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Evaluating the use of absolute binding free energy
in the fragment optimisation process
Irfan Alibay 1, Aniket Magarkar2, Daniel Seeliger2,3 & Philip Charles Biggin 1✉

Key to the fragment optimisation process within drug design is the need to accurately capture

the changes in affinity that are associated with a given set of chemical modifications. Due to

the weakly binding nature of fragments, this has proven to be a challenging task, despite

recent advancements in leveraging experimental and computational methods. In this work,

we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment

optimisation decisions, retrospectively calculating binding free energies for 59 ligands across

4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accu-

rately rank fragment-sized binders with an overall Spearman’s r of 0.89 and a Kendall τ of

0.67, although often deviating from experiment in absolute free energy values with an RMSE

of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimi-

sation decisions can be supported by the ABFE calculations. Comparing against cheaper

endpoint methods, namely Nwat-MM/GBSA, we find that ABFEs offer better ranking power

and correlation metrics. Our results indicate that ABFE calculations can usefully guide frag-

ment elaborations to maximise affinity.
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Over the last few decades, the fragment-based drug design
(FBDD) process has matured into a popular and effective
approach to designing novel binders1. Indeed, during the

2015–2019 period, over 131 successful fragment-to-lead cam-
paigns were published2–6. With an intuitive structure-based
approach, and ability to more easily sample a large chemical
space, FBDD has become a strong contender to more traditional
high-throughput screening methods.

In the FBDD process, a library of fragments is first screened
against a given protein target in order to identify potential bin-
ders. These fragments usually adhere to the so-called “rule of
three”7, having a molecular weight ≤ 300 Da, ClogP ≤ 3, a number
of hydrogen bond donors ≤3 and a number of hydrogen bond
acceptors ≤3. From this initial screen, binders are then identified
through structural (e.g. X-ray crystallography, nuclear magnetic
resonance (NMR)), biochemical, or biophysical (e.g. NMR, sur-
face plasmon resonance, isothermal titration calorimetry (ITC))
characterisation8–10. Confirmed binders are then optimised,
heavily relying on structure activity relationships to create
bespoke high affinity binders. Optimising strategies either con-
centrate on improving the affinity of a single binder through
fragment growing, or by combining multiple fragments occupying
distinct binding sites through linking and merging decisions11,12.

Accurately characterising fragment-protein interactions is
therefore central to the FBDD process. Despite substantial
improvements in leveraging in vitro methods for fragment
screening1, this remains a challenging task. By their nature
fragments tend to be low affinity binders, somewhere in the
millimolar to micromolar range, with a propensity to access
multiple binding sites in a protein target. Not only do highly
sensitive affinity measurements need to be employed, something
that cannot always be readily used for large fragment screens, but
multiple orthogonal methods are often required to validate low
affinity hits1,13.

As a consequence, in silico methods have become increasingly
popular in helping guide and support FBDD decisions14,15. A variety
of approaches have been employed for this task, which can roughly
be separated into two categories; (i) methods to identify fragment
interaction sites, and (ii) methods to characterise fragment binding
affinities. For the former, both simple methods such as molecular
docking16, and more complex molecular dynamics-based approaches
such as hotspot mapping17–21 or unbiased molecular dynamics (MD)
with Markov-state modelling22 have shown success in identifying
potential fragment binding sites on protein targets. In terms of
characterising affinity, alchemical relative binding free energy (RBFE)
methods have been particularly successful in ranking fragment
affinities15,23–26. Of particular note is a 2015 study by Steinbrecher
et al.26, which demonstrated that the FEP+RBFE tool could be used
to successfully rank fragment affinities, achieving an RMSE of

1.14 kcal/mol for 96 ligands across eight fragment optimisation
campaigns. Whilst RBFEs are a powerful and relatively cheap tool for
this purpose, there are some disadvantages that limit its applicability
in FBDD. Firstly, RBFEs do not give a direct measure of ligand
binding affinities on an absolute scale, instead the method relies on
other methods to normalise output free energy values. Often this
would be done via an in vitro experimental measurement of a few
select compounds, however as discussed above it can often be difficult
to do so accurately for fragments and therefore is not always tractable
in FBDD. The second major disadvantage is that RBFE protocols are
generally developed to investigate small chemical perturbations on a
given common chemical scaffold. This can have limited applicability
in some FBDD campaigns, which will often investigate several
fragments with different chemical scaffolds, sometimes even in dif-
ferent binding site locations. Nevertheless, we note some recent
success in using RBFE methods for fragment linking purposes,
although requiring several extra intermediate steps to achieve good
results27.

As an alternative to RBFE methods, we propose that absolute
binding free energies (ABFE)28–32 could instead be used to directly
investigate fragment affinities. Despite larger computational costs,
ABFEs offer a direct solution to the above described limitations of
RBFEs by directly calculating the absolute free energy of binding for
each individual ligand, and not requiring a transformation to another
chemical entity. Previous works have shown ABFEs to offer highly
accurate estimates of binding free energies across a variety of target
systems, although often at increased computational costs30,33. Indeed,
the idea of using ABFEs in fragment binding is not a novel one, and
we note several other investigations employing such methods for
fragment-sized molecules15,29,34,35. That being said, these have been
mostly limited in scope and to our knowledge there have yet to be
any large-scale analyses of the applicability of ABFEs to the FBDD
process.

Here we specifically look at evaluating the use of ABFEs in the
fragment optimisation process. Retrospectively calculating the
binding free energies for 59 ligands across four FBDD campaigns
(Fig. 1), we aim to investigate whether; (a) ABFEs offer com-
parable results to in vitro affinity measures, and (b) ABFEs could
be used to achieve similar synthetic decisions in fragment opti-
misation. We also look at how ABFEs compare against cheaper
methods, namely Nwat-MM/GBSA36,37.

Results and discussion
ABFE results across all system. The ABFE (Fig. 2) of 59 ligands
(Figs. S1, S2, S4 and S5) for fragment optimisation campaigns of
the PWWP138, HSP9039, MCL-140 and Cyclophilin D41 receptors
were computed (see Methods). As shown in Fig. 3a, we see very
good agreement between the calculated and experimental

PWWP1
12 compounds
SPR Affinities

Bottcher et al. 2019

HSP90
18 compounds
ITC Affinities

Murray et al. 2010

MCL-1
19 compounds
FPA Affinities

Friberg et al. 2013

Cyclophilin D
10 compounds
SPR Affinities

Gradler et al. 2019

Fig. 1 Overview of the fragment elaboration datasets. A total of 59 ligands from four different elaboration studies38–41 with affinities spanning the
millimolar to nanomolar range are investigated here.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-022-00721-4

2 COMMUNICATIONS CHEMISTRY |           (2022) 5:105 | https://doi.org/10.1038/s42004-022-00721-4 | www.nature.com/commschem

www.nature.com/commschem


affinities, with a Pearson r of 0.89 ± 0.03, and a Kendall τ of
0.67 ± 0.05. However, we observe a RMSE of 2.75 ± 0.20 kcal/mol.
As outlined in Fig. 3b–e, each dataset deviates to varying degrees
from experiment, with only PWWP1 showing an RMSE close to
1 kcal/mol. The correlation shown here is on par, if not better,
than other comparable alchemical free energy studies26,42. Whilst
the RMSE is larger than the 1 kcal/mol limit shown by some other
ABFE studies32,42, similar system dependent shifts have been
reported previously33.

Sampling of free energies agrees well between replicas with a mean
error of 0.79 ± 0.38 kcal/mol, although ~22% of the estimates show
an error bar >1 kcal/mol, with the highest value being 1.93 kcal/mol.
This is generally on a par with sampling errors shown by other
absolute alchemical free energy studies32,33,43 and matching a similar
level of uncertainty as the cycle closure errors shown in the
Steinbrecher et al. 2015 fragment FEP+ study26. Whilst the error in
experimental measurements was not provided for all our systems, our
sampling errors are for the most part approximately twice as large as
the ~0.5 kcal/mol limit which we might expect from experimental
measurements44.

ABFEs of fragments for the PWWP1 domain of NSD3. Spe-
cifically looking at each individual case, we start with a fragment
elaboration for the PWWP1 domain of NSD3 by Böttcher et al.38.

Here 11 ligands were elaborated from an initial 160 µM fragment
hit (ligand 8), eventually resulting in the 170 nM ligand BI-9321
(SI Fig. S1, Table S1). As shown in Fig. 3b, the ABFE results
correlate very well with experiment, with an RMSE of
1.14 ± 0.16 kcal/mol, the lowest of all four optimisation cam-
paigns investigated. In the original elaboration study, seven spe-
cific elaboration decisions were outlined (SI Table S2). Of these,
only two would have been definitively supported by our ABFE
results, that is to say—there is a greater-than-error difference
between the calculated ligand binding energies in each decision.
Whilst the ABFE results accurately predict the direction of the
affinity change for six of the seven decisions, the majority of the
changes in free energy remained within the range of the errors of
the estimates. We note that the one decision where the wrong
sign is predicted involves experimental ΔΔG values of −0.12 and
−0.23 kcal/mol, which is well within the limit of both
experimental45,46 and force field47 accuracy.

ABFEs of a fragment optimisation for HSP90. Next, we look at
a fragment elaboration study by Murray et al.39 elaborating 17
ligands from an initial fragment hit (ligand 3, SI Fig. S2, SI Table
S4). Whilst the original study does outline two separate fragment
elaboration campaigns, we specifically looked at the second ela-
boration set which involved a larger number of ligands. As shown

Fig. 2 Absolute binding free energy thermodynamic cycle employed. The free energy of binding, i.e. going from a ligand in solution (state a) to a protein-
ligand complex (state e), is captured through a non-physical path. First, the electrostatics are annihilated to zero (state b) over 11 λ windows. This is
followed by a further 21 λ windows which decouple the ligand van der Waals interaction from the solvent (state c). The decoupled ligand is then analytically
restrained as defined by ref. 102 (state d). By accounting for this restraint the ligand state is then equivalent to a non-interacting ligand in a protein-ligand
complex (state h). The ligand interactions with the environment are then turned back on, first re-coupling the van der Waals interactions over 21 λ windows
(state g), followed by a further 11 λ windows to add back electrostatics (state f). Finally, the orientational restraints are turned off over 12 λ windows
resulting in a fully interacting protein-ligand complex (state e).
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in Fig. 3c, the free energy estimates correlate very well with the
experimental values with a Pearson r of 0.96 ± 0.03 and a Kendall
τ of 0.73 ± 0.12. However, we do see a progressive deviation from
experiment as the affinity of the ligands increases leading to a
RMSE of 3.82 ± 0.33 kcal/mol.

This difference between calculated and experimental values has
been observed by other free energy studies of HSP90 and as

detailed by Baumann et al.48, is possibly explained by several slow
degrees of freedom associated with HSP90 binding. These
include; the presence of varying waters in the binding site, ligand
re-orientation, and side-chain motions. Interestingly, Baumann
et al.48 identify that the presence of waters in the binding site
worsened free energy estimates for their HSP90 test case,
although it offered improved convergence in results. Whilst we

a

Pearson r:  0.89 ± 0.10
Kendall τ:   0.72 ± 0.17
RMSE:       1.14 ± 0.16

Pearson r:  0.89 ± 0.03
Kendall τ:   0.67 ± 0.05
RMSE:       2.75 ± 0.20

Pearson r:  0.96 ± 0.03
Kendall τ:   0.73 ± 0.12
RMSE:       3.82 ± 0.33

Pearson r:  0.81 ± 0.08
Kendall τ:   0.56 ± 0.15
RMSE:       2.33 ± 0.24

Pearson r:  0.91 ± 0.10
Kendall τ:   0.69 ± 0.19
RMSE:       2.57 ± 0.33

b c

d e

Fig. 3 ABFE calculations results for different systems. a All four datasets, b PWWP1, c HSP90, d MCL-1, e Cyclophilin D. Free energy estimates are the
means of the estimates across replicas, with error bars as their standard deviation. Correlation metrics calculated from the mean estimate values, with
error bars derived from bootstrap resampling. All free energy results, including RMSE values, have units of kcal/mol.
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have attempted to optimise the waters in the binding site using
the MC/MD sampling steps in our equilibration procedure, it is
possible that similar effects are impacting the accuracy of our
results during the decoupling stages of our ABFE calculations. We
note that in all but one ligand, ABFE calculations started with
three buried waters present in the binding site (SI Fig. S3). In the
case of ligand 24, for which the MC/MD procedure only added
one buried water, we attempted to investigate the impact of these
missing waters by calculating an ABFE with all three waters
manually added to the binding site. This led to a within error
change in the free energy from −12.20 ± 0.71 kcal/mol (1 water)
to −11.33 ± 0.52 kcal/mol (3 waters) (SI Tables S4 and S5). From
this single result, it is unclear as to how much of an influence the
initial presence of waters has on the binding affinity. Future work,
possibly by combining water MC steps49 as part of the free energy
procedure (as done for RBFE in works such as those of Ben-
Shalom et al.50 would be required to further investigate this
issue).

One slow motion which could have an impact here is the re-
arrangement of one of the binding site loops in the region of
residues ASN106 through to SER113. As shown in Fig. 4, the
helicity of this loop region changes between the initial models
used for ligands 3–20, 28 and 31 (PDB IDs: 2XDL and 2XAB) to
the ones used for ligands 21–27, 29–30 (PDB ID: 2XHT and
2XHX). The re-arrangement of this loop from a helix-loop-helix,
akin to the 2XHT conformation, to a continuous helix is well
documented and previous work has shown it to be variably
induced depending on the binding ligand51–53. In their work
Murray et al. only crystalised a small subset of their ligands in
either one or the other crystal forms39. As a result, the initial
models chosen for each ligand were purely based on chemical
similarity with ligands from one of the resolved structures. To
investigate the impact of this loop re-arrangement on the free
energies, ligands 21–27 and 29–30 were re-calculated using the
2XDL crystal as a starting conformation. As can be seen in
Fig. 4d. and SI Tables S4 and S5, estimated free energies remain
within error of each other despite a small 0.33 kcal/mol
improvement in the mean RMSE value. Whilst not having a
major impact on the results presented here, it is still possible that
there are long timescale influences of this loop motion to the
binding free energy which are not captured in this work. Further
work using enhanced sampling methods, coupled with experi-
mental validation of loop preference (e.g. through ATR-FTIR
spectroscopy53) may be required to investigate the true extent of
the impact of this loop motion on ABFE results.

The 2XAB and 2XDL conformations are close to those of the
apo structure shown in PDB ID 5J2V54 with an all-atom
alignment RMSD of 0.92 Å. We therefore do not anticipate that
differences between the apo and holo structures are leading to the
large overpredictions of the binding affinities seen in this fragment
optimisation set, particularly those seen in the stronger binders.
To verify this an ABFE of the strongest binder, ligand 31, was
calculated using the 5J2V crystal as the initial protein conformer.
Doing so led to a change of free energies from −18.28 ± 0.80 kcal/
mol (2XAB initial structure) to −16.93 ± 0.92 kcal/mol (5J2V
initial structure). Whilst indicating a subtle crystal structure
dependent influence on the free energies, these two results remain
within error of each other and do not account for the ~5 kcal/mol
overprediction in the binding affinity compared to experiment.

In this study six elaboration decisions were outlined, of these
three would have been clearly supported by our ABFE results (SI
Table S6). Of the three failed decisions only one (decision 2),
would have been fully miscalculated. For the other two, one
involved a small change in experimental affinity (decision 5) with
ΔΔG values ~0.6–0.8 kcal/mol. This likely still falls within the
accuracy of ITC measurement but is too small a change to be

properly captured by ABFE given the size of sampling errors. The
other elaboration decision clearly identified improvements in
affinity but failed to identify ligand 24 as a better binder than
ligands 25 and 26 (decision 4).

ABFEs of a fragment optimisation for MCL-1. The third system
presented here is an elaboration of fragments for MCL-1 by
Friberg et al40. In this study, two fragment series are grown in
parallel, with an eventual merge to form a nanomolar compound
(SI Fig S4 and Table S8). Here we have one of the lowest corre-
lations between calculated and experimental ΔG values with a
Pearson r of 0.81 ± 0.08 and a Kendall τ of 0.56 ± 0.15. We also
see a shift from experiment in the absolute values, with an RMSE
of 2.33 ± 0.24 kcal/mol. It should also be noted that in this series
only an upper bound Ki of >1000 µM was assigned for three of
the ligands (ligands 1, 6, and 12, SI Table S8). Disregarding these
worsens correlation with experiment, yielding a Pearson r of
0.72 ± 0.16, Kendall τ of 0.43 ± 0.19, and a RMSE of
2.50 ± 0.24 kcal/mol. This rather poor correlation by comparison
to the other datasets may in part be explained by the narrower
activity range covered by the ligands in this series (Fig. 3d).
Except from two (ligands 60 and 65), the ligands cover an
~2 kcal/mol activity range. This is possibly too narrow a range to
distinguish between binding, especially given the size of the
uncertainties in our calculated estimates. No apparent causes
could be identified for the ~2 kcal/mol systematic shift from
experiment seen in these results. Whilst no specific slow con-
formational changes or binding waters were identified, it is pos-
sible that unobserved long timescale motions, such as changes
between apo and holo conformations, or force field inaccuracies
in dealing with charged compounds may play a role here.
Unfortunately to our knowledge, at the time of this work no
adequate apo structure of MCL-1 was available for us to verify the
difference in calculated absolute binding free energies between the
two states.

In their paper Friberg et al.40 did not specifically outline a set of
synthetic decisions for these ligands, but instead demonstrated
four activity cliffs (SI Table S9) based on the growing of >1 mM
class I fragments to micromolar ligands (decisions 1 through 3),
and the merging of the class I and II ligands occupying distinct
parts of the MCL-1 binding site (decision 4). The majority of
fragment growing activity cliffs are clearly captured by the ABFE
results, demonstrating greater than error ΔΔG values. However,
both decisions 1 and 3 have one ligand pair (ligands 1–5, and
3–13) which are within uncertainty of each other. In addition, the
predicted affinities for the optimised ligands are at times
predicted to be several kcal/mol away from each other, even
though they are experimentally determined to be within a
~1 kcal/mol range. The fragment merging case (decision 4) could
be clearly captured by our calculated results, despite large errors
in the binding free energy estimates of the merged scaffold
ligands 60 and 65. Indeed, the MCL-1 dataset has on average the
highest standard deviations between ABFE replicates. These large
sampling errors are reflected by the charged nature of the ligands
and the large conformational space accessible to the ligands
within the binding site. As demonstrated for ligand 60 in Fig. 5,
the ligand can effectively roll within the binding site, resulting in a
pose with an RMSD > 4 Å from the others. The flexibility of
binding modes for MCL-1 was also noted by Steinbrecher et al.26,
and indicates a need for either longer simulation times or
enhanced sampling schemes to reach sufficient convergence for
systems such as these.

ABFEs of a fragment optimisation for Cyclophillin D. Our final
elaboration dataset is a set of fragment merging decisions for a
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fragment screen of Cyclophilin D by Gradler et al41. Here we
simulate a subset of the ligands investigated in the original study,
covering a total of 5 merging decisions (SI Fig. S5 and SI Table
S12). We again find good correlation between the calculated and
experimental free energies, with a Pearson r of 0.91 ± 0.10 and a
Kendall τ 0.69 ± 0.19 albeit with a relatively large RMSE of
2.57 ± 0.33 kcal/mol. For the most part (with ligand 2 being an
exception) this seems to represent a systematic shift in the free
energy by ~2.5 kcal/mol (Fig. 3e). The exact cause of this shift is
unclear, buried binding site waters of concern were not observed
and no significant conformational differences between the apo and
holo protein conformations were found. To verify the latter, the
ABFE for ligand 27 was re-calculated using the apo crystal, PDB
ID 3QYU55. As seen in SI Table S12, the 0.29 kcal/mol difference
between the apo and holo calculated free energies sits is well within
the >1 kcal/mol sampling error. Ligand conformational flexibility

or force field accuracy may also play a role here, however we were
unable to specifically identify the exact cause.

Of the five merging decisions captured by the simulated
ligands, four would have been clearly supported by the ABFE
results (SI Table S13). The large activity cliffs seen in these
merging decisions, often exceeding 5 kcal/mol, are easily captured
by the ABFE simulations even in cases where uncertainty exceeds
1 kcal/mol. The only miscalculated merging decision involves a
relatively small ΔΔG change of 0.64 kcal/mol in experimental
affinities (ligand 2 to ligand 16), which is miscalculated through
ABFE by 3 kcal/mol in the opposite direction. Beyond merging
decisions, whilst the estimates can differentiate between low
affinity fragments (within the limit of error), the higher affinity
merged ligands cannot be clearly distinguished from each other.
For example, the 6 nM ligand 14, is estimated as within 0.3 kcal/
mol of the 660 nM ligand 39.

a b

c

d

Pearson r:  0.96 ± 0.02
Kendall τ:   0.79 ± 0.09
RMSE:       3.49 ± 0.34

Fig. 4 Impact of conformation on ABFE calculations for HSP90. a Comparison of the structures of PDB IDs 2XHT (blue) and 2XDL (red) demonstrating
the difference in helicity between the two models and b, c a zoomed view of the affected helix. Residues 100–124 have been highlighted in a darker colour
to aid in visualisation. PDB ID 2XAB, which is similar in structure to 2XDL and 2XHX which is similar in structure to 2XHT are not shown. d Absolute
binding free energies of the HSP90 ligands all starting from the 2XDL-like helix loop conformation. Free energy estimates are the means of the estimates
across replicas, with error bars as their standard deviation. Correlation metrics calculated from the mean estimate values, with error bars derived from
bootstrap resampling. All free energy results, including RMSE values, have units of kcal/mol.
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Comparison to other methods. The computational cost of
ABFEs is significant, being easily orders of magnitude higher than
cheaper endpoint methods. Previous works26,56,57 have shown
that endpoint methods such as MM/PBSA and MM/GBSA can
often be competitive with alchemical methods, especially given
the much-reduced computational costs. Here we compare our
ABFE results with those calculated using Nwat-MM/GBSA. As
shown in Figs. 3 and 6, we find that overall ABFE calculations
yield improved free energy estimates compared to Nwat-MM/
GBSA, with up to 0.2 improvements in correlation metrics
(Pearson r and Kendall τ) for all datasets except MCL-1 where
Nwat-MM/GBSA shows a higher Pearson r of 0.91 ± 0.11. As is
usual for methods like Nwat-MM/GBSA56, in part as a con-
sequence of not directly accounting for entropy58, the calculated
absolute free energies tend to be overestimated and therefore a
meaningful comparison of RMSEs between the two methods
cannot be done. Analysis of the correlation of signed errors
between both methods (Supplementary Note S4 and SI Fig. S8)
shows that for PWWP1 and HSP90 the same ligands seem to lead
to largest deviations from experiment. This could indicate that for
these systems errors may predominantly stem from inaccuracies
in the model (e.g. force field) rather than purely sampling errors.
For the other systems, Cyclophilin D and MCL-1, no such trend
is observed. However, we also note that an analysis of potential
outliers (Supplementary Note S5 and SI Figs. S10–S12) does not
show much overlap in identified outliers between the two
methods, with more outliers identified for Nwat-MM/GBSA, in
part due to a wider range in predicted free energy values.

Despite a lower predictive performance in ranking binders, the
Nwat-MM/GBSA method shows a reasonably good accuracy in
ranking fragment optimisations, being able to clearly predict
several of the elaboration decisions (SI Tables S3, S7, S10, S14).
Surprisingly, a similar amount of decisions to the ABFE
calculations are predicted here. Whilst the Nwat-MM/GBSA
results predict one fewer decision for the HSP90 dataset, two
more decisions are predicted for PWWP1. In addition, for MCL-1
whilst the fragment optimisation activity cliffs for decision 1
cannot be clearly distinguished due to large uncertainties, the
optimisation of ligand 12 into ligand 13 (decision 3), which could

not be supported by the ABFE results can be clearly identified
using Nwat-MM/GBSA.

We can also compare some of the results with previously
published RBFE data. Specifically, a subset of the MCL-1 dataset
investigated here was also calculated using FEP+ in Steinbrecher
et al.’s 2015 fragment optimisation study26. Whilst only offering a
limited comparison, we find the two methods to give comparable
results (Fig. 7), with the two methods offering within error values
for Pearson r and Kendall τ. Looking at the signed errors from
experiment (SI Fig. S9), there appears to be correlation between
the two methods indicating that similar ligands deviate the most
from experiment. This concurs with the observation from the
Nwat-MM/GBSA results that indicate that errors in the model
(e.g. force field) may have a stronger influence in the MCL-1 set
than sampling errors.

Comparison of retrospective elaboration decisions (SI Tables
S9 and S11) shows that FEP+ is also able to accurately predict
the correct changes in free energies for the elaborations in this
subset of MCL-1. Although an analysis of errors cannot be made
as errors between repeats were not provided in the Steinbrecher
et al. study26 the relatively low cycle closure errors for these
ligands (for the most part lower than 1 kcal/mol) indicate that
FEP+would likely outperform the ABFE results shown here
(with errors exceeding 1 kcal/mol) in clearly identifying these
elaborations. Given the narrow activity range and the relatively
large uncertainties in the estimates, further comparison of
correlation between calculated and experimental values is unlikely
to yield much insight. We do note that the reported RMSE for
FEP+ is much lower at 0.93 kcal/mol, however the absolute
numbers in this FEP+ study were normalised based on the
experimental affinity and therefore cannot be directly compared
to the ABFE absolute results which required no a priori
experimental affinity data.

Conclusions
In this study, we demonstrate that absolute binding free energy
calculations can successfully estimate affinity changes in the
fragment optimisation process. Whilst not always being able to
clearly support elaboration decisions, the right direction in the
affinity change was captured for the vast majority of cases (46 of
the 52 ligand pairs involved in the 22 elaboration decisions).
Despite occasional challenges in accurately matching experi-
mentally derived binding free energies, the predictive power
displayed here shows that ABFEs can be suitably used to not only
act to orthogonally validate fragment hits but also to guide
fragment optimisation.

We also show that ABFE calculations outcompete cheaper
endpoint methods such as Nwat-MM/GBSA. Nevertheless, the
Nwat-MM/GBSA method employed here showed reasonably good
predictive ability, particularly in supporting retrospective ela-
boration decisions, and could easily be used as a low computa-
tional cost prefilter to more expensive ABFE calculations. The
Nwat-MM/GBSA method employed here is also a very simplistic
one, accounting directly for entropy59–61 and using methods
employing independent trajectories for the complex, protein and
ligand components may yield improved results. For one system in
our benchmark set, MCL-1, we also found that ABFEs offer
comparable results to RBFE methods Given the lower computa-
tional costs of relative binding free energies, the decision as to
whether or not they should be used preferentially to absolute
calculations is likely to depend on the use case. In cases where one
attempts to elaborate from a common core structure, RBFEs are
likely to offer better convergence at much cheaper compute
requirements. However, when dealing with issues such as scaffold
hopping and fragment linking (as shown in the Cyclophilin D

Fig. 5 Overlay of the starting configurations of each replica of the ABFE
calculations for ligand 60 in MCL-1. The re-arrangement (pink coloured
ligand) of the merged ligand 60 in the MCL-1 binding site can clearly
be seen.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-022-00721-4 ARTICLE

COMMUNICATIONS CHEMISTRY |           (2022) 5:105 | https://doi.org/10.1038/s42004-022-00721-4 | www.nature.com/commschem 7

www.nature.com/commschem
www.nature.com/commschem


set), although we note recent success in employing FEP+ for
such cases27, ABFEs become a lot simpler, particularly in the
number of intermediate steps involved. The comparison between
the two methods shown here is too limited to offer a complete
evaluation of the differences in efficiency between RBFEs and
ABFEs in fragment optimisation, particularly in fragment linking
cases. Such an evaluation may form the basis of future work in
this area. It is also worth mentioning that whilst ABFEs do have a
much larger computational cost compared to end-point or RBFE
methods, advances in GPU utilisation are making the high-
throughput use of such a technique more tractable.

Our results demonstrated cases of both precision and accuracy
limitations. This was either seen through poor inter-replica
convergence (as shown in some of the MCL-1 ligands), or large
deviations from experimental affinities (as shown in HSP90). The

exact causes of some of the large deviations seen in these
benchmarks, particularly for HSP90 and Cyclophilin D, could not
be identified. Whilst still likely playing a role, the influence of
bound waters and apo-to-holo protein conformational changes
did not appear to be main contributors to these free energy
deviations. One potential cause could be inadequate sampling of
slow processes not easily identifiable from the short 20 ns simu-
lations employed here. Indeed, we note that the ABFE protocol
used here is reasonably simple and could easily be improved to
address some of these sampling limitations62. This could not only
improve the precision of our results, but also possibly the accu-
racy by more readily capturing rare events occurring during the
ligand binding process. For example, recent work by
Khalak et al.30 demonstrates that non-equilibrium absolute
binding free energy can be used to bridge differences between

Pearson r:  0.64 ± 0.25
Kendall τ:   0.57 ± 0.22

Pearson r:  0.75 ± 0.12
Kendall τ:   0.50 ± 0.17

Pearson r:  0.91 ± 0.11
Kendall τ:   0.44 ± 0.18

Pearson r:  0.80 ± 0.14
Kendall τ:   0.60 ± 0.24

a b

c d

Fig. 6 Binding free energies estimated by Nwat-MM/GBSA. a PWWP1, b HSP90, c MCL-1, and d Cyclophilin D datasets. Free energy estimates are the
means of the estimates across replicas, with error bars as their standard deviation. Correlation metrics calculated from the mean estimate values, with
error bars derived from bootstrap resampling. All free energy results, have units of kcal/mol.

Pearson r:  0.81 ± 0.11
Kendall τ:   0.54 ± 0.17
RMSE:       2.39 ± 0.28

Pearson r:  0.79 ± 0.12
Kendall τ:   0.52 ± 0.18
RMSE:       0.93 ± 0.15

a b

Fig. 7 Comparison of a subset of the MCL-1 dataset. a ABFE simulations and b the 2015 FEP+ study by ref. 26 Free energy estimates are the means of the
estimates across replicas, with error bars as their standard deviation. Correlation metrics calculated from the mean estimate values, with error bars derived
from bootstrap resampling. All free energy results, including RMSE values, have units of kcal/mol.
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large conformational differences between bound and unbound
states. The use of higher quality force fields, especially via bespoke
ligand parameterisations63,64, may also be key to alleviating some
of the accuracy limitations identified here. We hope that future
work will focus on improving both the precision and accuracy of
ABFE results for fragment optimisation.

It is important to also note that a priori system specific
knowledge remains crucial in ensuring the performance of
alchemical methods. Whilst one of the main advantages of ABFE
calculations is the direct estimate of binding affinity, having
access to experimental affinities for a subset of the calculated
binders to the same target or a structurally similar one, would
significantly help in identifying and adjusting issues in a model.
For example, we were able to confidently use an N-terminal
truncated model of the PWWP1 system (see Supplementary
Note 2) after observing that initial calculated free energies were
close to those obtained from experiment. Similarly, the over-
estimations in the free energy estimates seen here are sufficiently
large that they could mislead synthetic efforts, but also could
easily be adjusted through prior affinity data on a few of the data
points.

Despite the positive results displayed here, it is important to
make clear that in many ways this benchmark only tackles a
simplified set of tasks in the FBDD process and that several
challenges remain ahead in validating and using ABFE. Of par-
ticular note, this dataset solely looked at cases where most
binding poses were known and as a consequence were likely to
not include ligands occupying more than one binding pose sig-
nificantly contributing to the total free energy. Thus, our use of
orientational restraints in this study could be justified. Whilst one
could envision using ABFEs to identify optimal poses, an initial
assessment (Supplementary Note S6, Table S16) indicate that this
is unlikely to be a simple task. Indeed there are FBDD cases where
accounting for multiple binding poses either through less
restrictive restraints, such as center of mass restraints48,65–68 or
through enhanced sampling means (e.g. NCMC69 or
metadynamics70), or by explicitly accounting for multiple known
poses71,72 will be required. In addition, as mentioned in our
methods we also specifically attempted to avoid known cases
where issues may arise in ABFE calculations, such as the presence
of structural ions, membrane proteins, or ambiguous protonation
states. Future work will look at tackling some of these more
complex issues, particularly within the context of FBDD and see
what type of solutions can be leveraged to ensure the accurate
calculation of ABFE. There is still a lot of work to be done if these
methods are to be employed routinely in design decisions in
future, although progress is encouraging and not just in simple
systems73.

Methods
System selection. Four previously published FBDD campaigns38–41 (Fig. 1), each
with a different protein target, were selected for this benchmark. The systems were
selected based on the availability of high-quality experimental measures, with the
presence of both crystallographic and affinity data. We also looked to cover a wide
activity range, spanning from millimolar to nanomolar affinities, and various dif-
ferent fragment optimisation cases, such as the presence of multiple distinct
binding sites, changes in net charge, fragment growing and fragment merging (but
no fragment linking cases). Note that some cases were specifically avoided to
ensure this study remained tractable. For example, large multimeric protein targets
were not included to reduce computational costs. Similarly, membrane proteins
and systems with binding site metals or known protonation issues were not chosen
to avoid introducing additional complexity in this initial dataset. Ideally, the
experimental measurements across all four datasets would be the same (e.g. all ITC
measurements of affinity) as this is potentially a source of systematic error. This
unfortunately was not the case here (Fig. 1). Some of the pitfalls associated with
experimental equilibrium binding measurements have recently been highlighted74.

System preparation and simulation details. As structural data was not available
for all protein-ligand complexes, the initial configurations were generated by

modifying a chemically close protein-ligand crystal structure using open source
PyMOL75 (see Supplementary Note S1 for full details). If alternate states were
available in the starting crystal, state A was always retained. Where appropriate,
acetyl and N-methyl caps were also added to protein structures using PyMOL.
Protons were assigned using protoss76,77, as made available within the ProteinPlus
web server78,79. In the case of the PWWP1 domain, missing loop residues were
modelled using modeller 9v2180 and the DOPE-HR scoring method. Of the 500
generated models, the top 10 models were rescored using the QMEAN81 scoring
function as implemented in SWISS-MODEL82, with the final model selected as the
best QMEAN-scored model. The PWWP1 N-termini was also truncated at iso-
leucine 393 to avoid long timescale interactions between residues in the disordered
N-termini region and the ligand binding site (see Supplementary Note S2 and SI
Fig. S6).

Solvation and force field assignment was achieved through a combination of
AmberTools 1883 and GROMACS 201984. Ligand parameters and partial charges
were assigned using the GAFF2 force field and the AM1-BCC partial charge model.
The ff99SB-ILDN force field was used for protein parameters and the complexes
were solvated in TIP3P85 cubic boxes with a minimum distance of 12 Å from the
solute to the box edge using GROMACS’ solvate module. Sodium and chloride ions
were added to neutralise the systems and achieve a concentration of 150 mM using
the genion module of GROMACS. ParmEd version 3.2.0 (https://github.com/
ParmEd/ParmEd) was used to convert input topologies and coordinates between
AMBER and GROMACS file formats.

Unless otherwise mentioned, a hydrogen mass repartitioning scheme
(HMR)86,87 was used to achieve a 4 fs integration timestep for our simulations. Due
to differences in how MD engines handle hydrogens with analytical constraints87,
hydrogen masses, except those of waters, were increased to 3 and 4 atomic mass
units for AMBER and GROMACS respectively. Whilst HMR has been employed
before in alchemical free energy calculations88–90, there is limited data on its use in
ABFE in GROMACS. To this end, a small validation using the Cyclophilin D
dataset is shown in Supplementary Information (see Supplementary Note S3, SI
Fig. 7 and SI Table S15). Water hydrogen motions were constrained using
SETTLE91 and either SHAKE92 or LINCS93,94 for other constraints in AMBER or
GROMACS respectively. In all cases, simulation temperature was maintained at
298.15 K though Langevin dynamics with a collision frequency of 2 ps−1. A
simulation pressure of 1 atmosphere was maintained using various barostats. For
AMBER simulations, a Monte Carlo barostat95 was employed with a volume
exchange attempt frequency of 100 ps. For GROMACS, the initial equilibration
steps used the Berendsen barostat96 with a time constant of 1 ps, followed by the
Parrinello-Rahman barostat97 with a time constant of 2.0 ps for all follow-on
equilibration and production simulations. In all cases, a cut-off of 1 nm was used
for short range interactions, and long range electrostatics are handled via PME98,99.
Input topologies, coordinates, and simulation control files are provided as
Supplementary Information (zenodo: https://doi.org/10.5281/zenodo.5913469 and
https://github.com/bigginlab/fragment-opt-abfe-benchmark).

System equilibration. A two-step equilibration procedure is followed here. First,
binding site waters were equilibrated using the AMBER MC/MD procedure49 as
implemented in AMBER18’s pmemd.cuda engine100,101. The system first under-
went a short initial equilibration phase consisting of 10,000 steps of minimisation,
followed by a 500 ps NVT phase, and then 5 ns of NPT. During this equilibration,
protein backbone atoms and non-hydrogen ligand atoms were restrained using a
5 kcal/mol/Å2 force constant. The system then underwent a 5 ns MC/MD with the
same positional restraints with 25 000 MC attempts every 1000 MD steps. This was
followed by a further 10 ns of MC/MD water exchange with position restraints on
the ligand removed. In all MC/MD simulations, the NVT ensemble was sampled
and the MC swap region box was trimmed to ensure as many exchanges with
binding site waters as possible.

Once complete, the final frame from the MC/MD procedure was converted to
GROMACS using ParmEd. The system was then further equilibrated using the
mdrun engine in GROMACS 201984. This included an initial 10,000 step
minimisation, followed by 1 ns of restrained (2.39 kcal/mol/Å2 applied to the
protein backbone and ligand non-hydrogen atoms) NVT and NPT equilibration.
The latter step employed the Berendsen barostat96 as detailed above. The system
was then relaxed using 5 ns of unrestrained NPT simulation using the Parrinello-
Rahman barostat97. Finally, a further 20 ns of NPT simulation was generated. This
final 20 ns simulation was used to both derive Boresch-style102 orientational
restraint parameters and for Nwat-MM/GBSA analysis.

Absolute binding free energy calculations. Here we employed an ABFE protocol
similar to the one previously described by Aldeghi et al.31,32. Following the equi-
libration phase, a partial decoupling scheme is employed to trace the alchemical
path from a fully interacting protein-ligand complex to a ligand in solution as
shown in Fig. 2. This partial decoupling scheme involves annihilating ligand partial
charges through 11 windows spaced at λ intervals of 0.1 from each other. A charge
annihilation scheme was used here in order to avoid known issues with nonbonded
exclusions when using the free energy code in GROMACS 2021 (see https://
manual.gromacs.org/2021-current/). The charge decoupling is then followed by 21
Van der Waals decoupling windows spaced with the following λ schedule [0.0, 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
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0.95, 1.0]. A soft-core potential for decoupled Van der Waals interactions was
used103. In addition, to restrict ligand motion in the complex phase an orienta-
tional restraint, as defined by Boresch et al.102, was employed. This restraint was
applied over 12 windows in the complex decoupling phase with the following
schedule [0.0 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.35, 0.5, 0.75, 1.0]. In the
solvent phase, the influence of this restraint was accounted for analytically.

Appropriately choosing which 6 atoms to involve in Boresch-style102

orientational restraints can be a complex issue, here we use the procedure as
implemented in MDRestraintsGenerator (https://doi.org/10.5281/zenodo.
4570555). Briefly, we pick out the least mobile ligand atoms from our final 20 ns
equilibration simulation (see System Equilibration above) as potential anchor
points for our orientational restraint. We then analyse the trajectory to select all
available alpha carbon protein anchor atoms within an 8 Å cut-off of the ligand
anchor atoms, generating a list of potential orientational restraints (where the
nearest bonded ligand heavy atoms and protein backbone atoms are selected as the
remaining atoms involved in the orientational restraint). Bond, angle and dihedral
timeseries for all identified restraints are obtained and the restraint with the lowest
standard deviation across all values is picked as our orientational restraint of
choice. The frame closest to the mean bond, angle and dihedral values of the
restraint over the 20 ns simulation is then used as the starting point for the ABFE
cycle. With each replica undergoing independent equilibrations, although starting
from the same initial structure, we obtain a different restrained conformation for
each replica, helping us better capture the impact of conformational flexibility on
the calculated free energy.

Each ABFE window consists of a short equilibration similar in protocol to the
previously detailed equilibration cycles, although using 10 ps for the restrained
NVT equilibration, 100 ps for the restrained NPT Berendsen barostat
equilibration, and 500 ps for the unrestrained NPT Parinnello-Rahman barostat
equilibration. This is followed by 20 ns of production NPT simulation. A total of
five independent replicas of the ABFE cycle are simulated. For the protein-ligand
complexes, each replica is independently equilibrated and uses different
orientational restraints, allowing the replicas to more representatively sample the
available conformational space within the binding site. GROMACS 2021 was used
for all ABFE calculations. For charged ligands, an analytical correction was used to
account for finite size errors as detailed by Rocklin et al.104. To achieve this, the
ABFE simulations were carried out with a net system charge in the fully coupled
state by adding or removing a counterion as necessary. Files containing the
sampled ΔH and ΔH/Δλ energies have been made publicly available at zenodo:
https://zenodo.org/record/5906262, https://zenodo.org/record/5906110, https://
zenodo.org/record/5904110, https://zenodo.org/record/5906019 and https://
zenodo.org/record/5906805)

Nwat-MM/GBSA calculations. The last 20 ns of our equilibration procedure was
analysed using the Nwat-MM/GBSA method36,37. Here the N= 20 nearest waters to
the ligand in the binding site are included as part of the protein in the MM/GBSA
calculation. As is typical for Nwat-MM/GBSA calculations, a single trajectory
approach was employed, and no entropy corrections were included. The Nwat-MM/
GBSA method was chosen here due to its simplicity, low computational costs, and
previous work demonstrating Nwat-MM/PBSA to have good accuracy in ranking
Bromodomain-binding ligands compared ABFE calculations56. GROMACS XTC
files were converted to AMBER NETCDF format using MDAnalysis 1.1.1105,106,
and the trajectory and topologies manipulated to remove excess waters using
cpptraj v5.1.0107. The mmbondi2 radii with GB model 2 parameters108 were
employed with a GB salt concentration of 150 mM. Frames were sampled every
25 ps from the 20 ns trajectories. The AmberTools21 versions of MMPBSA.py and
sander were used for the MM/GBSA calculations109.

Analysis. Analysis of the alchemical simulations was achieved using the alchemlyb
v0.3.0 library (https://zenodo.org/record/3361016) 110 and the MBAR estimator as
implemented in pyMBAR v3.0.3111. The first 1 ns of each production window was
discarded as extra equilibration time and samples were decorrelated based on the
derivative of the potential with respect to λ up to a maximum frequency of 100 ps−1.
Sampling error is shown as the standard deviation of the mean free energy estimates
across all five repeats. Where appropriate, an analytical correction was included to
account for finite size errors as defined by Rocklin et al.104 and implemented in
rocklinc (https://github.com/xiki-tempula/rocklinc), using ABPS v3.0112,113 for
Poisson-Botlzmann calculations113. It should be noted that no additional long range
dispersion corrections (e.g. EXP-LR)114 were employed here.

All other simulation analyses were carried out using MDAnalysis 1.1.1105,106,
spyrmsd for symmetry corrected RMSDs115, and the numpy116, scipy117, and
scikit-learn118 libraries. Plotting was done using the matplotlib library119, and
images of atomic coordinates through ChimeraX120. The correlation between the
calculated and experimental affinities are analysed via Spearman r, Kendall τ, and
RMSE, with error bars obtained as the standard deviation of the means generated
through bootstrap resampling (100,000 iterations).

Evaluation of synthetic decisions. As part of our analysis we attempt to retro-
spectively evaluate the influence our predicted values would have had on the ori-
ginal synthetic decisions undertaken in the fragment optimisations. Overall this is a

rather difficult task with many caveats, including; synthetic decisions not always
being well defined, steps involving testing affinity changes between more than one
ligand pair, and inequalities in the difficulty between synthetic steps. For example;
for PWWP1 Böttcher et al.38 first detail investigating the impact of adding a 3,5-
dimethyl-1,2-oxazole moiety on ligand 8 into order to form ligand 9. The authors
then detail their next step as testing 2-methyl- and 2,6-dimethyl-phenyl sub-
stituents instead of the dimethyl-1,2-oxazole, showing moderately improve potency
(ligands 10 and 11). Given the context of the tested substituents, one could look at
these as either two or three optimisation decisions, based on whether one considers
the synthesis of ligands 10 and 11 as a combined test of affinity change in the
optimisation process. Here we have, to the best of our ability, attempted to group
these syntheses into decisions based on the text outlined in the source reference
(see SI Tables S2–3, S6–S7, S9–S11, and S13–14. This was easily done for HSP9039

and PWWP138 but was more complex for MCL-140 and Cyclophilin D41. For
MCL-1 we opted to group the decisions into three sets of substitutions, each for a
specific fragment core, and one fragment merging decision. For Cyclophilin D, five
clear fragment merging cases could be identified from the simulated ligands and
these were used as the synthetic decisions. One ligand from the PWWP1 set, ligand
14, was not included in the elaboration decisions. This is due to the main text
rationalising the synthesis of this ligand based on the affinity of a ligand which was
not included in our calculated set due to its large size (identified as ligand 7 by
Böttcher et al.38). We nevertheless kept ligand 14 in our calculated set as it was
structurally similar to the other PWWP1 ligands and offers a convenient extra data
point towards evaluating the accuracy of ABFE calculations relative to experiment.
It is also worth noting that the non-equal number of syntheses per decision,
combined with our assessment that a failed decision occurs when any one ΔΔG
difference in that set is insufficiently estimated, makes it such that some decisions
have a much higher predictive difficulty than others.

Data availability
Input topologies, coordinates, and simulation control files are provided at https://zenodo.
org/record/5913469 and https://github.com/bigginlab/fragment-opt-abfe-benchmark.

The implementation of the MDRestraintsGenerator can be found here: https://zenodo.
org/record/4570556 Files containing the sampled ΔH and ΔH/Δλ energies have been
made publicly available at zenodo: https://zenodo.org/record/5906262, https://zenodo.
org/record/5906110, https://zenodo.org/record/5904110, https://zenodo.org/record/
5906019 and https://zenodo.org/record/5906805.
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