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A recyclable stereoauxiliary aminocatalyzed
strategy for one-pot synthesis of indolizine-2-
carbaldehydes
Kui Zeng1, Ruhuai Mei1, Sebastian Dechert 2, Lutz Ackermann 3 & Kai Zhang1✉

Indolizine-carbaldehydes with the easily modifiable carbaldehyde group are important syn-

thetic targets as versatile precursors for distinct indolizines. However, the efficient one-pot

construction of trisubstituted indolizine-2-carbaldehydes represents a long-standing chal-

lenge. Herein, we report an unprecedented recyclable stereoauxiliary aminocatalytic

approach via aminosugars derived from biomass, which enable the efficient one-pot synthesis

of desired trisubstituted indolizine-2-carbaldehydes via [3+2] annulations of acyl pyridines

and α,β-unsaturated aldehyde. Compared to the steric shielding effect from α-anomer, a

stereoauxiliary effect favored by β-anomer of D-glucosamine is supported by control

experiments. Furthermore, polymeric chitosan containing predominantly β-D-anhy-

droglucosamine units also shows excellent catalytic performance in aqueous solutions for the

conversion of various substrates, large-scale synthesis and catalytic cycling experiments.

Thus, our approach advances the existing methodologies by providing a rich library of

indolizine-2-aldehydes. In addition, it delivers an efficient protocol for a set of late-stage

diversification and targeted modifications of bioactive molecules or drugs, as showcased with

1,2,3-trisubstituted indolizine-2-carbaldehydes.
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Indolizines, an important group of N-heterocyclic compounds1,
play a pivotal role in various fields ranging from pharma-
ceutics (Fig. 1a)2–4 to material science5 and chemical

synthesis6–10. Thus, significant efforts have been made and
remarkable progress has been achieved in the synthesis of such
type of scaffolds11. Four representative strategies are known for
the efficient preparation of indolizines, which include Scholtz
reaction12,13, Tschitschibabin reaction14,15, pyridinium N-
methylides16,17, and cyclization of alkynes with heteroaromatic
compounds18–20. Recently, multi-step synthesis strategies for the
preparation of indolizine-carbaldehydes have been reported21–23

and the easily modifiable aldehyde group in pyrrole ring makes
indolizine-2-carbaldehydes versatile building blocks (Fig. 1b)22,23.
One-pot synthesis and synthetic modifications of indolizine-2-
carbaldehydes, however, were rarely studied, probably due to the
lack of efficient synthetic strategies (Fig. 1b). In particular, such
an one-pot synthetic strategy would be highly attractive and
desired among synthetic and medicinal chemists22,23.

The [3+2] annulations of α,β-unsaturated aldehydes and
2-acetylpyridine is a pivotal step for the one-pot construction of
indolizine-2-carbaldehydes. Generally, 2-acetylpyridine easily
reacts with the carbonyl group of α,β-unsaturated aldehydes24,
and 2-acetylpyridine activated by metal-based Lewis acid could
attack the β-position of α,β-unsaturated aldehydes with the pre-
sence of a secondary aminocatalyst25. These challenges have
hampered the development of [3+2] cyclization of
2-acetylpyridine and α,β-unsaturated aldehydes. Inspired by the
two-component Baylis–Hillmann reaction26,27, an acetic acid-
catalyzed method for the one-pot preparation of desired

indolizine-2-carbaldehydes was first time reported in 2021 as a
state-of-the-art method28. This is the only one-pot synthesis of
indolizine-2-carbaldehydes reported to date, and the reaction was
carried out in acetic acid as catalyst and solvent to improve the
efficiency29. A generalized strategy to overcome the harsh reac-
tion conditions for broader scope of indolizine-2-carbaldehydes
with even higher efficiency via [3+2] cyclization is still highly
desired.

During the last decades, aminocatalysis via iminium ion or
enamine has emerged as an important approach for the con-
struction of various C–C bonds30–36. Herein, we propose an
aminocatalysis mode via iminium ion/enamine tandem sequence
that could efficiently overcome the reaction energy barriers for
Michael reaction and aldol reaction for the construction of 1,2,3-
trisubstituted indolizine-2-carbaldehydes (Fig. 1c). In particular,
carbohydrates as the most abundant and renewable biomass with
native chiral backbones have been widely utilized as
carbohydrate-derived ligands for enantioselective reactions37–39,
whereas aminocatalyst derived from amino sugars has received
less attention so far40,41. Inspired by our recently work on
anomeric stereoauxiliary cleavage of the C−N bond of glucosa-
mine for the efficient preparation of imidazo[1,5-a]pyridines42,
we discovered a novel sustainable aminocatalysis strategy via
recyclable stereoauxiliary combined with iminium ion/enamine
tandem sequence as potential synthesis strategy (Fig. 1d).
D-glucosamine and even the polymeric chitosan containing
mostly β-D-anhydroglucosamine units as building blocks repre-
senting one of the most abundant and renewable biobased
compounds43, were first time utilized as attractive stereoauxiliary

Fig. 1 Indolizine. a Pharmaceuticals derived from indolizine. b Traditional approaches for indolizine-carbaldehydes. c Our design: iminium ion/enamine
tandem sequence strategy for trisubstituted indolizine-2-carbaldehydes. d This work: Unprecedented stereoauxiliary aminocatalysis with iminium
ion/enamine strategy for the preparation of 1,2,3-trisubstituted indolizine-2-carbaldehydes via one-pot reaction.
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aminocatalysts for the one-pot efficient synthesis of 1,2,3-tri-
substituted indolizine-2-carbaldehydes via [3+2] cyclization. This
new approach largely expands the scope of readily accessible
indolizine-2-carbaldehydes relative to existing state-of-the-art
methods.

Results and discussion
Reaction development. We initiated our studies using cinna-
maldehyde (1a) and 2-acetylpyridine (2a) as substrates to evaluate
the envisioned aminocatalyzed [3+2] cyclization reaction for the
synthesis of desired 1-methyl-3-phenylindolizine-2-carbaldehyde (4)
(see Supplementary Note 1 and Supplementary Method 1, 2). In
addition, Brønsted acid (2 equiv.) was used to hinder the deproto-
nation of the methyl group of 2a (Supplementary Tables 1, 2)29,
while lithium cations were used to improve the catalytic performance
of the cyclization reaction (Supplementary Table 3)25,44. Bronsted
acid, e.g., Li+, could help to activate the carbonyl group in the imi-
nium formation and/or in the intramolecular cyclization, with the
release of water. At the outset without catalyst, the reaction was tested
with a trace yield of product 4 with a mixture of 1a (0.20mmol), 2a
(2.5 equiv.), LiSO3CF3 (3.0 equiv.) and acetic acid (2.0 equiv.) in
CF3CH2OH (0.90mL) for 18 h under Ar atmosphere (Fig. 2)
(Supplementary Table 4, 5). We also examined various widely-used
representative aminocatalysts and ligands derived from amino acids
(Fig. 2). By using (S)-(-)-α, α-Diphenyl-2-pyrrolidinemethanol (3a)45,
(S)-(-)-α, α-Diphenylprolinoltrimethylsilyl ether (3b)45, L-proline
(3c)30, (5S)-(-)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (3d)31,
N-(tert-butoxycarbonyl)-L-valine (3e)46 and glycine (3f)47, as cata-
lysts, only low yields of product 4 were achieved.

Various sustainable amino sugars and their derivatives,
including D-glucosamine hydrochloride (3g), D-mannosamine
hydrochloride (3h), N-acetyl-D-glucosamine hydrochloride (3i),
1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-D-glucopyranose
hydrochloride (3j), 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-α-D-
glucopyranose hydrochloride (3k) and chitosan were used as
aminocatalysts under the same conditions (Fig. 2). Surprisingly,
97% yield of 4 was achieved by using catalyst 3j (see
Supplementary Note 2, Supplementary Fig. 1), while 3k only
achieved 53% yield of 4. In comparison, lower yields of 4 were
obtained with 3g-3i, 3k and chitosan. Based on all these results, 3j

was taken as the optimal aminocatalyst for further synthesis. In
addition to amine-containing catalysts showing the central
function for the efficient reaction, acetic acid plays an important
role. Without acetic acid (Supplementary Table 2), the yield of 4
decreased obviously from 97 to 44%48. As well, the amount of
LiSO3CF3 (2 equiv.) and 2-acetylpyridine (1.5 equiv.), reaction
time (12 h) and reaction temperature (25 and 50 °C) also affected
the yields (Supplementary Table 1, entries 13-17). Furthermore,
in order to exclude the Lewis-acid catalytic pathway through
acetic acid29, a mixture of 1a (0.2 mmol), 2a (2.5 equiv.) and
NaOAc (3.0 equiv.) in acetic acid (0.9 mL) was tested (Supple-
mentary Table 4, entries 8). As a result, only 2% of 4 was
obtained, which further demonstrates the higher catalytic activity
of our aminocatalysis protocol.

Substrate scope. With the optimized reaction conditions in hand,
we next probed the scope of various α,β-unsaturated aldehydes
using 2-acetylpyridine as a representative heteroaryl ketone
(Fig. 3a) (see Supplementary Method 3 and Supplementary
Note 3). A series of α,β-unsaturated aldehydes, including those
with electron-donating or -withdrawing groups at different
positions (ortho, meta or para), delivered the corresponding
products 4-13 under General procedure A. An array of valuable
products 4-8 were efficiently accessed with this stereoauxiliary
aminocatalyzed protocol. Notably, in our system, a substrate with
an electron-donating methoxy group at ortho position (6, 95%)
could even achieve a higher yield than those at para position (5,
63%). Surprisingly, a native valuable substrate from Gliricidia
sepium with a hydroxyl group and a methoxy group was
smoothly transformed into a value-added indolizine-2-aldehyde
with a moderate yield (7, 63%). As well, an important substrate
for the detection of catechins was also tolerant under this method
with a 46% yield (8) under General procedure B. In addition, a
variety of valuable functional groups at diverse positions, such as
fluoro (9), chloro (10), bromo (11, 12), and nitro moiety (13),
were well compatible with the standard conditions. Particularly,
the sensitive (E)-3-(furan-2-yl)acrylaldehyde was also tolerated in
our protocol under General procedure C and was successfully
transformed into the desired product (14). Moreover, aliphatic

Fig. 2 Optimization of the aminocatalyzed [3+2] annulations for indolizine-2-aldehyde. a1a (0.2 mmol), 2a (2.5 equiv.), aminocatalyst (20mol%),
LiSO3CF3 (3.0 equiv.), AcOH (2.0 equiv.), CF3CH2OH (0.9 mL), Ar, 18 h, 80 °C. bYields were determined by 1H-NMR analysis with CH2Br2 as internal
standard. Chitosan has a degree of deacetylation of 97.96%.
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Fig. 3 Scope of substrates for the synthesis of indolizine-2-carbaldehydes. a Scope of aldehydes. b Scope of the heteroaryl ketones. Unless otherwise
specified, all products were prepared with General procedure A: α,β-unsaturated aldehyde (0.2mmol), heteroaryl ketones (2.5 equiv.), catalyst 3j (20mol%),
AcOH (2.0 equiv.) and LiSO3CF3 in CF3CH2OH (0.9mL) for 18 h at 80 °C under Ar atmosphere. aGeneral procedure B: α,β-unsaturated aldehyde (0.2mmol),
heteroaryl ketones (2.5 equiv.), catalyst 3j (20mol%), and LiSO3CF3 in AcOH : CF3CH2OH (0.4 : 0.5mL) for 36 h at 80 °C under Ar atmosphere. bGeneral
procedure C: α,β-unsaturated aldehyde (0.2mmol), heteroaryl ketones (2.5 equiv.), catalyst 3j (20mol%), AcOH (4.0 equiv.) and LiSO3CF3 in CF3CH2OH
(0.9mL) for 42 h at r.t.. cGeneral procedure D: α,β-unsaturated aldehyde (0.2mmol), heteroaryl ketones (2.5 equiv.), catalyst 3j (20mol%), AcOH (2.0 equiv.)
and LiSO3CF3 in CF3CH2OH (0.9mL) for 36 h at 80 °C under Ar atmosphere. Yields are those of isolated products.
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α,β-unsaturated aldehyde was also well compatible under the
optimal conditions (15).

We further explored various heteroaryl ketones in combination
with cinnamaldehyde under General procedure A (Fig. 3b).
Di(pyridin-2-yl)methanone and pyridin-2-yl(pyridin-4-yl)metha-
none were well compatible under the conditions and smoothly
achieved yields of 95% (16), 83% (17) and 85% (18), respectively.
Diverse aromatic pyridine ketones, including those having
electron-donating or -withdrawing groups at distinct positions
(ortho, meta, or para) were efficiently transformed into
corresponding products (19-24). Various valuable functional
groups at distinct positions (meta or para), including methoxy
(21), trifluoromethyl (22), bromo (23) and dibromo (24), were
well tolerated under the optimized condition. Cyclopentyl(pyr-
idin-2-yl)methanone efficiently delivered desired product (25).

The structure of 19 was further confirmed by single-crystal X-ray
crystallographic analysis (see Supplementary Fig. 2, Supplemen-
tary Table 6), and those of other products in Fig. 3 were assigned
by analogy. It is worth noting that ethyl 3-oxo-3-(pyridin-2-yl)
propanoate (26) and also 1-(3-methylpyrazin-2-yl)ethan-1-one
(27) were successfully transformed into desired products under
General procedure D.

Late-stage synthetic applications. On indolizines with important
biological activities, the modifiable aldehyde group on the back-
bone is attractive for late-stage transformations into versatile
value-added products. Until recently, such valuable indolizine-2-
carbaldehydes were obtianed in 6-step reaction sequences with
complex conditions or 2-step reaction sequences with rare and
expensive feedstocks (Fig. 4a)22,23. Compared with these previous

Fig. 4 Synthetic applications. a Representative previous methods for 3-dimethylaminoindolizine-2-aldehyde. b Late-stage selective modifications of
bioactive molecules and drugs. c Late-stage diversification. aYields are those of isolated products. bReaction for 42 h in AcOH : CF3CH2OH (0.45 :
0.45mL). cReaction for 42 h in AcOH : CF3CH2OH (0.4 : 0.5 mL).
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protocols via carboxylation and reduction for the desired pro-
ducts, we efficiently achieved the synthesis of a group of value-
added 1,2,3-trisubstituted indolizine-2-carbaldehydes in a one-
pot reaction via aminocatalyzed [3+2] cyclization reaction. A
group of important bioactive molecules or drugs was used for our
protocol (Fig. 4b) (see Supplementary Method 4). Surprisingly, an
important fluvastatin intermediate was first time accessed by our
protocol for the preparation of value-added indolizine-2-
carbaldehyde (28). As well, (E)-3-(4-hydroxy-3-methoxyphenyl)
acrylaldehyde from Gliricidia sepium was also tolerant under the
optimal conditions, which led to 3-(4-hydroxy-3-methox-
yphenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (29) with
79% yield. Interestingly, (E)-3-(4-(dimethylamino)phenyl) acry-
laldehyde that is often used to detect catechins49 was also
smoothly transformed into 3-(4-(dimethylamino)phenyl)-1-
(pyridin-2-yl)indolizine-2-carbaldehyde (30, 81%). Furthermore,
obtained indolizine-2-carbaldehydes could be readily diversified
during late-stage modifications, thus providing more complex
molecules in an efficient manner (Fig. 4c) (see Supplementary
Method 5). For example, 3-(4-bromophenyl)-1-(pyridin-4-yl)
indolizine-2-carbaldehyde (17) underwent successful reduction
(31), arylation (32), condensation (33) or dehydration [5+1]

annulations (34), to showcase the synthetic diversifications on
1,2,3-trisubstituted indolizine-2-carbaldehydes.

Many organocatalyzed reactions still require high catalyst
loadings (20-30 mol%), while organocatalysts are difficult to
separate, recycle and reuse32. Therefore, a recyclable aminocata-
lyst for desired indolizine-2-aldehydes is in high demand.
Notably, our anomeric stereoauxiliary aminocatalyst was effi-
ciently expanded beyond the low molecular weight
D-glucosamine to the biopolymer chitosan containing β-D-
glucosamine as building blocks50 (Fig. 5a) (see Supplementary
Method 6 and Supplementary Table 7). Interestingly, the use of
chitosan demonstrates a recyclable aminocatalysis strategy and
the reaction is highly efficient in H2O, while lithium salts are not
required. As a result, various indolizine-aldehydes were obtained
under the use of chitosan as sustainable aminocatalyst, such as
products 4 (50%), 5 (41%), 6 (53%), 7 (72%), 8 (36%), 9 (45%), 10
(30%), 12 (24%), and 29 (32%). Even three cyclic α,β-unsaturated
ketones efficiently delivered the corresponding products 35 (23%),
36 (60%), and 37 (52%). Although the use of chitosan for
transforming halogenated aromatic α,β-unsaturated aldehydes led
to lower yields compared to glucosamine (Fig. 5a), e.g., for 9 (81%),

Fig. 5 Chitosan as stereoauxiliary aminocatalyst for indolizine-2-carbaldehydes via [3+2] annulation. a Scope of substrates. aGeneral procedure E: α,β-
unsaturated aldehydes/ketones (0.2 mmol), heteroaryl ketones (2.5 equiv.), chitosan (20mol%) and formic acid (4.0 equiv.) in H2O (1.0mL) for 18 h at
120 °C under Ar atmosphere. bGeneral procedure F: α,β-unsaturated aldehydes/ketones (0.2 mmol), heteroaryl ketones (2.5 equiv.), and chitosan (20mol
%) in Formic acid : H2O (0.5 : 0.5 mL) for 36 h at 120 °C under Ar atmosphere. b Larger scale synthesis of indolizine-2-carbaldehyde. c Cycling catalytic
experiments for the synthesis of indolizine-2-carbaldehyde.
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10 (75%), and 12 (71%), chitosan as aminocatalyst resulted in
higher yields for products 4-7 and 35-37.

Our strategy was compared with the state-of-the-art method28.
For example, products with sensitive groups can be smoothly
prepared with our protocol (7: 63%, 8: 46%, 14: 30%, 26: 32%, 27:
43% and 36: 60%), while only 2% NMR yield or even no products
were obtained using the reaction condition as in the ref. 28 (7: not
detected, 8: 2%, 14: not detected, 26: not detected, 27: 2% and 36:
8%). These results clearly demonstrated the robustness of our
aminocatalysis protocol compared with ref. 28. Furthermore,
product 4 can be successfully prepared by a one-pot method on a
larger scale (2.0 mmol) with up to 62% yield (Fig. 5b) (see
Supplementary Method 6). Chitosan can be used for multiple
cycles as an aminocatalyst in the aqueous solution, and exhibited
excellent catalytic performance even after 3 catalytic cycles under
the standard conditions (see Supplementary Fig. 3). During the
cycling catalytic reactions, product 4 can be easily isolated by
organic solvent extraction, and the remaining aqueous phase can
be directly used in the next catalytic cycle after adding 1a and 2
(Fig. 5c).

Mechanistic considerations. Under the standard condition, cat-
alyst 3j with β-anomer smoothly achieved 97% yield of 4, while
catalyst 3k with α-anomer only yielded 53% of 4 (Fig. 6a). This
lower reactivity using 3k demonstrates the presence of a strong
steric shielding from α-anomer that affects the efficient conver-
sion to the desired product 4. To gain more insight into the

reaction mechanism, imine intermedates of acetylated D-gluco-
samine, 3p as β-anomer and 3q as α-anomer, were synthesized,
separated and tested under the standard conditions (Fig. 6b) (see
Supplementary Method 7). Interestingly, product 4 with 51%
yield was obtained using 3p (β-anomer), while 3q (α-anomer)
could only deliver 16% yield of 4. Thus, the imine reaction
pathway via aminocatalyst preferentially reacting with α,β-unsa-
turated aldehydes is verified by these control experiments.
Besides, the lower yield of 4 with 3q (α-anomer) further provides
a strong support for the existing steric hinderance from acetyl
group at C1-position in 3q. In comparison, the stereoauxiliary
effect from 3p (β-anomer) promoted the yield of 4. Therefore, a
stereoauxiliary effect favored by β-anomer as well as a steric
shielding effect from α-anomer were clearly verified by control
experiments.

Combining all results, a plausible mechanism is proposed
(Fig. 6c). First, aminocatalyst A reacts with α,β-unsaturated
aldehyde B to form iminium ion D32. Then, 2-acetylpyridine
attacks the iminium ion D via Michael addition reaction to
generate an enamine E32,51. Enamine F can be simply converted
from E via the rotation, which will overcome the bulky steric
hindrance between R1 and R2. Thereafter, an intermediate G forms
via the intramolecular cyclization reaction in the enamine F. Then,
an intermediate H generates from the intermediate G through a
dehydration reaction, which leads to an intermediate I after
deprotonation. Finally, the desired indolizine-2-aldehyde J forms
via the hydrolysis reaction of intermedidate I and the catalyst A is
regenerated (ESI-HRMS: m/z calcd. for C14H22NO9

+ [M]:
348.1289, found 348.1297. see Supplementary Fig. 4; the
conformation stability of catalyst 3j was proved with 1H NMR in
Supplementary Fig. 5) for the next catalysis cycle. Computational
investigations of the mechanistic and stereochemical aspects of this
study are underway in the Houk lab at UCLA.

Conclusion
We have developed an unprecedented recyclable anomeric ste-
reoauxiliary aminocatalytic approach using glucosamine/chit-
osan from biomass for the efficient one-pot preparation of
versatilely decorated indolizine-2-carbaldehydes via [3+2]
annulations of acyl pyridines and α,β-unsaturated aldehyde. This
approach via an aminocatalysis pathway under mild conditions
efficiently expands the scope of readily accessible trisubstituted
indolizine-2-carbaldehydes relative to existing state-of-the-art
methods.Mechanistic control studies provided strong support for
the anomeric stereoauxiliary catalysis. Furthermore, a plethora of
late-stage diversification and targeted modifications of bioactive
molecules or drugs showcased the synthetic power of 1,2,3-tri-
substituted indolizine-2-carbaldehydes that were assembled via
this robust stereoaxuliary aminocatalysis approach. Moreover,
biopolymer chitosan consisting of β-D-anhydroglucosamine
units showed excellent catalytic performance in aqueous solution
for various substrate diversifications, large-scale synthesis and
recycling experiments. Overall, our anomeric stereoauxiliary
catalytic approach provides a promising solution and an efficient
green synthesis strategy towards addressing the challenges asso-
ciated with the assembly of indolizine-2-aldehydes with versatile
functional moieties, on which ongoing work is targeted to apply
this strategy towards developing a wider range of catalytic
applications.

Methods
Preparation of indolizine-2-carbaldehydes derivatives
General procedure A. A mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl
ketone, catalyst 3j (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the
CF3CH2OH (0.9 mL) were stirred at 80 °C under Ar atmosphere for 18 h.

Fig. 6 Stereoauxiliary control experiments. a Control experiment with 3j
(β-anomer) and 3k (α-anomer). b Control experiment with intermediate 3p
(β-anomer) and intermediate 3q (α-anomer). c Proposed mechanism.
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General procedure B. A mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl
ketone, catalyst 3j (0.04 mmol) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH :
AcOH (0.5 : 0.4 mL) were stirred at 80 °C under Ar atmosphere for 36 h.

General procedure C. A mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl
ketone, catalyst 3j (0.04 mmol), AcOH (4.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the
CF3CH2OH (0.9 mL) were stirred at room temperature under Ar atmosphere
for 42 h.

General procedure D. A mixture of α,β-unsaturated aldehyde (0.2 mmol), hetero-
aryl ketone, catalyst 3j (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.)
in the CF3CH2OH (0.9 mL) were stirred at 80 °C under Ar atmosphere for 36 h.

Workup General procedure A–D. The reaction temperature was directly read from
temperature detector of IKA apparatus that was calibrated with thermometer. After
cooling to room temperature, the reaction mixture was basified up to pH 7 via stad.
Na2CO3 aqueous solution, then extracted by diether (3 × 3 mL) and dried over
anhydrous Na2SO4. After filtration and concentration on rotary evaporator, the
crude product was purified with flash chromatography on silica gel (ethyl acetate :
n-hexane) to give products.

General procedure E. A mixture of α,β-unsaturated aldehyde/α,β-unsaturated
ketone (0.2 mmol), heteroaryl ketone (2.5 equiv.), catalyst chitosan (0.04 mmol),
formic acid (4.0 equiv.) in H2O (1.0 mL) were stirred at 120 °C under Ar atmo-
sphere for 18 h.

General procedure F. A mixture of α,β-unsaturated aldehyde/α,β-unsaturated
ketone (0.2 mmol), heteroaryl ketone (2.5 equiv.), catalyst chitosan (0.04 mmol) in
formic acid : H2O (0.5 : 0.5 mL) were stirred at 120 °C under Ar atmosphere
for 36 h.

Workup for General procedure E–F. The reactions were conducted in a sealed
Schlenk tube and heated by an IKA magnetic heating agitator with heating block.
The reaction temperature was directly read from temperature detector of IKA
apparatus that was calibrated with thermometer. After cooling to room tempera-
ture, the reaction mixture was extracted by diether (3 × 3 mL) and dried over
anhydrous Na2SO4. After filtration and concentration on rotary evaporator, the
crude product was purified with flash chromatography on silica gel (ethyl acetate :
n-hexane) to give products.

Data availability
The data that support the findings of this study are available in the Supplementary
Information (experimental procedures and characterization data). The NMR spectra of
all compounds are available in Supplementary Data 1. The X-ray crystallographic
coordinates for structures 19, reported in this study have been deposited at the
Cambridge Crystallographic Data Center (CCDC), under CCDC 2079110 (19,
Supplementary Data 2). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
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