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Pharmacophoric-constrained heterogeneous
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property prediction
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Informative representation of molecules is a crucial prerequisite in Al-driven drug design and
discovery. Pharmacophore information including functional groups and chemical reactions
can indicate molecular properties, which have not been fully exploited by prior atom-based
molecular graph representation. To obtain a more informative representation of molecules for
better molecule property prediction, we propose the Pharmacophoric-constrained Hetero-
geneous Graph Transformer (PharmHGT). We design a pharmacophoric-constrained multi-
views molecular representation graph, enabling PharmHGT to extract vital chemical infor-
mation from functional substructures and chemical reactions. With a carefully designed
pharmacophoric-constrained multi-view molecular representation graph, PharmHGT can
learn more chemical information from molecular functional substructures and chemical
reaction information. Extensive downstream experiments prove that PharmHGT achieves
remarkably superior performance over the state-of-the-art models the performance of our
model is up to 1.55% in ROC-AUC and 0.272 in RMSE higher than the best baseline model)
on molecular properties prediction. The ablation study and case study show that our pro-
posed molecular graph representation method and heterogeneous graph transformer model
can better capture the pharmacophoric structure and chemical information features. Further
visualization studies also indicated a better representation capacity achieved by our model.
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desired properties, and predicting the properties of mole-

cules accurately has been one of the critical issues. The key
step of molecule properties prediction is how to represent the
molecules that map the molecular information to a feature vector.
Conventional methods learn the representations depending on
the expert-crafted physic-chemical descriptors!, molecular
fingerprints?, or the quantitative structure-activity relationship
(QSAR) method34.

In recent decades, deep learning methods have shown strong
potential to compete with or even outperform conventional
approaches. Graph neural networks (GNNs) have gained
increasing more popular due to their capability of modeling
graph-structured data. For the association prediction task of
biological network data, the heterogeneous graph neural network
algorithms®~7 have achieved remarkable results. Molecules can be
naturally expressed as a graph structure, so the GNNs method
can effectively capture molecular structure information, including
nodes (atoms) and edges (bonds)3. Compared with the conven-
tional methods, deep learning methods can use SMILES or
molecular graph as input which is more informative and lead to
significant improvement in downstream tasks such as molecules
properties prediction. The graph-based molecular property pre-
diction models view the molecules as graphs and use graph neural
networks (GNN) to learn the representations and try to capture
the topological structure information from atoms and bonds. Due
to their ability to represent molecules as graphs, they are an
important research area for molecular property prediction tasks.
The most representative GNNs, including GCN?-14, GAT!>-17,
and MPNN!8-20 etc., have been actively used in the field of
molecular graphs-based for molecular properties prediction.
However, these models ignore the information of fragments that
contain functional groups. Recently, Zhang et al.17-2! works have
begun to focus on molecular fragment information to predict the
properties of molecules.

Although incorporating fragment information into graph
architectures to benefit some molecular property estimation tasks
has attracted research attention in recent years, there still are two
issues that impede the usage of GNNs in this field: (1) those
models have not provided a global chemical perspective method
to better integrate atom and fragment information and both
ignore the reaction information between fragments; (2) lacking
the generalization ability of the different types and feature
dimensions of atoms, fragments, and bonds. To address those two
issues, more comprehensive information from different levels
needs to be embedded and there is still a demand to develop a
heterogeneous GNNs model for molecular property prediction.

In the study, we propose a Pharmacophoric-constrained Het-
erogeneous Graph Transformer model (PharmHGT) to compre-
hensively learn different views of heterogeneous molecular graph
features and boost the performance of molecule property predic-
tion (the code is available on GitHub: https://github.com/
mindrank-ai/PharmHGT). Firstly, we use the reaction informa-
tion of BRICS to divide the molecule into fragments that contain
functional groups and retain the reaction information between
these fragments to construct a heterogeneous molecular graph
containing two types of nodes and three types of edges (Fig. 1).
Then, to comprehensively consider the multi-view and multi-scale
graph representations of molecules and the reaction information
connecting the fragments, we propose a novel heterogeneous graph
transformer model based on message passing. Specifically, we use
two variants of transformers to learn the features of edges and
nodes in heterogeneous graphs respectively, and aggregate and
update these features of edges and nodes through message passing
to obtain the representation of heterogeneous molecular graphs.
Extensive experiments show that the model has outperformed the

The goal of drug discovery is to find novel molecules with

advanced baselines on multiple benchmark datasets. Further
ablation experiments also showed the effectiveness of learning
molecules representation from different perspectives. Our con-
tributions can be summarized as follows:

e We obtain the pharmacophore information from the
compound reaction and retain the reaction information
between the fragments. On this basis, a heterogeneous
molecular graph representation method is constructed.

e  We develop a heterogeneous graph transformer framework,
which is able to efficiently capture the information of
different node types and edge types, including the reaction
information between fragments through the fusion of multi-
views information of heterogeneous molecular graphs.

e We evaluate PharmHGT on nine public datasets and
demonstrate its superiority over state-of-the-art methods.

Results and discussion

In this section, we present the related work of this field and the
proposed PharmHGT model. We also presented the results of
PharmHGT for molecular property prediction on ten datasets,
these experiments datasets are from Wu et al.22, including four
classification and three regression tasks. More descriptions of the
data process can be found in Supplementary Note.

Related work. For graph data, if there is only one kind of node and
one kind of connection relationship from one node to another, it is
called a homogeneous graph, otherwise, it is a heterogeneous graph.
Currently, most of molecular graph is based on homogeneous
graph and using the heterogeneous graph to learn the representa-
tion is still blank. In this section, we review related prior homo-
geneous graph-based molecular representation methods and
heterogeneous graph embedding. We focused on the homogeneous
graphs that have some relevance to our model and those models
were used for baseline comparison with PharmHGT.

Fragment-based homogeneous graph-based molecular representa-
tion. It has been demonstrated that many characteristics of mole-
cules are related to molecular substructures which contain functional
group information. Zhang et all7 obtained two fragments by
breaking the acyclic single bonds in a molecule and exploited a
fragment-oriented multi-scale graph attention network for molecular
property prediction (FraGAT), which first proposed the definition of
molecule graph fragments that may contain functional groups.
However, FraGAT directly adopted the Attentive FP!®> to get
molecular graph embeddings, and the obtained fragments by this
method also is rough because there are multiple substructures in one
molecular. Zhang et al2! proposed the Motif-based Graph Self-
supervised Learning (MGSSL) model, which designed a molecule
fragmentation method that leverages a retrosynthesis-based algo-
rithm BRICS and additional rules for controlling the size of motif
vocabulary and used GNNs to capture the rich structural and
semantic information from graph motifs. However, this work still
did not consider the reaction information between substructures
obtained through BRICS and effectively combine the information of
the atom and the substructures. Nevertheless, these works still prove
that considering more information from molecular substructures
with functional groups can provide a more informative representa-
tion that can significantly improve the performance of downstream
tasks, but how and which kinds of information to be embedded
needs more exploratory work.

Message passing neural networks. Gilmer et al.!® proposed Mes-
sage Passing Neural Networks (MPNNs), which is the first gen-
eral framework for supervised learning on graphs, and can
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Fig. 1 An example of the overview of the molecular segmentation process and the construction of the heterogeneous molecular graph. In the
heterogeneous molecular graph at the bottom, the green nodes represent fragments with pharmacophore information, and the blue nodes represent the
atoms of the molecule. The green edges are the reaction information between fragments, the red dotted line edges are the related information of the atoms

that connect the fragments, and the edges between atoms are bonds.

effectively predict the quantum mechanical properties of small
organic molecules. The MPNNs framework is capable of learning
the representations from molecular graphs directly. Many
researchers made improvements on this basis and proposed many
models based on MPNN. Yang et al.?3 introduced a graph con-
volutional model, called Directed MPNN (D-MPNN), which used
messages associated with directed bonds to learn molecular
representations. Song et al.!® proposed a directed graph-based
Communicative Message Passing Neural Network (CMPNN) that
comprehensively considered the information of atoms and bonds
to improve the performance of molecular properties prediction.
However, those MPNNs have ignored the chemical reactions
information, which is vital for molecular properties from the
knowledge of chemistry and pharmacy.

Transformer architecture. Researchers proposed the Transformer
architecture eschewing recurrence and convolutions entirely and
instead based solely on the attention mechanism?*. Ying et al.?
have explored several simple coding methods of the graph,
mathematically showing that many popular GNN variants are
actually just special cases of Graph transformers. In the field of
representation learning of molecules, Rong et al® proposed
Graph Representation frOm self-superVised mEssage passing
tRansformer (GROVER), which can learn the rich structure and
semantic information of molecular from a large amount of
unlabeled molecular data. Chen et al.2® proposed the Commu-
nicative Message Passing Transformer (CoMPT), which rein-
forces message interactions between nodes and edges based on
the Transformer architecture.

Heterogeneous graph-based molecular representation. In the
field of recommendation systems, heterogeneous graph models
are popular for mining scenarios with nodes and/or edges of
various types?’~2°. Heterogeneous graphs are notoriously diffi-
cult to mine because of the bewildering combination of het-
erogeneous contents and structures. The current representation
learning for molecules is still at the level of homogeneous
graphs, but in addition to the basic atom-based molecular graph
representation, some fragment-based and motif-based repre-
sentation schemes have been proposed to represent a molecule.
Obviously, if these representation schemes can be constructed
for a comprehensive heterogeneous molecular graph repre-
sentation, it will be more conducive to capturing the char-
acterization of molecules and potentially improve the
performance of downstream tasks. In this paper, we propose a
new molecular heterogeneous graph construction method and
propose a heterogeneous graph transformers model that can
efficiently learn molecular representations.

Overview of PharmHGT architecture. The key idea of
PharmHGT is additionally capturing the pharmacophoric struc-
ture and chemical information feature from the heterogeneous
molecular graph. Generally, the heterogeneous graph is associated
with the node and edge attributes, while different node and edge
types have unequal dimensions of features. As shown in Fig. 2,
the proposed PharmHGT consists of three major modules: multi-
view molecular graph construction, aggregation of nodes and
edges information by heterogeneous graph transformer, and the
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Fig. 2 lllustration of Pharmacophoric-Constrained Heterogeneous Graph Transformer for molecular property prediction (PharmHGT). Firstly, the
heterogeneous molecular graph is formalized as the feature matrix. Then, the feature matrix of each view will first do message passing independently to
obtain the graph feature matrix of each view. Finally, the junction_view feature matrix will first do attention aggregation with the pharm_view feature matrix
to obtain the aggregation feature matrix, then that matrix will do attention aggregation with the atom_view feature matrix, and finally, obtain the features of
each node, and input those nodes as a sequence into the GRU to get the representation vector of the entire small molecule.

attention mechanism to integrate multi-view molecular graph
features for molecular property prediction.

Experiments

Datasets. In order to better compare and prove the effectiveness
of PharmHGT, we select nine benchmark molecular datasets for
experiments including Blood-brain barrier permeability (BBBP),
BACE, ClinTox, Tox21, SIDER, and HIV for classification tasks,
and ESOL, Freesolv and Lipophilicity for regression tasks. Below,
we include a brief introduction of these datasets.

e Classification tasks. The BBBP dataset has 2035 molecules
with binary labels of permeability properties, which are
often used to predict the ability of molecules to penetrate
the blood-brain barrier. The BACE dataset has 1513
molecules, which provides quantitative (IC50) and qualita-
tive (binary label) binding results for a set of inhibitors of
human f-secretase 1 (BACE-1). The ClinTox dataset has
1468 approved drug molecules and a list of molecules that
failed due to toxicity during clinical trials. The Tox21
dataset has 7821 molecules for 12 different targets relevant
to drug toxicity and was originally used in the Tox21 data
challenge. The SIDER dataset has 1379 approved drug
molecules and their side-effect, which are divided into
27 system organ classes. The HIV dataset has 41127
molecules and these molecules are tested for their ability to
inhibit HIV replication.

® Regression tasks. The ESOL dataset records the solubility of
1128 compounds. The FreeSolv includes a total of 642
molecules are selected from the Free Solvation Database.
The Lipophilicity dataset provides the experimental result
of octanol/water distribution coefficient (logD at pH 7.4) of
4198 compounds.

Implementation details. Following the previous works, we illus-
trate the results of each experiment with 5-fold cross-validation
and replicate training five times to increase the credibility of our
model. All benchmark datasets have been split as training,

validation, and test sets with a ratio of 0.8/0.1/0.1, while all
models were evaluated on random or scaffold-based splits as
recommended by?3. The node and edge features are processed by
the open-source package RDKit, and the detail is demonstrated in
Supplemental Experimental Procedures (Tables S1-S5).

Baselines. In the study, we compare our model with eight base-
line methods including 3 types.

e Fragment-based method: The AttentiveFP!> is a graph
neural network architecture, which uses a graph attention
mechanism to learn from relevant drug discovery datasets.
The FraGAT!” exploited a fragment-oriented multi-scale
graph attention network for molecular property prediction;
The MGSSL2! designed Motif-based Graph Self-supervised
Learning (MGSSL) by introducing a novel self-supervised
motif generation framework for GNNs.

e MPNN baselines: The MPNN!8 abstracts the commonal-
ities between several of the most promising existing neural
models into a single common framework, and focused on
obtaining effective vertices (atoms) embedding by message
passing module and message updating module; The
DMPNN?23 used messages associated with directed bonds
rather than those with vertices; The CMPNN!? introduced
a new message booster module to rich the message
generation process.

e Graph transformer baseline: The CoMPT20, with a
Transformer architecture, has learned a more attentive
molecular representation by reinforcing the message
interactions between nodes and edges; The GROVER
model® standard for Graph Representation frOm self-
superVised mEssage passing tRansformer, which can learn
rich structural and semantic information of molecules from
enormous unlabeled molecular data by carefully designed
self-supervised tasks in node-level, edge-level, and graph-
level. In addition, the Graphormer model is also based on
graph transformer, but Graphormer is a 3D model, which
requires the 3D conformation of each small molecules.
There are some inconsistencies between our model and
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Table 1 Overall performance comparison to the state-of-the-art methods on molecular property prediction classification tasks.
Classification (ROC-AUC%, higher is bettert)

Dataset BBBP BACE ClinTox Tox21 SIDER HIV
Molecules 2039 1513 1478 7831 1427 41127
Task 1 1 2 12 27 1

Splitting strategy Scaffold Scaffold Scaffold Scaffold Scaffold Scaffold
AttentiveFP 90.8 (5.01) 78.4 (0.02) 93.3 (2.04) 80.7 (2.02) 60.5 (6.01) 75.7 (1.40)
FragGAT 92.3 (4.04) 80.1 (0.86) 93.9 (2.06) 82.3 (1.62) 63.3 (3.23) 76.1 (0.65)
MGSSL 69.7 (0.91) - 80.7 (212) 76.5 (0.31) 61.8 (0.81) -

MPNN 91.3 (4.14) 77.9 (1.62) 87.9 (5.25) 80.8 (2.39) 59.5 (3.03) 74.1 (1.15)
DMPNN 91.9 (3.04) 80.9 (0.60) 89.7 (4.01) 82.6 (2.32) 63.2 (2.28) 78.6 (1.40)
CMPNN 92.7 (0.23) 82.1 (0.64) 90.2 (1.20) 80.6 (1.57) 61.6 (0.31) 77.4 (0.50)
CoMPT 93.8 (2.13) 81.9 (1.26) 93.4 (1.85) 80.9 (1.40) 63.4 (2.97) 78.1 (2.60)
GROVERpse 93.6 (0.80) 82.6 (0.70) 92.5 (1.30) 81.9 (2.00) 65.6 (0.60) 62.5 (0.90)
GROVER arge 94.0 (1.90) 81.0 (1.40) 94.4 (2.10) 83.1 (2.50) 65.8 (2.30) 68.2 (1.10)
PharmHGT 95.4 (1.15) 86.5 (2.21) 94.5 (0.42) 83.9 (0.56) 66.9 (1.63) 80.6 (0.21)
The results of baselines are obtained by us using a 5-fold cross-validation with scaffold split and doing experiment on each task for one time. The values in this table are the Mean and standard deviation
of ROC-AUC values. The best performance is marked in bold and the second best is underlined to facilitate reading.

Graphormer in terms of target tasks and inputs. For better
comparability, we have not added Graphormer into the
benchmark, but we give the computational results in the
Supplemental Experimental Procedures (Table S7 and
Table S8).

Performance comparison

Performance in classification tasks. Table 1 presents the area under
the receiver operating characteristic curve (ROC-AUC) results of
eight baseline models on six classification datasets. The Clintox,
Tox21, ToxCast, and SIDER are all multi-task learning tasks,
including total of 658 classification tasks. Compared with tradi-
tional baselines and several GNN-based models, PharmHGT
achieved large increases of ROC-AUC in all datasets (we give the
prediction ROC curved plots in Fig. S1 and Fig. S2). PharmHGT is
designed to be more attentive to pharmacophores, which makes this
model more explainable. To note, the PharmHGT outperformed
the pre-train methods with less computational cost. We also give
computing resources performance comparison to the state-of-the-
art methods base on ESOL datasets, see the Table S6.

Performance in regressions tasks. Solubility and lipophilicity are
basic physical chemistry property, which is vital for explaining
how molecules interact with solvents and cell membrane. Table 2
compares PharmHGT results to other state-of-the-art model
results. The best-case RMSE of the PharmHGT model on ESOL,
FreeSolv and Lipophilicity are 0.680 +0.137, 1.266 +0.239, and
0.583 +£0.063 in random split, and 0.839 +0.049, 1.689 £0.516
and 0.638 £0.040 in scaffold split. These results indicate that
better representations of molecular graphs containing more
information could significantly increase the model performance
on downstream tasks.

Ablation study. We conducted ablation studies on PharmHGT to
explore the effect of atom-level view, pharm-level view, and
junction-level view. Under the same experimental setup, we
implement seven simplified variants of PharmHGT on the two
benchmarks:

e (1) PharmHGT_a: by only retaining the atom-level graph.
e (2) PharmHGT_p: by only retaining the pharm-level graph
with reaction information.

e (3) PharmHGT_y: by only retaining the junction-
level graph.

e (4) PharmHGT_fa: by aggregating features of the pharm-
level graph with reaction information to the atom-
level graph.

e (5) PharmHGT_ya: by aggregating features of the junction-
level graph to the atom-level graph.

e (6) PharmHGT_py: by aggregating features of the pharm-
level with reaction information to the junction-level graph.

e (7) PharmHGT_yaf: by aggregating features of the
junction-level graph with the atom-level graph, then to
the pharm-level graph.

As shown in Fig. 3, the PharmHGT considering the
heterogeneous feature information from all views shows the best
performance among all architectures. The exclusions of the atom-
level, pharm-level, or junction-level view both caused decreases in
performances and the PharmHGT_f3 performs the worst when
only retaining the pharm-level graph with reaction information.
It indicates that lacking information from the atoms can not
effectively represent the characteristics of the molecule. When
combining two kinds of feature information, PharmHGT_y«
aggregates the junction-level graph into an atom-level graph and
it has the best performance among the models with one or two
views. It proves that integrating the feature information from
molecular fragments can improve the prediction performance.
The results of PharmHGT demonstrate that further integrating
the information from the reaction can obtain the most effective
molecular characterization.

Representation visualization. To investigate the molecular
representations learning ability of PharmHGT, we used
t-distributed Stochastic Neighbor Embedding (t-SNE) with
default hyper-parameters to visualize molecular representations
of the Tox21 dataset in Fig. 4. For this result, we define all
molecules with a label of 0 as non-toxic compounds, and any
molecule with a label of 1 as a toxic compound, and molecules
with similar toxicity tend to have more similar feature spaces.
Therefore, we visualize their embeddings by t-SNE and evaluate
whether the model can learn effective molecular representations
by whether the toxic and non-toxic molecules have a clear
boundary. The DMPNN has second performance in Tox21 task
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Table 2 Overall performance comparison to the state-of-the-art methods on molecular property prediction regression tasks.

Regression (RMSE, lower is better])

Dataset
Molecules

Tasks

Splitting strategy

ESOL
1128

1
Random

FreeSolv
642

1
Random

Lipophilicity
4200

1

Random

ESOL
1128

1
Scaffold

FreeSolv
642

1
Scaffold

Lipophilicity
4200

1

Scaffold

AttentiveFP
FragGAT
MPNN
DMPNN
CMPNN
CoMPT
GROVERy e
GROVER|arge
PharmHGT

0.853 (0.060)
0.878 (0.124)
1167 (0.430)
0.980 (0.258)
0.789 (0.112)
0.774 (0.058)
0.888 (0.116)
0.831 (0.120)
0.680 (0.137)

2.030 (0.420)
1.538 (0.640)
2185 (0.952)
2177 (0.914)
2.007 (0.442)
1.855 (0.578)
1.592 (0.072)
1544 (0.397)
1.266 (0.239)

0.650 (0.030)
0.645 (0.042)
0.672 (0.051)
0.653 (0.046)
0.614 (0.029)
0.592 (0.048)
0.660 (0.061)
0.643 (0.030)
0.583 (0.026)

0.877 (0.029)
0.884 (0.041)
1.541 (0.630)

1.050 (0.008)
0.845 (0.039)

2.073 (0.183)
2.065 (0.201)
2.430 (0.821)
2.182 (0.183)
1.833 (0.580)

0.915 (0.042)
1185 (0.160)
1.098 (0.178)
0.839 (0.049)

1.959 (0.808)
2.001 (0.081)
1.987 (0.072)
1.689 (0.516)

0.721 (0.00M)
0.750 (0.013)
0.730 (0.063)
0.683 (0.016)
0.658 (0.029)
0.646 (0.028)
0.817 (0.008)
0.823 (0.010)
0.638 (0.040)

The results of baselines are obtained by us using a 5-fold cross-validation with scaffold split or Random split and doing experiments on each task for one time. The values in this table are the Mean and

standard deviation of RMSE values. The best performance is marked in bold and the second best is underlined to facilitate reading.
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Fig. 3 Ablation results on BBBP and ESOL datasets. The “X" represent the
PharmHGT, the “X_" represents different PharmHGT variants of
aggregating atom-level, junction-level, and pharm-level features.

and achieves reasonable distinction between toxic and non-toxic
molecules (Fig. 4a), however, PharmHGT shows a more visible
boundary to classify toxic and non-toxic compounds (Fig. 4c). In
addition, the single-view (Fig. 4b) performance is far inferior to
the multi-view PharmHGT (Fig. 4c), which also proves the
necessity of considering the molecular multi-view information.

Case study. Pharmacophore is a molecular framework that
defines the necessary components that are responsible for specific
properties.  Accordingly, identifying and adding the

pharmacophore structure information associated with the target
property into the model is vital for molecular representation. To
illustrate the pharmacophore structure learning ability of
PharmHGT, we visualize molecular features on the ClinTox
dataset and select six molecules that are toxic in clinical trials and
several of them have been applied in the clinical setting as che-
motherapeutic drugs. The toxicities of these six molecules are
highly correlated with the contained pharmacophore (i.e., some
specific sub-structure). Figure 5¢ shows that our PharmHGT can
aggregate molecules with similar toxic pharmacophores together
and distinguish them from non-toxic samples; PharmHGT _«
cannot well aggregate molecules with similar toxic pharmaco-
phores, and have limited discrimination from negative samples
without the pharm-level view (Fig. 5b); The pretraining model
Grover, which achieves second performance in ClinTox subtask,
can only aggregate only a few molecules with similar toxic
pharmacophores (Fig. 5a) and the discrimination for non-toxic
samples is far less than PharmHGT. This indicates that the
embedded representations learned by PharmHGT can capture
functional group structural information more effectively.

Conclusions

In this paper, we propose PharmHGT, a pharmacophoric-
constrained heterogeneous graph transformer model for mole-
cular property prediction. We use the reaction information of
BRICS to decompose molecules into several fragments and con-
struct a heterogeneous molecular graph. Furthermore, we develop
a heterogeneous graph transformation model to capture global
information from multi-views of heterogeneous molecules.
Extensive experiments demonstrate that our PharmHGT model
achieves state-of-the-art performance on molecular properties
prediction. The ablation study and case study also demonstrate
the effectiveness of using pharmacophore group information and
heterogeneous molecules information of molecules.

Methods

Notation and problem definition. We use the BRICS? to decompose molecules
into several fragments with pharmacophore, and retain the reaction information
between fragments to construct a heterogeneous molecular graph. The hetero-
geneous molecular graph is denoted G = {V, E}, the G associated with a node type
mapping function ¢ : V. — O and an edge type mapping function v : E — P,
where O and P represent the set of all node types and the set of all edge types,
respectively. We treat molecular structure as heterogeneous graphs to capture the
chemical information from functional substructures and chemical reactions. We
propose three views of molecular graph representation schemes, which are the
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(a) DMPNN

(b) PharmHGT _a

(c) PharmHGT

Fig. 4 Visualization of molecular features. Visualization of molecular features for Tox21 from a DMPNN, b PharmHGT_a, and € PharmHGT with t-SNE.
All molecules with a label of O as non-toxic compounds, and any molecule with a label of 1 as a toxic compound, where toxicity compounds are colored in

red and the non-toxic ones are in blue.

atom-level view, pharm-level view containing pharmacophore information as well
as reaction information, and junction-level view to comprehensively represent a
molecule (Fig. 1). The specific definition is as follows:

Definition 1. (Atom-level view.) An atom-level view can be denoted as graph
G%= (V% E%), for each atom v{ we have v{ € V* where 1 <i<|N% and |N*| is the
total number of atoms, while for each bond € we have e; € E where 1 <1,/ <|N9|.
For featurization, the V¥ is represented as X* € RN"*™ where D? is the dimen-
sions of atom features, the E* is represented as X¢ € RM*™*P¢ where |[M?| is the
total number of directed bonds, D¢ is the dimensions of bond features.

Definition 2. (Pharm-level view.) A pharm-level view can be denoted as graph
GP = (VB, EP), for each pharmacophore st we have vf; € VP where 1 <i<|NF| and
INA| is the total number of pharmacophores, while for each BRICS reaction type i
we have efj € EP where 1<i,j<|NP|. For featurization, the V# is represented as
XxB e R¥*P0 where DB is the dimensions of pharmacophore features, the EF is

B
represented as Xf € RMﬁXD{‘ where |[MP| is the total number of BRICS reaction
types, D is the dimensions of BRICS reaction type features.

Definition 3. (Junction-level view.) A junction-level view can be denoted as graph
GY = (V7, E?), for each node v we have v/ € V¥ where 1<i<|NY| and |NY| is the
total number of atoms and pharmacophores, while for each edge efj we have

e,-yj € E¥ where 1<i,j<|NY|. For featurization, the V? is represented as X} e
.
RN"*Dv where D} is the dimensions of pharmacophore features, the E? is repre-

sented as X! € RM Dt where |M?] is the total number of atoms and pharmaco-
phores junction relationships, DY is the dimensions of junction relationship
information.

An example of the heterogeneous molecular graph and its multi-view is
illustrated in Fig. 1, which contains 2 node types and 3 edge types. Given the above
definitions, our main task is to learn representations of heterogeneous molecular
graphs.

Overview of PharmHGT. The key idea of PharmHGT is additionally capturing the
pharmacophoric structure and chemical information feature from heterogeneous

molecular graphs. Generally, the heterogeneous graph is associated with node and
edge attributes, while different node and edge types have unequal dimensions of
features. The framework consists of three parts: multi-view molecular graph con-
struction (Fig. 1), aggregation of nodes and edges information by heterogeneous

graph transformer, and the attention mechanism to integrate multi-view molecular
graph features for molecular property prediction (Fig. 2).

Obtaining the embedding of nodes and edges. The inputs of PharmHGT are the
feature matrix of node Xy and the feature matrix of edge X, the features of all
nodes can be obtained according to the intensity of the attention between the node
and the related edge. The multi-head self-attention mechanism enhances the signal
of the node in each view. Specifically, the basic block of PharmHGT is the usual
attention module:

[Q.K, V] = hO)[W, WX, w"] (1

where h(X) is the hidden features, WR, WX, WY are the projection matrices. The
normal attention module is the dot product self-attention, the Q, K, V is considered
in the same semantic vector space, which is not adapted in heterogeneous graph.
Therefore, we build a multi-view attention function to get more information from
different views, and the function can be formulated as:

T
Attention(Q, K, V) = Pg o (%) %4 )

where ¢ is active function, P is the view type set, p € P is a view and O is a
learnable view type weight matrix. KPT is the transpose matrix of view p key matrix,
and dy is the variance of Q and K. In addition, our model assumes that a single g;
and k; satisfy the mean of 0 and the variance of 1. Considering the more general
case, g; and k; satisfy the mean value of 0 and the variance is o, then D(g;k] ) = o*.
And D(QKT) = dyo*. In any case, divide by /d, to ensure that D(QKT) = D(g;k}).
The reason to guarantee this is to make softmax not affected by the dimension of
the vector. Furthermore, after adding multi-head attention structures, the
embedding matrix can be formulated as:

{ head; = Attention(Q;,K;, V;) 3)

Head; = Concat(head,, head,, ... ,head,)W°

where W is the weight matrix of each head. Therefore, we can get the hidden
nodes and edges features embedding matrix:

s (X)W,

{H(XV) = Concat(h,(Xy), h,(Xy), ... )
s h(Xp) Wi

H(X) = Concat(h,(Xg), h,(Xg), ...

Aggregation nodes and edges information. For each molecular graph view, we
use graph transformer to obtain all nodes and edges features. All nodes’ features is
X, ,Vv; €V, and the all edge nodes’ features are X, e €E. PharmHGT inter-
actively operates on edge hidden states H| (Xev), node hidden state H(X,, ), message
My(X,) and M, E(Xeq). To learn different knowledge from multi-view snapshots,
we build a view attention message passing strategy that is based on multi-head
attention structures, the node and edge feature are propagated at each iteration, ¢
denotes the current depth of the message passing, each step proceeds as follows:

My(X,) = o2 HEo ) 1= 1 )
Mi(X, ) =H(X,),t =1 ()

MyX,)= X Attention(H‘_l(XV YW,
D= o2 W

7)
M (X, ) WK HU(X, )WVV), t>1

My(X, ) = Linear (Mg(xe )+ H'(X,)
i i i (8)
- H”I(Xeﬂ)), t>1

where the @,(v;) is the function to find edges directed to node v;. Considering of
the vanishing gradient issue, we set a simple residual block to make module
training more stable during multi-views message passing:

{ Ht(XV’) = H"‘(XV’) + MIV(XV[)

HI(X,) = HU(X, ) + My(X, ) ©

Fusion multi-views information. For a given molecule, we obtain all types of
representations of the three views of molecule atom-level, pharm-level, and
junction-level by the above steps. Besides, the Gated Recurrent Unit is applied as a
vision readout operator to get all three views feature vector {Z,, Zs, Z,} of the
molecule, where Z, is the vector of atom-level view, Z; is the vector of pharm-level
view and Z, is the vector of junction-level view.

Then, the acquired three views features are aggregated to the final features
through the attention layer again, and the final representation vector of a molecule
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Fig. 5 Case study. Case study by t-SNE visualization of molecular features
molecular with toxicity are colored in gray, non-toxic molecules are in red
toxicity in clinical trials and is still toxic after marketing.

is obtained. The readout attention function is:

Xy’
ReadOutAttention(X,Y) = 0< ﬁ
k

(10)

>X

Specifically, the pharm-level-based contains the features of the reaction
information, and we first aggregate it with the junction-level-based features to
capture the associated information of pharmacophores and atoms and the reaction

8

on ClinTox dataset from a GROVER, b PharmHGT_q«, and € PharmHGT. Where
and blue indicating six molecules are selected for the case study that showed

information between pharmacophores. The formula is as follows:

Z,3 = ReadOutAttention(Z,, Zy) (11)

Then we are aggregating this information with atom-level-based feature
information to obtain the final molecular global feature representation (Fig. 2). The
attention layer can distinguish the importance of features and adaptively assign
more weight to more important features.

(12)

Finally, we perform downstream property predictions y = f(Z) where f(-) is a fully
connected layer for classification or regression.

Z = ReadOutAttention(Z,, Z,z)
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Data availability
All related data in this paper are public. All downstream datasets can be downloaded
from MoleculeNet.

Code availability
The implementation of PharmHGT is publicly available at https://github.com/stardj/
PharmHGT/.
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