dimension, and both groups of profiles
are colored in red, green, and blue color scales, reflective of the fact that each training example is constructed as a three-channel RGB image. d Confusion
matrices demonstrating the classification performance of models trained using different subsets of the data assembled from analysis of lipid standards. The
matrices within the gray shaded region correspond to predictions for datasets that were not included during model training, and red arrows highlight false
negative classification errors in those comparisons.
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Discussion
In this work we have demonstrated the capability of LipidOz, a
Python tool, for determination of lipid double bond locations
from OzID Data. With this tool, the complex and repetitive OzID

data analysis process was automated, allowing for practical
application of the OzID technique at scales that are appropriate
for routine lipidomics studies. We also demonstrated that appli-
cation of OzID analysis to larger and more diverse sets of lipids

Fig. 7 Summary of lipids identified from complex lipid extracts from different tissues. a Counts of lipid targets with double bond positions identified from
liver, plasma, heart, and milk lipid extracts organized by lipid class, from positive (left) and negative (right) ionization modes. b Counts of fatty acid isomers
identified in lipid extract from liver. c Biosynthetic route from linoleic acid to adrenic acid. The process consists of successive alternating desaturation and
elongation steps (highlighted in red).

Fig. 8 Examples of sphingolipid backbone fragmentation from tissue lipid extract data. a Structure of Cer(d18:1/16:0) with backbone double bond
(position n-14) denoted by red arrow, and corresponding extracted and processed XICs (plots on left side) and MS1 spectra (plots on right side) for
precursor and OzID fragments. b Structure of SM(d18:1/16:0) with backbone double bond (position n-14) denoted by red arrow, and corresponding
extracted and processed XICs (plots on left side) and MS1 spectra (plots on right side) for precursor and OzID fragments.
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can reveal interesting fundamental insights into the chemistry of
the OzID reaction itself. Future experimental studies focusing on
the chemistry of OzID would facilitate the application of OzID
for double bond assignment in lipidomics research.

LipidOz is written in pure Python, with limited and easy to
install dependencies for ease of use, and the codebase is open-
source so it can be expanded and modified to suit the evolving
needs of the community. The flexible Python API in LipidOz
enables quick and easy scripting while the GUI aids data inter-
pretation and visualization, and together these capabilities facil-
itate the application of OzID to large-scale biological studies. An
important takeaway from this work is the synergy of traditional
automation and DL approaches for complex data analysis pro-
blems. While the data analysis can be formulated in such a way
that is clearly suited to DL, without the traditional automation it
would be impractical to process enough data to generate training
examples of a sufficient scale for DL.

Interest in the identification of lipid double bonds has
increased in recent years, and there have been multiple experi-
mental methods (some with associated software tools) presented
in the literature16–18. These works are primarily distinguished by
the method used to determine double bond locations, specifically,
electron-induced dissociation (EID)16, oxygen attachment dis-
sociation (OAD)17, and Paternò-Büchi(PB) reaction18,19. While
these techniques all share the underlying principle of producing
fragments from lipids with masses that are characteristic to
double bond position, the specific analytical configuration (and
thus, the structure of the data) as well as the specific fragment
masses must be accounted for in software tools in order to sup-
port analyzing data from these techniques. LipidOz was written
specifically to enable automated analysis of OzID data from a LC-
OzID-IMS-MS platform, and as such is presently subject to this
limitation in scope. However, it is possible that data from these
related techniques can be harmonized in such a way that a single
tool could analyze data from different analytical platforms and/or
methods for determining lipid double bond locations (e.g., UV
photodissociation20, Paternò-Büchi19), which will become
increasingly viable as these techniques become more widely used
in the field and is an area of ongoing development in LipidOz.

In future work, the tool will be expanded to incorporate arrival
time and CCS information to provide a greater structural char-
acterization of lipids, as well as identify lipids using LC-IMS-MS/
MS such that the lipid target list is generated from same Oz-IMS
platform. Support for different experimental methods and ana-
lytical platforms can also be accommodated in LipidOz with
limited modifications to the code, and this is an area of ongoing
effort. A particularly impactful future application is the integra-
tion of determining double bond positions using OzID with mass
spectrometry imaging (MSI) for elucidating the spatial distribu-
tion of lipid isomers in tissue sections or other biological systems.
MSI has been combined with in situ PB reaction21,22, as well as
OzID23,24, and these combinations have been demonstrated to
enable even richer structural characterization of lipids than with
MSI alone. Software support for this data is extremely limited and
this is an area of focus for development of the LipidOz tool.

Methods
Sample preparation. The SPLASH and Ultimate SPLASH Lipidomics mixtures of
deuterated lipid standards, brain total lipid extract (BTLE, Porcine), heart total
lipid extract (Bovine), and liver total lipid extract (Bovine) were purchased from
Avanti Polar Lipids, Inc (Alabaster, AL). The solvents used in this study, including
methanol, chloroform, are LC-MS grade and purchased from Fisher Scientific
(Pittsburgh, PA). The deuterated lipid standards were diluted 100-fold in methanol
before being subject to MS analysis.

NIST SRM 1950 human plasma and SRM 1953 human milk were quality
control samples used for lipidomics research from other projects in our lab. Total
lipids were extracted from 50 µL plasma and milk tissue samples using the methyl-

tert-butyl ether (MTBE) extraction25. Briefly, 55 µL 100% methanol and 185 µL
MTBE were added to 50 µL tissue, vortex for 20 s, sonicate on ice for 5 min,
incubate on ice for 10 min, vortex for 20 s, and then centrifuge with 15,000×g at
4 °C for 10 min. The upper layer containing total lipid extracts were collected,
evaporated to dryness in vacuo, and stored at −20 °C in 500 μL of chloroform/
methanol (2:1, v/v). Prior to MS analysis, the total lipid extracts were dried down
and then reconstituted in chloroform/methanol (1:9, v/v).

Liquid chromatography-mass spectrometry analysis. LC-MS analysis was per-
formed on a Velos Orbitrap mass spectrometer (Thermo scientific) as previously
outlined12. For the LC analyses, a Waters Aquity UPLC H class system was used.
Standards and extracts were reconstituted in methanol and 10 µL of each were
injected onto a reversed phase Waters CSH column (3.0 mm × 150mm × 1.7 µm
particle size). The lipids in the mixture were separated over a 34 min gradient
(mobile phase A: acetonitrile/water (40:60) containing 10 mM ammonium acetate;
mobile phase B: acetonitrile/isopropyl alcohol (10:90) containing 10 mM ammo-
nium acetate) at a flow rate of 250 µl/min. Eluting lipids were introduced to the MS
via electrospray ionization in both positive and negative modes, and lipids were
fragmented using higher-energy collision dissociation (HCD) and collision-
induced dissociation (CID).

LC-OzID-IMS-MS analysis. The eluting lipids from the same LC cart and method
were analyzed on an Agilent 6560 IMS-MS platform modified to incorporate the
OzID technique (LC-OzID-IMS-MS), which was previously described in detail
elsewhere8 with two additional modifications to improve the efficiency and safety
(The information of additional modifications is provided in the Supplementary
Information and Fig. S4). Briefly, the instrument was modified to allow intro-
duction of ozone gas (100 g/m3) into the high-pressure trapping funnel region
before the IMS cell (typical operating pressure of ∼4 Torr). The ions were con-
tained in the trapping ion funnel and allowed to react with the introduced ozone
for up to 90 ms prior to injection into the IMS region. The ions exiting the trapping
funnel were further separated and analyzed by IMS-MS.

Lipid nomenclature. The nomenclature for describing lipids used in this manu-
script is based on the recommendations of Liebisch et al26. As shown in Fig. 1b, the
position(s) of unsaturation is indicated to be x carbons from the methyl end of the
acyl chain with the nomenclature (n-x), different double bonds in polyunsaturated
lipids were indicated with index number counting from the end of fatty acyl chain,
and the orientation of carbon–carbon double bonds is described as cis (Z) and
trans (E) where it is known. For instance, the two double bond locations for the
lipid 18: 2 (9Z, 12Z) listed in Fig. 1b is noted as index 1 with position n-6 and index
2 with position n-9. For lipids containing stable isotope labeling, the degree of
labeling is indicated [Dy], where y is the number of deuterium atoms.

Generation of lipid target list. To confirm the lipid class identity and assign the
fatty acyl composition of the lipids to generate the target list, lipids were initially
identified from LC-MS/MS data using LIQUID12. Confident identifications were
made by manually evaluating the MS/MS spectra for fragment ions characteristic of
the classes and acyl chain compositions of the identified lipids. In addition, the
precursor ion isotopic profile, extracted ion chromatogram, and mass measurement
error along with the elution time were evaluated. Target lists consisting of the
initial lipid identifications and retention times were generated for downstream
OzID analysis (Fig. 2a).

Isotope distribution analysis. Isotope distribution analysis is a standard workflow
in LipidOz which examines the distribution of M, M+ 1, and M+ 2 nominal
isotopes for putative OzID fragments for determination of double bond position
(Fig. 2b). The inputs to this workflow are a list of target lipids (lipid name, ioni-
zation state, and retention time), an OzID raw data file (in. mza format13), and
parameters controlling how data is extracted/processed (e.g., tolerances for m/z and
retention time). First, an extracted ion chromatogram (XIC) is produced for the
precursor m/z in a broad window around the target retention time, and this XIC is
fit to obtain the observed retention time which is used for extracting MS1 spectra.
An intensity threshold is used to determine whether signal saturation has occurred,
and if so a new retention time window is selected for MS1 spectra extraction from
the leading edge of the fitted XIC peak27. Using the newly determined retention
time window, the MS1 spectrum is extracted for an m/z range containing the M,
M+ 1, and M+ 2 nominal isotopes (M-1.5 to M+ 2.5 Da), which are each fitted
to determine their observed m/z and abundances (peak height). The observed m/z
and abundances of the isotopes are compared to theoretical values computed using
the molecular formula of the precursor ion. For each lipid target, ranges of possible
double bond indices and positions are determined using the lipid’s fatty acid
composition. The m/z and molecular formulas for corresponding OzID fragments
(aldehyde and criegee) are computed for each combination of double bond index
and position, and these are used to extract and fit XICs and MS1 spectra in the
same fashion as for the precursor. Finally, a set of scores reflecting the agreement of
the chromatographic profiles between precursor and putative OzID fragments in
addition to agreement between theoretical and observed isotope distributions for
putative OzID fragments are computed.
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OzID fragment scoring. Putative OzID fragments are scored based upon agree-
ment with the precursor chromatographic profile and agreement between its the-
oretical and observed isotopic distributions. The chromatographic scoring
component is obtained by normalizing XICs for the putative fragment and pre-
cursor over the same RT range containing the chromatographic peak and com-
puting the cosine distance between them, with a distance of 0 reflecting perfectly
overlapping signals and a distance of 1 indicating no overlap (see Fig. S5). The
isotope distribution component is computed likewise, but using the RT-selected
MS1 spectrum from M-1.5 to M+ 2.5 compared against a spectrum constructed
from the theoretically predicted isotope distribution based on the fragment’s
molecular formula.

Calculation of theoretical isotope distribution. The theoretical isotope dis-
tribution is calculated from the molecular formula using a multinomial expansion
method subject to simplifying constraints. Specifically, only heavy isotopes 13C,
15N, 18O, 33S, and 34S are considered and only M, M+ 1, and M+ 2 nominal
isotope abundances are computed.

Assignment of double bond location using deep learning. The process of
training a deep learning (DL) model for the assignment of double bond locations
for lipids from OzID data is consists of two major steps: curation of training data
and training/characterizing the model (Fig. 6a). A dataset for DL model training
was constructed using the automated OzID data analysis in LipidOz. The training
data were assembled from two sets of deuterium-labeled lipid standards with
known double bond locations and a well-characterized porcine brain lipid extract
(Table 1). OzID data analysis was carried out in an automated fashion using
LipidOz and the results were manually verified prior to data extraction. Data for DL
was extracted for each training example as 2D LC-MS profiles (one for the pre-
cursor ion and a pair of putative OzID fragments) over the RT ±2.5 min range in
the chromatographic dimension and the M−1.5 to M+ 2.5 range in the m/z
dimension. The sparse scan data in the LC-MS profiles were converted into uni-
formly sampled image data using 2D linear interpolation, normalized to an
intensity range of 0 to 1, and ~10-fold data augmentation was performed by
resampling the RT dimension of the LC-MS profiles in several ways that simulated
shifted/narrower/broader chromatographic peaks. Finally, the training examples
were split into separate training and validation sets in proportions of 4:1, with
splitting performed such that the proportion of True/False training examples was
maintained across training and validation sets.

A pre-trained RESNET-1828 with the terminal fully-connected layers replaced
by a 2-node fully-connected layer (one output for True label probability, the other
for False label probability) was used as the starting point for model optimization
(see Supporting Information for further discussion on model selection). Parameter
optimization was done using the Adam optimizer, and cross entropy loss (weighted
according to approximate proportions of True/False training examples in training
data) was used as the optimization criterion. The model was fed data in batches of
128 training examples and model training was continued over 8 epochs (Fig. S6).
The set of parameters yielding minimal loss were saved to file for later use in
inference.

LipidOz implementation. LipidOz is implemented in Python and uses standard
scientific computing libraries for data processing and visualization (numpy, scipy,
matplotlib). Raw data extraction is performed using the mzapy library (https://
github.com/PNNL-m-q/mzapy), which provides utilities for extraction and pro-
cessing of MS data in the MZA format13. Pytorch was used for all DL model setup
and training. The GUI application was packaged into a standalone executable using
pyinstaller.

Code availability
All LipidOz code and pre-built GUI executables are available at https://github.com/
PNNL-m-q/lipidoz. Documentation including extensive user guides and detailed
module-level API documentation is hosted at https://lipidoz.readthedocs.io to support
application development and extension of LipidOz functionality. Additionally, an
example data file for SPLASH lipid standard mixture has been uploaded to https://doi.
org/10.5281/zenodo.7636522, which also includes instructions and expected results.

Data availability
All raw data files generated for this study have been uploaded to MassIVE (https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000091346). Lipid target lists
and identified lipid double bonds information are available in Supplementary Data 1 and
Supplementary Data 2 files.
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