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Atroposelective desymmetrization of
2-arylresorcinols via Tsuji-Trost allylation
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Palladium-catalyzed asymmetric allylic alkylation has proven to be a powerful method for the

preparation of a wide variety of chiral molecules. However, the catalytic and atroposelective

allylic alkylation is still rare and challenging, especially for biaryl substrates. Herein, we report

the palladium-catalyzed desymmetric and atroposelective allylation, in which the palladium

complex with a chiral phosphoramidite ligand enables desymmetrization of nucleophilic

2-arylresorcinols in a highly enantioselective manner. With the aid of the secondary kinetic

resolution effect, a wide variety of substrates containing a hydroxymethyl group at the

bottom aromatic ring are able to provide O-allylated products up to 98:2 er. Computational

studies show an accessible quadrant of the allylpalladium complex and provide three plau-

sible transition states with intra- or intermolecular hydrogen bonding. The energetically

favorable transition state is in good agreement with the observed enantioselectivity and

suggests that the catalytic reaction would proceed with an intramolecular hydrogen bond.
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The development of catalytic and enantioselective syntheses
of axially chiral biaryls has been extensively explored1–7

because it provides a highly efficient and selective route to
access natural products8,9, biologically active compounds10–12,
and chiral catalysts13–15. Strategies to control a stereogenic axis
are generally classified into several categories16–23, such as direct
cross-coupling, dynamic kinetic resolution, ring formation, and
desymmetrization (Fig. 1a)24–31. As each strategy inherently

possesses its own strengths and weaknesses, they are necessarily
complementary to each other depending on a target molecule.
Thus, the diversification of methodologies employing various
strategies is highly demanding to expand accessible axially chiral
molecules. Among the strategies, desymmetrization of config-
urationally stable and symmetric biaryls can provide an alter-
native and efficient way to approach axially chiral molecules
(Fig. 1b)32–44. However, compared to other strategies, a limited

Fig. 1 Strategies on the asymmetric synthesis of axially chiral biaryls and the catalytic asymmetric Tsuji-Trost reactions. a Strategies on the
asymmetric synthesis of axially chiral biaryls. b Representative examples for atroposelective desymmetrization of biaryls. c Catalytic asymmetric Tsuji-
Trost reactions. d Atroposelective allylations of anilides by dynamic kinetic resolution. e Palladium-catalyzed atroposelective desymmetric allylation
(this work).
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number of reactions have been reported, which represents the
current cutting edge of this type of reaction33–44.

Palladium-catalyzed asymmetric allylic alkylation, also known as
Tsuji-Trost allylation, is a powerful method to form a C–C bond or
C–heteroatom bond with high enantioselectivities45–48. In this
reaction, a π-allyl-Pd complex with a chiral ligand is formed,
in which a nucleophile generally approaches an allyl group in
the opposite direction of the Pd atom (Fig. 1c). In this regard,
asymmetric reactions essentially have focused on the control of a
stereogenic center that is newly generated on an allyl group46–48,
while investigation of the stereogenicity on a nucleophile is rela-
tively underexplored49–58. When a hard nucleophile is employed, it
can be bound to the palladium center and then transferred to the
allyl group (inner-sphere pathway). In this scenario, the orientation
and conformation of a prochiral nucleophile should be limited and
affected by the chiral palladium complex49. However, a soft pro-
chiral nucleophile directly attacks to the allyl group from the out-
side of the catalytic complex (outer-sphere pathway) which should
be challenging to develop new asymmetric methodology50. For
these reasons, this type of reactions has restrictively been applied to
control the stereogenic axis. For example, nonbiaryl anilides were
initially investigated by dynamic kinetic resolution (Fig. 1d) by
Taguchi55 and Curran56 in the early 2000s. Even though the
nucleophilic nitrogen atom itself consists of the stereogenic axis,
moderate enantioselectivities were observed. Further efforts have
been made by Feng/Du57 and Kitagawa58 to enhance enantios-
electivities around the C–N bond. However, to the best of our
knowledge, Pd-catalyzed allylic alkylation of a biaryl substrate has
not been developed. Furthermore, this type of reaction has not been
explored with atroposelective desymmetrization despite its long
and powerful history.

At the outset of our work, we hypothesized that a chiral pal-
ladium complex could atroposelectively desymmetrize symmetric
biaryls by distinguishing two prochiral heteroatom nucleophiles.
Given the previous literature46–48, the major challenge to realize
atroposelective allylic alkylation probably lies in (1) the opposite
and remote arrangement of a chiral ligand with prochiral het-
eroatom nucleophiles and (2) the possible multiple orientations of
the prochiral nucleophile when intermolecularly approaching the
allylpalladium complex. To overcome these challenges, we envi-
sioned that a catalytic complex should provide an extensive chiral
environment around the π-allyl-Pd center to limit the orientation
of the nucleophile. Furthermore, an additional functional group
on the other side of the aromatic ring would be desirable to make
favorable interactions. Herein, we report a highly atroposelective
Pd-catalyzed allylation, in which achiral 2-arylresorcinols are
desymmetrized by distinguishing two symmetric phenolic
hydroxyl groups (Fig. 1e).

Results and discussion
Reaction optimizations. To test our hypothesis, we designed a
substrate, 1a, containing resorcinol at the top and ortho-benzy-
lalcohol at the bottom (Table 1)34. We initially envisioned that
the bottom hydroxyl group would form a desirable intra- or
intermolecular hydrogen bond for the catalytic and enantiose-
lective reaction. With methyl cinnamyl carbonate (2a), pre-
liminary chiral ligand screening was performed (Table 1, entries
1–4), in which desired product 3aa was obtained along with
disubstituted product 4aa. Among the tested ligands, phos-
phoramidite ligand59 (L4) was found to be the most effective at
affording 3aa in 44% yield and 91:9 er (Table 1, entry 4 vs. entries
1–3). Based on the results from the preliminary experiments, we
performed a thorough investigation with a series of phosphor-
amidite ligands (L5–L13), as summarized in Table 1, entries
5–13. Interestingly, when the binaphthyl group was substituted

with a biphenyl group (L5), enantioselectivity was retained to
a degree. This result suggested that the point chirality of
the catalysts would play an important role in the observed
selectivity. However, further modifications of the ligands did not
improve the enantioselectivities (Table 1, entries 6–13), which
suggested that all component of L4 would involve to generate
enantioselective environment in good harmony with the allyl-
palladium complex. We were pleased to find that enantioselec-
tivity was enhanced to 93:7 er, when the reaction was performed
at −20 °C (Table 1, entry 14). When the branched carbonate
(2a′) was employed, the enantioselectivity slightly increased to
94:6 er (Table 1, entry 15). After the exhaustive optimization of
various reaction parameters (see Supplementary Table 1−5),
we were able to establish the optimized reaction conditions
(1.5 equiv of 2a′, 1 mol% of Pd(dba)2, 4 mol% of L4,
THF,−20 °C) to provide the desired product in 49% yield and
97:3 er (Table 1, entry 16).

Substrate scope. Next, we explored the substrate scope under the
optimized reaction conditions, as summarized in Fig. 2 and Fig. 3
(for detailed procedures, NMR spectra and HPLC chromato-
grams, see Supplementary Methods and Supplementary Data 2
and 3). In general, the modifications of bottom aromatic ring in
2-arylresorcinols are highly tolerable to give the desired products
with high atroposelectivity (Fig. 2). The reaction of the substrate
(1b) bearing a methyl group afforded the desired product (3ba)
with 95:5 er. The substrate containing 1,3-dioxolane was reacted
with 2a′ to provide the allylated product (3ca) with 94:6 er. The
introductions of electron-donating groups such as methyl and
methoxy group at the para-position of the stereogenic axis were
tolerable to afford 3da with 95:5 er and 3ea with 92:8 er,
respectively. When the reactions were performed with the sub-
strates substituted with electron-withdrawing groups, the desired
product were obtained in good enantioselectivity (3fa, 91:9 er;
3ga, 92:8 er; 3ha, 88:12 er), albeit with slightly lower yield.
However, the substrates that were substituted at the para position
of the hydroxymethyl group showed lower selectivities (3ia, 80:20
er; 3ja, 84:16 er), presumably due to the unfavorable interactions
between the substituent and catalytic complex. It was observed
that the substitution at the ortho position to the stereogenic axis
was tolerable to give the desired product (3ka) in 94:6 er. Notably,
substrates (1l−1p) containing different functional groups instead
of the hydroxymethyl group at the bottom aromatic ring were
found to be tolerable to a degree. For example, the substrate
containing a methoxymethyl or 2-hydroxyisopropyl group was
reacted in the optimized reaction conditions to give the allylated
products (3ha or 3ia) in 88:12 er. Also, the reactions of the
substrates with a methyl, isopropyl, or phenyl group provided the
desired products with good enantioselectivity (3na, methyl-,
83:17 er; 3oa, isopropyl-, 85:15 er; 3pa, phenyl-, 87:13 er). These
results suggest that the observed enantioselectivity would origi-
nate from repulsive interactions between the catalytic complex
and substrate, and the hydroxyl group in 1a would facilitate the
asymmetric transformation. Next, further modifications on the
top aromatic ring and allyl carbonate were performed, which
showed high compatibility of our methodology (Fig. 3). When
substrates were substituted with a methyl or bromide at the top
aromatic ring, they provided 3qa with 98:2 er and 3ra with 91:9
er, respectively. The reaction of 1a with 2b and 2c in which the
cinnamyl group was substituted with a methyl or bromide group
provided the desired products with 96:4 er. While thiophene and
furan instead of the phenyl group of 2a′ were tolerable to
afford 3ad in 96:4 er and 3ae in 91:9 er, the reaction with
naphthalene-substituted carbonates (2f) gave lower enantios-
electivity (76:24 er). The nonsubstituted allyl carbonate (2g) was
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found not to be compatible with our methodology. The absolute
configuration of 3ea was determined by X-ray crystallography
(see Supplementary Data 1, Supplementary Fig. 1, and Supple-
mentary Table 6−13).

Reaction profile and secondary kinetic resolution effects.
Because difunctionalized products can be formed in desymme-
trization, the moderate chemical yields of monofunctionalized

products have been observed despite high overall yields38. Fur-
thermore, because the formation of difunctionalized products is
related to secondary kinetic resolution effect, careful investiga-
tions are required. To explore this issue more aggressively, the
changes in 3aa and 4aa were examined in the reaction mixture
(Fig. 4a). Interestingly, the desired product was quickly formed
within 15 min, and the total amount of 3aa was mostly
unchanged. Instead, the amount of the diallylated product (4aa)
and enantioselectivity of 3aa increased until 45 min. This result

Table 1 Reaction optimizationsa.

Entry 2a / 2a′ Ligand Temp (°C) Time (h) Yieldb of 3aa (%) Enantiomeric ratioc (er) Yieldb of 4aa (%)

1 2a L1 0 48 30 49:51 6
2 2a L2 0 48 <5 n.d.d n.d.d

3 2a L3 0 48 25 35:65 3
4 2a L4 0 2 44 91:9 18
5 2a L5 0 3 18 89:11 10
6 2a L6 0 48 11 67:33 n.d.d

7 2a L7 0 1.5 42 41:59 26
8 2a L8 0 48 11 57:43 n.d.d

9 2a L9 0 3 32 57:43 11
10 2a L10 0 0.5 27 58:42 17
11 2a L11 0 0.5 49 61:39 23
12 2a L12 0 11 38 53:47 26
13 2a L13 0 0.5 59 44:56 12
14 2a L4 −20 3 55 93:7 23
15 2a′ L4 −20 3 55 94:6 22
16e 2a′ L4 −20 10 49 97:3 42

aUnless otherwise noted, the reactions were carried out with 1a (0.10 mmol, 1.0 equiv), 2a or 2a′ (0.10 mmol, 1.0 equiv), Pd(dba)2 (0.005mmol, 0.05 equiv), L1−L13 (0.02 mmol, 0.2 equiv), THF
(0.5 mL, 0.2M).
bIsolated yields.
cEnantiomeric ratios were determined by chiral-phase high-performance liquid chromatography analysis.
dNot determined.
e1 mol% of Pd(dba)2, 4 mol% of L4, and 1.5 equiv of 2a′ were employed.
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suggests that the substrate (1a) and monosubstituted product
(3aa) are allylated at a similar rate, and favorable secondary
kinetic resolution is involved. Indeed, when the racemic mixture
of 3aa was reacted with 0.7 equiv of 2a′ under the optimized
reaction conditions, the same atropisomer of 3aa remained at
78:22 er (Fig. 4b). Because the fast initial rate could lead to an
uncontrolled reaction in terms of product distribution and
selectivity, we tried several milder reaction conditions, including
lower concentrations, catalytic loading, and temperature, to
decrease the reaction rate. However, these efforts were found to
be unfruitful (see Supplementary Table 1−5).

Kinetic resolution and further transformation. Inspired by
secondary kinetic resolution effect, we envisioned atroposelective
kinetic resolution of mono-substituted biaryls (Fig. 4c). Two
racemic mixtures of 3s and 3ag substituted with a methyl or allyl
group, respectively, were reacted with 0.5 equiv of 2a′ under the
optimized reaction conditions to give chiral difunctionalized

products with moderate enantioselectivities (4sa, 39% yield, 82:18
er; 4ag′, 33% yield, 76:24 er). In these reactions, the substrates
were recovered in non-racemic, but lower enantioselectivities (3 s,
52% yield, 63:37 er; 3ag, 58% yield, 62:38 er). These results
suggest that atroposelective kinetic resolution would be feasible
based on asymmetric Tsuji-Trost reaction.

In order to demonstrate the practicality of our method, the
monofunctionalized product was further transformed. Even
though the hydroxyl group at the bottom aromatic ring is
required to achieve high atroposelectivity in this reaction, this
hydroxyl group can be easily transformed to other functional-
ities which would be additional advantage of our methodology
(Fig. 4d). Because the phenolic OH is highly reactive, selective
methylation was initially conducted to provide the methylated
product (4sa) in 73% yield and 96:4 er. Then, the hydroxyl
group at the bottom aromatic ring was brominated to afford 5
in 94% yield and 95:5 er, which could be converted to many
different functional groups. For example, the bromomethyl

Fig. 2 Substrate scope of bottom aromatic ring. Unless otherwise noted, the reactions were carried out with 1 (0.10mmol, 1.0 equiv), 2a′ (0.15 mmol, 1.5
equiv), Pd(dba)2 (0.001 mmol, 0.01 equiv), L4 (0.004mmol, 0.04 equiv), THF (0.5 mL, 0.2M). Isolated yields. Enantiomeric ratios were determined by
chiral-phase high-performance liquid chromatography analysis.
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compound was reduced with LiAlH4 to give 6 in 95:5 er and
underwent a substitution reaction with NaN3 to furnish 7
without loss of enantioselectivity. We believe that the azide 7
can be further transformed to a variety of atropisomeric amine
compounds.

Computational studies. To investigate the configurational sta-
bility of the products, we conducted computational calculations
on the rotational barriers of 1a, 3aa, 3ka, and 3na as shown in
Fig. 5a (See Supplementary Table 14−17 in Supplementary
Data 4)60. Geometries/frequencies were computed at the B3LYP/
6-31+G(d,p) level of theory, and the single point energies were
calculated at the M06-2X/6-311++G(2d,3p) level of theory. In
our calculations, the substrate and allylated products were
expected to have a sufficiently high rotational barrier to lock
their stereo-configurations at the reaction temperature. In par-
ticular, 3ka, which contained another substituent at the ortho
position to the stereogenic axis, showed a much higher rotational
barrier (43.8 kcal/mol).

To further elucidate the origin of the observed enantioselectivity,
we conducted preliminary computational studies on this transfor-
mation (See Supplementary Table 18 in Supplementary Data 4)60.
Because of the bulky chiral ligand, the two-layer quantum-
mechanical (QM)/semiempirical (SE) ONIOM model61–63 was
applied to the palladium complexes. Heteroatoms in ligands,
palladium atom, cinnamyl group, and 1a were designated to the
QM layer which was treated with B3LYP/6-31G(d) (C, H, O, N, P)/
LANL2DZ (ECP Pd). All carbon and hydrogen atoms in ligands
were designated to the SE layer which was treated with PM6
(Fig. 5b). Single-point energies of these optimized structures were
calculated using M06-2X/6-311++G(2d,3p) (C, H, O, N, P)/SDD

(ECP Pd) for the QM layer and PM6 for the SE layer with the
inclusion of solvation energy corrections (SMD, tetrahydrofuran).
Based on the optimized geometry of the π-allyl palladium complex
(AllylPd(L4)(THF)), the steric effects of the ligands were
quantitatively assessed using the steric map produced by the
SambVca 2.1 tool64. The results clearly showed an accessible
quadrant between the BINOL of L4 and the cinnamyl group
(Fig. 5c). With two enantiomers of anionic 1a, possible transition
states (TS1, TS2, and TS3) were obtained (Fig. 5d and Fig. 5e). In
our calculations, TS1, which can afford the observed enantiomer, is
more energetically favorable than TS2 by 2.5 kcal/mol. In TS2, the
bottom aromatic ring of 2-arylresorcinol pointed to the binaphthyl
group in L4, which would make a slight turn clockwise around the
Pd-P bond. We believe that this inevitable turn would cause
unfavorable steric interaction (indicated as red lines in Fig. 5d)
between the cinnamyl group and the phenyl group of L4. The
noncovalent interaction (NCI) plots also showed this unfavorable
interaction in TS2 (See Supplementary Figure 2 in Supplementary
Data 4)65. Additionally, these results suggested that the intramo-
lecular hydrogen bond would stabilize the partially eclipsed
conformation of 2-arylresorcinol in TS1 and TS2. This effect
would further improve enantioselectivity of 3aa up to 98:2 er,
compared to that of the non-hydroxymethyl substrates such as 3la,
3na−3pa. Interestingly, because the para position to the hydro-
xymethyl group oriented to the ligands in TS1, the substitution at
this position could lead to unfavorable steric repulsion, which was
in agreement with the observed result in 3ia and 3ja. Because the
hydroxymethyl group could form an intermolecular hydrogen
bond with the BINOL group of L4, the inductive model (TS3) was
considered. However, this transition state (TS3) was energetically
unfavorable by 5.7 kcal/mol compared to TS1 (Fig. 5e).

Fig. 3 Substrate scope of top aromatic ring and allyl carbonate. Unless otherwise noted, the reactions were carried out with 1 (0.10 mmol, 1.0 equiv), 2a′
(0.15 mmol, 1.5 equiv), Pd(dba)2 (0.001 mmol, 0.01 equiv), L4 (0.004mmol, 0.04 equiv), THF (0.5 mL, 0.2M). Isolated yields. Enantiomeric ratios were
determined by chiral-phase high-performance liquid chromatography analysis. a0.05 equiv of Pd(dba)2 and 0.20 equiv of L4 were employed.
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Conclusion
In conclusion, an efficient strategy for the highly atroposelective
palladium-catalyzed desymmetrization of 2-arylresorcinols has
been established. The chiral palladium complex with a phos-
phoramidite ligand smoothly induces the desymmetric allylic O-
alkylation reaction with excellent enantioselectivities up to 98:2
er. Our calculations reveal that the hydroxymethyl group at the
bottom aromatic ring forms an intramolecular hydrogen bond
and facilitates the catalytic reaction. The transition states of this
transformation have been obtained by computational calcula-
tions, which have provided insight into the origin of enantios-
electivity. Given the importance of catalytic and atroposelective

reactions, this unique and efficient methodology will encourage
further efforts in this field.

Methods
General procedure for atroposelective allylation. In an oven dried reaction tube
equipped with a magnetic stirring bar, were premixed Pd(dba)2 (0.6 mg,
0.001 mmol, 0.01 equiv), L4 (2.2 mg, 0.004 mmol, 0.04 equiv), and THF (0.2 mL).
After 10 min, 2 (0.15 mmol, 1.5 equiv) in THF (0.3 mL) was added, and the
mixture was stirred for 10 min. Then, 1 (0.10 mmol, 1 equiv) was added and the
vial was sealed with a Teflon cap and further secured with Parafilm MⓇ. The
reaction mixture was left to stir for 10–240 h at –20 °C. After that, the crude
material was purified by flash column chromatography using an eluent of 9–33%

Fig. 4 Reaction profile, kinetic resolution effects, and further transformations. a Reaction conversion and product distributions. b Secondary kinetic
resolution effects of 3aa. c Atroposelective allylation via kinetic resolution. d Further transformations.
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Fig. 5 Computational studies. a Computed barriers to rotation about the C–C bond. b ONIOM model for AllylPd(L4)(THF). c Optimized geometry of the
AllylPd(L4)(THF) complex and steric map. d Transition state structures of the outer-sphere models and computed relative energy profiles. e A transition
state structure of the inner-sphere model and computed relative energy profiles.
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EtOAc/Hx to provide the desired product 3. The enantioselectivity was determined
by chiral HPLC.

Data availability
Detailed experimental procedures and characterizations of new compounds are available
in Supplementary Information. The X-ray crystallographic coordinates for structures
reported in this Article have been provided as Supplementary Data 1 and deposited at the
Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC
701796. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. 1H and 13C NMR spectra
and HPLC chromatograms can be found in the Supplementary Data 2 and 3,
respectively. Computational chemistry details are available in Supplementary Data 4.
Reprints and permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to Y.K.
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