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An open-source molecular builder and free energy
preparation workflow
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Daniel J. Cole 1✉

Automated free energy calculations for the prediction of binding free energies of congeneric

series of ligands to a protein target are growing in popularity, but building reliable initial

binding poses for the ligands is challenging. Here, we introduce the open-source FEgrow

workflow for building user-defined congeneric series of ligands in protein binding pockets for

input to free energy calculations. For a given ligand core and receptor structure, FEgrow

enumerates and optimises the bioactive conformations of the grown functional group(s),

making use of hybrid machine learning/molecular mechanics potential energy functions

where possible. Low energy structures are optionally scored using the gnina convolutional

neural network scoring function, and output for more rigorous protein–ligand binding free

energy predictions. We illustrate use of the workflow by building and scoring binding poses

for ten congeneric series of ligands bound to targets from a standard, high quality dataset of

protein–ligand complexes. Furthermore, we build a set of 13 inhibitors of the SARS-CoV-2

main protease from the literature, and use free energy calculations to retrospectively com-

pute their relative binding free energies. FEgrow is freely available at https://github.com/

cole-group/FEgrow, along with a tutorial.
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Computational structure-based molecular design, in parti-
cular aiding the discovery of novel chemicals with desired
biological activity, plays a crucial role in the modern drug

discovery pipeline. High-throughput virtual screening is widely
used in hit discovery1, but relies on pre-defined libraries of
compounds. De novo design software packages aim to construct a
model of a ligand in a target binding pocket using growth algo-
rithms, either starting from a scaffold of a known hit compound
or entirely from scratch. Such approaches can be beneficial as
they do not rely on a (physical or virtual) library, and molecules
can be tailored specifically to the problem at hand. Advances in
de novo design software have been extensively reviewed2, and
examples include both rule-based generation methods such as
OpenGrowth3, AutoGrow4, and LigBuilder5, and recently deep
generative methods for molecule design6.

With advances like these described above, much progress has
been made in the important problem of optimising a molecular
design within the context of a pre-defined scoring function and
binding pocket. However, whether the designed molecule indeed
has high biological activity is crucially reliant on the accuracy of
the methods that are used to generate and score poses of the
designed molecules, as well as other assumptions, such as a rigid
receptor, that might be employed. Furthermore, the generated
molecules can be quite esoteric, which may be advantageous with
regards to arriving at novel intellectual property, but may not be
ideal from a synthetic tractability viewpoint7. More commonly, a
drug discovery effort may have identified a hit compound with a
well-defined binding mode and wish to explore structure-activity
relationships amongst a small library of synthetically accessible
analogues. In this case, it would be beneficial to make use of prior
knowledge about the binding mode when generating poses of
designed compounds. One example of this approach is the
E-novo workflow8, which was made available in Pipeline Pilot or
Discovery Studio. The available conformations of added chemical
functional groups (R-groups) were enumerated with a rigid core,
and scored using a CHARMM-based docking method. The
physics-based molecular mechanics-generalised Born with surface
area (MM-GBSA) was then used to provide a more accurate
score. Further, more recent, examples include FragExplorer9,
which aims to grow or replace fragments to optimise molecular
interaction fields generated by the GRID software10, DeepFrag11,
which predicts appropriate fragment additions using a deep
convolutional neural network trained on thousands of known
protein–ligand complexes, and DEVELOP12, which uses deep
generative models to output 3D molecules conditional on pro-
vided phamacophoric features of the binding site. However, the
employed approximate physics- or knowledge-based approaches
to scoring the designs will limit to some extent their ability to
predict and optimise binding affinity.

On the other hand, free energy methods are much more
computationally expensive approaches to molecular design that
employ rigorous thermodynamics and carefully parameterised
force fields to compute (relative or absolute) protein–ligand
binding free energies. As such, they overcome many of the
accuracy limitations of de novo design workflows, and are com-
monly employed in prospective design efforts to explore and
prioritise relatively small perturbations in the hit-to-lead stage13.
Many excellent tutorials and best practice documentation are
available14–18, but most start from the assumption that the user
has already built initial poses of the ligands in the binding pocket.
For simple R-group additions, input coordinates may be built
from maximum common substructure alignment, for example,
but it may be difficult to resolve steric clashes or decide between
two alternative 3D poses in more complicated cases16. Some
widely-used graphical user interfaces, such as Maestro19 and
Chimera20, are also available for building R-groups, but these can

be proprietary and/or difficult to build into automated workflows
and modify according to user needs.

Notable successful computer-aided design efforts have used
free energy calculations in conjunction with de novo design tools
to build (and maybe score) new molecules. Jorgensen and co-
workers13 have pioneered this approach for many years, linking
de novo design through the biochemical and organic model
builder (BOMB) software with free energy perturbation (FEP)
through the MCPRO software. BOMB builds ligands into a
binding pocket by linking user-defined R-groups to an existing
core. Functionality is available for conformer searching, structural
optimisation, and scoring, using a custom scoring function
trained via linear regression on > 300 experimental activity data
points21. Once hits have been built and scored, hit-to-lead opti-
misation may be further refined through free energy calculations.
Such an approach has yielded extremely potent series of leads
against HIV reverse transcriptase22, macrophage migration
inhibitory factor23, and the SARS-CoV-2 main protease24. In
other drug discovery programmes, as part of the recent COVID
Moonshot open science effort to crowd source design of SARS-
CoV-2 main protease inhibitors25, the Omega toolkit by
OpenEye26 is used for constrained conformer generation, and
optimal binding poses are then taken through to free energy
calculations using the perses software27. The evident importance
of input structure to the reliability of free energy calculations16

means that open-source tools to automate this step are crucial.
Inspired by the BOMB/MCPRO approach to molecular

design13, we introduce here the FEgrow open-source workflow
for growing functional groups, chosen by the user, from a defined
position on a core compound. To account for the multi-objective
nature of molecular design, we output simple rule-of-five indi-
cators of oral bioavailability, as well as flags for undesirable
substructures and synthetic accessibility estimates. For the
designed ligands, we enumerate 3D conformers of the added
R-group, with options for additional flexibility if desired, within
the context of the protein (discarding conformers with steric
clashes). A common issue with generating docked poses is inac-
curacy in the molecular mechanics force fields used to refine
them, particularly for uncommon chemistries. To overcome this,
we employ a hybrid machine learning/molecular mechanics
(ML/MM) approach to optimisation, whereby the ligand is
(optionally) described by the ANI neural network potential28,29,
and non-bonded interactions with the static protein are described
by traditional force fields. The binding affinities of low energy
poses are predicted using a deep learning-based scoring function.
Finally, FEgrow outputs binding poses in a form suitable for input
to free energy calculations, and we illustrate this process with a
case study, using the SOMD software30 to retrospectively com-
pute relative binding free energies of several inhibitors of the
SARS-CoV-2 main protease24.

In this way, we hope to integrate medicinal chemistry expertise
in the FEgrow design workflow, with state-of-the-art methods for
pose prediction, scoring, and free energy calculation. By building
ligands from the constrained core of a known hit, we maximise
the use of input from structural biology, and reduce reliance on
docking algorithms. We aim for an open-source, customisable,
fast, and easy-to-use (accessed through Jupyter notebooks)
workflow that can adapt to community needs and advances in
molecular design.

Results
Workflow design. The FEgrow package is written in Python, and
supports Jupyter visualisation at each stage using py3Dmol31.
Underneath, the main unit in the package is RMol which extends
the RDKit class rdkit.Chem.rdchem.Mol32 with additional
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functionalities, such as visualisation, molecule merging, con-
former generation, as well as storage of energies and other
metadata. A convenience class RList is provided with the same
functions for operating on a set of molecules, which allows also
for future parallelisation. A modular workflow allows for addi-
tion/removal of functionality, such as new scoring functions or
optimisation algorithms. FEgrow is freely available at https://
github.com/cole-group/FEgrow, along with a tutorial. Figure 1
shows the overall design of the FEgrow workflow, and the com-
ponent methods are described in the following sections.

Input and constrained conformer generation. The first task is to
define the receptor and the ligand core, along with an attachment
point for growth (currently only growth from hydrogen atoms is
supported). Users may download receptor and ligand structures
directly from the protein databank (PDB), or upload pre-
prepared structures. In this study, we used the Open Babel
software33 for parsing input structure files and ligand protonation
(at pH 7).

Merging the ligand core with a new R-group requires that both
the linking atom on the template core and on the attachable
R-group are specified. The merging is carried out with the RDKit
editable molecule32. RDKit is further used to generate 3D
conformers using the ETKDG method34. The generated con-
formers are aligned, and energy minimised using the Universal
Force Field35. Harmonic distance restraints to their initial
positions are applied to atoms in the common core (identified
by a maximum common structure search) using a stiff force
constant (104 kcal/mol/Å2). In this way, we can enforce the
conformations of the generated molecules to only vary from the
core in the region of the added R-group. This region may
additionally be extended by adding further atoms into the flexible
substructure of the template. For convenience, we provide a
minimal set of around 500 R-groups that are commonly used in
medicinal chemistry optimisation36. R-groups can be interactively
selected from the library using the mols2grid package37, or the
user may prepare their own molecules for attachment (see
Tutorial).

Geometry optimisation. The constrained conformer generation
described above aims to enumerate all accessible, physically-
reasonable conformers of the added R-group (and any other
flexible regions) in vacuum. However, most of these

conformations will be incompatible with the protein binding site.
Hence, a 3D filter and geometry optimiser aims to find the
bioactive conformers of the designed ligands.

The protein is treated with PDBFixer38 to add any missing
atoms, residues, and hydrogen atoms. Water molecules (and
other non-protein residues) are stripped by default, but can be
optionally retained as part of the receptor, for example, if they are
thought to form an important part of the hydrogen bonding
network within the binding pocket (an example is shown later in
Case Study I). A simple distance filter removes any ligand
conformers that form a steric clash with the protein (any
atom–atom distance less than 1 Å). Next, the remaining
conformers are refined in the context of a rigid receptor via
energy minimisation using OpenMM38. All atoms of the protein,
and any retained water molecules, are kept fixed during the
optimisation in the positions provided by the user.

The energy minimisation uses the AMBER FF14SB39 force field
for the receptor and either GAFF240 (General AMBER force field)
or the Open Force Field 1.0.0 (‘Parsley’)41 general force fields for
the ligand, with the choice left to the user. Optionally the
intramolecular interactions of the ligand can be modelled using
the ANI-2x ML potential28 in a hybrid ML/MM simulation. In
this so-called mechanical embedding scheme, the total potential
energy of the ML/MM system is composed of three terms42:

Etot ¼ EMMðRÞ þ EMMðRLÞ þ EMLðLÞ; ð1Þ
where R, RL, and L correspond to receptor–receptor,
receptor–ligand, and ligand intramolecular interactions, respec-
tively. The second term acts as the coupling term between the ML
and MM subsystems and consists of the standard Coulomb and
Lennard-Jones 12-6 non-bonded interaction energies. Thus, a
general force field (here, GAFF2 or Parsley) is still required for
the ligand to model the non-bonded interactions with the
receptor. The use of ANI helps to avoid known deficiencies in the
potential energy surfaces predicted by force fields, while ensuring
that the optimisations are significantly faster than could be
achieved with full quantum mechanics. For example, it has been
shown that the description of biaryl torsions, which are
commonly found in drug-like molecules, is one area where
ANI-2x performs better than contemporary general force fields43.
The hybrid ML/MM approach has also been shown to predict
binding poses that overlap well with crystallographic electron
density maps of bound ligands, even for those that contain

Fig. 1 Overview of the FEgrow workflow. (left) The user specifies the receptor, ligand core, and a list of functional groups, along with their attachment
points. (centre) RDKit32 is used to attach the selected R-group(s) and enumerate the available conformers with a rigid core. (right) Possible bioactive
conformers undergo structural optimisation using a hybrid ML/MM potential energy function. The binding affinity is predicted using a convolutional neural
network scoring function47 and molecular properties are assessed. Final structures are output for further free energy based binding affinity assessment.
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charged moieties that were not included in the training of the
ANI potential44. As such, in FEgrow, users may turn on the
hybrid approach for binding pose refinement provided the
molecule contains only elements covered by the model (H, C, N,
O, F, S, and Cl), else the selected classical force field is used for the
entire ligand.

Following the procedure recommended in BOMB, Lennard-
Jones radii are scaled by a factor of 0.8 during optimisation.
This is intended to mitigate to some extent the rigid protein
approximation, by allowing extra space in the binding pocket to
accommodate ligand growth. Furthermore, to account in an
implicit manner for the neglected dielectric response of the
protein and solvent molecules, the atomic charges are
reduced by a factor of 1

ffiffi

ϵ
p , where ϵ is the relative permittivity,

in this case taken to be 4. Analysis of the effect of these scaling
factors on structural and affinity predictions in Case Study I is
provided in Supplementary Note 1, Table S1, and Fig. S1. The
lowest energy optimised conformer, and all conformers within 5
kcal/mol, are output as PDB/SDF files for further analysis and
scoring.

Binding pose scoring. Once the geometry optimisation is com-
pleted, the remaining (low energy) conformers are scored to
predict their binding affinity. There are many choices available
for scoring binding poses and their corresponding binding affi-
nities, and these are usually classified as either force-field,
empirical, or knowledge-based. In the latter case, input features
(such as atom-atom pairwise contacts) are used to train models to
reproduce data for known protein–ligand complexes. Recently,
machine learning models have emerged, in which an arbitrary,
nonlinear relationship between input and target prediction is
learned. One such approach is the gnina convolutional neural
network (CNN) model45, which takes as its input features a 3D
grid-based representation of the protein–ligand complex and the
atom types. The model has been jointly trained for binding pose
and affinity prediction on a cross-docked set containing examples
of ligand poses generated by docking into multiple receptors46.
The resulting models are competitive with other grid-based CNN
models, and outperform the traditional empirical Vina scoring
function46. They are available as part of the gnina docking soft-
ware package47, which is a fork of Smina48 and AutoDock Vina49.
Here, we use gnina only for re-scoring the output ligand 3D
structures, using the ‘score_only’ flag and the default ensemble of
CNN scoring models. Gnina CNNaffinity scores (predicted pK)
are output, and compared with experimental binding affinity
(where available).

Molecular property filters. Having assembled the 2D and 3D
structures of the core and user-defined R-groups, we include
some simple tools for assessing the drug-likeness and synthetic
tractability of the designed compounds. Several sets of rules exist
to investigate the likelihood of a molecule displaying drug-like
behaviour. While there are many examples of approved drugs
which violate these considerations, they still provide a useful
indication of whether a molecule is worth testing (that is, if it
disobeys all of the conditions discussed below, it is most likely a
poor candidate). FEgrow reports Lipinski’s rule of five (Ro5)
counts,50 the synthetic accessibility score (SAScore)51 and flags
describing whether the proposed molecule is Ro5 compliant and
if it contains undesirable features based on the PAINS,52 NIH53,54

and unwanted substructure55 filters. Our implementation is
adapted from the TeachOpenCADD56 Talktorials 2 and 3, using
functionality from the Descriptors and FilterCatalog modules of
RDKit.32 Further details are provided in Supplementary Note 2.

Case study I: Protein–ligand benchmarks. The protein–ligand
benchmark of Hahn et al.57,58 is an open, curated set of high
quality structural (e.g., high similarity between crystallised and
simulated ligands and no missing atoms) and bioactivity (e.g.,
taken from a single data source with adequate dynamic range)
data, which has been collected with the goal of assessing the
accuracy of free energy methods. For each target, modelled
structures of the protein in complex with a congeneric series of
ligands are provided as starting points for free energy calcula-
tions, but the methods used to position the R-groups are, to our
knowledge, not necessarily consistent or documented.

Here, we apply the FEgrow workflow to ten targets from the
protein-ligand benchmark set. Starting from the crystal structure
of each target, we truncate the bound ligand to a common core,
which is shared across the congeneric series to be modelled. A
summary of the targets, the crystal structures used, the number of
R-groups grown, and their common core and net charge is
provided in Tables S2 and S3. We use the methods outlined in the
previous section to re-grow the congeneric series of ligands in the
binding pockets, including enumeration and optimisation of
possible R-group conformers, and scoring of final poses. Figure 2
shows overlays of the modelled and crystal structures (where
there is an exact match between the crystallised ligand and one of
the modelled R-groups), as well as the measured root-mean-
square deviation (RMSD) between the predicted and experi-
mental coordinates of the heavy atoms of the functional groups.

For the targets, TYK2 (Fig. 2a) and Thrombin (Fig. 2b), we
obtain a good overlap between the grown R-groups and the

Fig. 2 Overlay of experimental and predicted protein-ligand benchmark dataset structures. Crystal structures are shown in yellow and grown
compounds in grey. a TYK2 (PDB: 4GIH59), b Thrombin (PDB: 2ZFF60), c P38 (PDB: 3FLY61), d PTP1B with force field optimisation (PDB: 2QBS62), e PTP1B
using ML/MM optimisation, and f BACE(Hunt) (PDB: 4JPC63). Root-mean-square distances (RMSD) between predicted and experimental coordinates of
atoms in the built R-groups were calculated using RDKit32.
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crystal structures. In the former case, the dihedral angle formed
between the grown cyclopropyl C2 and C3 carbons and the amide
carbonyl oxygen core (30∘ and −37∘) are in agreement with those
reported experimentally59. For Thrombin, although the added
R-group here is a rigid phenyl moiety, we make use of the option
to add atoms from the core to the flexible region and allow the
linking –CH2– group to freely rotate during structural optimisa-
tion. This added flexibility leads to a rotation of the phenyl group
of less than 10∘, compared to the corresponding crystal
structure60.

The P38 benchmark set includes a series of alkyl amino
substitutions originally investigated as part of a structure-activity
relationship study into kinase inhibitors61. Here, the added amino
group is correctly positioned to form a hydrogen bond with the
protein backbone, though the i-Pr group is rotated by around 60°
compared to the crystal structure (Fig. 2c). In PTP1B, the grown
cyclohexyl substituent is able to rotate quite freely, with many
conformations predicted to lie within 5 kcal/mol of the minimum.
The minimum energy structure shows good overlap with the
crystal structure62 with low RMSD, but connects to the core at the
axial position of the cyclohexyl group (Fig. 2d). In this case, the
core structure contains a Br atom, so we are unable to optimise
with the ANI-2x potential (the workflow defaults to the Parsley
force field for the ligand). Interestingly, if we remove the Br atom,
and re-run the workflow using hybrid ML/MM optimisation, we
recover the equatorial connection as the lowest energy conformer,
in agreement with the crystal structure (Fig. 2e). This demon-
strates the potential advantages of employing hybrid ML/MM
structure prediction methods in binding mode determination.

Finally, the BACE(Hunt) target, includes a series of substituted
phenyl additions to a spirocyclic core. Here, the grown cyanophe-
nyl group is rotated by approximately 90°, relative to the crystal
structure63, which shows themeta-CN group accommodated in the
binding pocket (Fig. 2f). An exact match with the crystal structure
is also output, but it is predicted to be around 3 kcal/mol higher in
energy. Closer examination of the experimental structure reveals a
crystal water molecule, close to the binding pocket, that is capable
of forming a hydrogen bond with the –CN group, and a further
network of water molecules that would be displaced by the
conformation shown in Fig. 2f. Figure S2 investigates the effects of
including the hydrogen-bonding water molecule in the rigid
receptor structure, and changing the force fields used, but no input
settings recover the crystal structure.

As discussed, we include with the FEgrow workflow the option
to score the output poses of the designed ligands with a scoring
function. In particular, we use the gnina convolutional neural
network score, which has been trained on both binding pose and
affinity prediction46. While accurate recovery of experimental
binding affinity is not necessarily expected for current scoring
functions, it is useful to evaluate to what extent they can be used to
provide guidance in early stage design, ahead of more rigorous
physics-based scoring methods. The root-mean-square error
between gnina CNN affinities (converted to free energies) and
experiment is quite acceptable (Table S4), ranging from 0.9 kcal/
mol (BACE(P2)) to 1.7 kcal/mol (Jnk1), which indicates that the
CNN scoring function is able to predict the affinity range of most of
these series. In fact, the errors may be lower than typically
expected46, because we are using here additional information from
the experiment (the binding pose of the core) and not relying on
the scoring function to determine the bioactive conformation.

The R2 correlation coefficients between the predicted and
experimental affinities are more variable (Table S4), however,
ranging from close to zero (the BACE targets) to 0.68
(Thrombin). The full set of CNN-predicted binding affinity data
is plotted in Fig. S3, and reveals that most of the predictions lie in
quite a narrow range, compared to the experimental data. We

note that this is quite a challenging test for the scoring function,
since the modifications made to the core are relatively small and
cover a smaller dynamic range in affinity than most test sets.
Nevertheless, it seems that current scoring functions have some
utility in guiding design, but that more accurate physics-based
scoring is required to accurately discriminate between structural
changes in the hit-to-lead stage.

Case study II: SARS-CoV-2 main protease. The main protease
(Mpro) of SARS-CoV-2, the virus responsible for the COVID-19
pandemic, is an attractive target for the development of antiviral
agents64. The Jorgensen lab has focused on the development of
drug-like, non-covalent inhibitors of the protease through lead
optimisation of virtual screening hits24. In particular, starting
from the anti-epileptic drug, perampanel, researchers combined
model building with the BOMB software, with free energy cal-
culations, to rapidly yield potent antiviral compounds. Figure 3
shows the structures of the two main series of cyanophenyl- and
uracil-based compounds investigated. A high-resolution X-ray
crystal structure of 4 with Mpro confirmed binding to the S1, S1’
and S2 pockets, with space to grow into the S3–S4 region24.

In what follows, we employ FEgrow to retrospectively build
and score the listed analogues (Fig. 3) to demonstrate the
potential utility of the workflow in guiding future design efforts.
Starting from the crystal structure of 4 (PDBID: 7L10), we begin
by replacing one of the meta chlorine atoms by propoxy to form
5. The modelled structure agrees well with the corresponding
high-resolution crystal structure (Fig. 4a). In particular, the
propoxy OCCC dihedral angle in the lowest energy structure
(53°) matches the experimental gauche conformation (47°), which
allows hydrophobic contact with Met165 and Leu167. Similarly,
good agreement is obtained for the cyclopropyl analogue 26 with
the corresponding experimental crystal structure (Fig. 4b).

Turning attention to the uracil series, the core molecule was
again built from the crystal structure of 4, by removing the
cyanophenyl group. The added uracil group has three low energy
conformations, and in this case, we retained the second lowest
energy structure, which forms key hydrogen bonding interactions
with the backbone of Thr26 and the catalytic Cys145. In
agreement with the original modelling, performed using the
BOMB software24, we find that again a range of substituents are
permitted in the S3/S4 pocket, including substituted benzyloxy
side chains (Fig. 3). Figure 4c shows that the modelled uracil
group in the S1’ pocket is in good agreement with the

Fig. 3 Structures of the series of cyanophenyl- and uracil-based
compounds SARS-CoV-2 main protease (Mpro) inhibitors investigated
here. a Cyanophenyl-based Mpro inhibitors. b X-ray crystal structure of 4 in
complex with the protease, with discussed binding pockets labelled.
c, d Uracil-based Mpro inhibitors.
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corresponding crystal structure (7L12). However, the predicted
conformation of the unsubstituted benzyloxy side chain is at odds
with the crystal structure (7L12). The correct conformer is output
as an alternative low energy conformer and, interestingly, the
majority of the modelled larger, substituted benzyloxy groups
adopt the crystal conformation. This is exemplified by 21 in
Fig. 4d, which also correctly orients the ortho-Cl down into the S4
pocket.

The uracil series comprises a set of 13 analogues, spanning
around 2.5 kcal/mol in binding free energy, and as such provides a
useful benchmark for demonstrating the next stage of the
workflow. Although the gnina CNN affinities for these compounds
are reasonably well correlated with experimental IC50 measure-
ments in a kinetic assay (Fig. S5)24, it is desirable to investigate
whether more rigorous free energy methods can be used to improve
accuracy. Hence, relative binding free energies were computed
using the SOMD software30, starting from the structures output by
the FEgrow workflow in complex with the receptor (see
“Computational Methods”). Note that we have used the lowest
energy structures as input to the free energy calculations (using
instead the structure of e.g., 14 that corresponds most closely to the
crystal structure can introduce differences of up to 0.4 kcal/mol in
free energies in our tests, but this information would not be
available for prospective studies). Figure 5 shows the agreement
between experiment and simulations (MUE = 0.45 kcal/mol, R2 =
0.53), and the raw data is provided in Table S5. Here, we can see
that even though we have only used information from a single
crystal structure of 4 bound to the protease, the combination of
structure building and optimisation with the FEgrow workflow and
free energy calculations with SOMD allows the (retrospective)
prioritisation of compounds, such as compounds 20 and 21 for
synthesis and testing.

Discussion
We have introduced here FEgrow, an open-source molecular
builder and free energy preparation workflow. Taking as input a
receptor and ligand core structure, FEgrow aims to build a user-
defined library of chemical functional groups of the sort that
would typically be used to explore structure-activity relationships
with free energy calculations. Inspired by the BOMB approach to
molecular design13, we grow from a fixed ligand core in order to

maximise the use of binding mode information from structural
biology sources, and rely on the user’s medicinal chemistry
expertise to suggest functional groups that improve binding
affinity whilst remaining synthetically tractable. Alternative,
generative methods for fragment growth11,12 could be incorpo-
rated in future, but testing of expert medicinal chemist designs
still remains popular today and FEgrow aims to automate this
process.

The modular workflow of FEgrow allows us to experiment with
functionalities, such as new optimisation or scoring methods.
With the use of hybrid ML/MM structural optimisation, in par-
ticular, we aim to obtain reliable coordinates for the added
R-groups. In this respect, the ANI neural network potential
(within the ML/MM approximation) has already been shown to
be capable of predicting protein–ligand binding poses in agree-
ment with electron density distributions determined by X-ray
crystallography44, and should be significantly more reliable than
the general purpose force fields (such as UFF) that are typically
used for structure refinement in de novo design packages.
Updated machine learning potentials or semi-empiricial
methods65 can readily be included in future versions of FEgrow.

Ligand designs are evaluated for simple molecular properties,
and their binding affinity predicted using the gnina CNN scoring
function. Despite the challenge of discriminating between rela-
tively small functional group modifications, the scoring function
performs quite well and is useful in providing initial guidance for
a number of targets from the protein–ligand benchmark set used
here. Nevertheless, we envisage the primary use of FEgrow being
as a source of input structures for more rigorous free energy-
based affinity predictions. We demonstrate this functionality
here, using SOMD to calculate the relative binding free energies
of 13 uracil-based inhibitors of the SARS-CoV-2 main protease.
Using only a single crystal structure as input (PDB: 7L10) and the
FEgrow workflow to build the remaining structures, we obtain
excellent agreement with experimental binding affinities (MUE =
0.45 kcal/mol, R2 = 0.53).

We envisage future improvements including the use of a
flexible receptor for the growth phase, and future use cases
including seeding free energy calculations with multiple low
energy conformers. The BACE(Hunt) target in Case Study I
highlighted the difficulty of accurately including the energetics
and effects on the binding affinity of displacing water networks in
hydrated binding pockets. There does not currently appear to be a

Fig. 4 Comparison between experimental and predicted structures of
SARS-CoV-2 main protease (Mpro) inhibitors. Overlay of a 5 and PDBID:
7L11, b 26 and 7L14, c 14 and 7L12, d 21 and 7L13. Crystal structures are
coloured in yellow, and modelled binding poses in grey. Root-mean-square
distances (RMSD) between predicted and experimental coordinates of
atoms in the built R-groups were calculated using RDKit32.

Fig. 5 Comparison between free energy calculations and experiment.
Binding free energies of 13 analogues of the uracil-based Mpro inhibitors,
relative to compound 10. The error bars indicate one standard error based
on least square fitting75.
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satisfactory means to include water networks into the optimisa-
tion or scoring phases of FEgrow, but output structures could be
passed to molecular dynamics or Monte Carlo-based simulations
to assess optimal hydration sites for predicted poses66–68. FEgrow
is available for download from https://github.com/cole-group/
FEgrow, and we welcome suggestions from the community for
added functionality.

Computational methods
Free energy calculations. Structures of 13 inhibitors of the main
protease (Mpro) of SARS-CoV-2 were built using the FEgrow
workflow and taken through to free energy calculations for
accurate physics-based scoring. The PDB structure, 7L10, was
used for the receptor. Missing residues (E47 and D48) were added
using MODELLER69, which uses optimisation of a pseudo energy
function for loop modelling, and hydrogen atoms were added
using Chimera20, which includes options for optimisation of the
hydrogen bond network. The BioSimSpace package70 was used
for free energy setup, along with a relative binding free energy
protocol used previously71. The lowest energy conformer for each
ligand was parameterised with the GAFF2 force field, using the
AM1-BCC charge model. The AMBER FF14SB39 force field was
used for the protein, along with the TIP3P water model. Each
ligand was then solvated in a 35 Å cube, or 90 Å cube in the
presence of the protein. The bound and unbound structures then
underwent a short equilibration using the default procedure in
BioSimSpace70. Namely, the structure was minimised, then
heated to 300 K in the NVT ensemble over a period of 10 ps. It
was then equilibrated for a further 10 ps in the NpT ensemble at
300 K and 1 bar, using the Langevin thermostat and Berendsen
barostat. Atoms in the protein backbone were restrained to their
initial positions throughout, and a 8 Å nonbonded cutoff was
applied.

The network of alchemical transformations was built manually
to include cycle closures for error analysis, and is shown in Fig. S4.
Table S6 shows that the absolute cycle closure errors are typically
less than 0.5 kcal/mol, and less than 1 kcal/mol for all cycles. The
overlap for each perturbation was determined using a maximum
common substructure search to determine the atoms to be
morphed. Each transformation leg was simulated using the SOMD
software package30 for 4 ns, and the first 400 ps were discarded as
equilibration. Eleven equally-spaced λ windows were employed
between 0 and 1, along with the default soft core. The time step was
set to 2 fs, with constraints applied to unperturbed hydrogen bonds.
Simulations were performed in the NpT ensemble, using an
Andersen thermostat with collision frequency of 10.0 ps−1 and a
Monte Carlo barostat with a frequency of 25 time steps. Periodic
boundary conditions and a tapered nonbonded cutoff distance of
10 Å were applied. Electrostatic interactions were calculated using
the reaction-field method with a dielectric constant of 78.3 outside
the nonbonded cutoff72. All transformations reported here were
run in both forward and backward directions, and in duplicate.
Free energy changes and their errors were calculated from the
output with MBAR using the asymptotic covariance method73.
Final free energies and their associated error bars (Fig. 5) were
calculated from the network with the freenrgworkflows package74,
using the method of Yang et al.75. All protocols used and raw data
are provided in the accompanying Supporting Data (https://doi.
org/10.5281/zenodo.7112943).

Data availability
Analysis of scaling factors used during geometry optimisation, background information
on molecular property filters, full details of protein–ligand benchmark targets studied
and CNN scoring function results, free energy networks and raw data for Mpro free

energy calculations (Supplementary Information). Data accompanying this paper are
freely available at https://doi.org/10.5281/zenodo.7112943.

Code availability
FEgrow, and an accompanying tutorial, are freely available at https://github.com/cole-
group/FEgrow. The version 1.0.2 of FEgrow used in this study is available for download
from https://doi.org/10.5281/zenodo.7105647.
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