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Exploring the roles of oxygen species in H2
oxidation at β-MnO2 surfaces using operando
DRIFTS-MS
Jiacheng Xu1,2, Tiantian Zhang1, Shiyu Fang1, Jing Li1,3, Zuliang Wu1,3, Wei Wang1,3, Jiali Zhu1,3, Erhao Gao1,3 &

Shuiliang Yao 1,2,3✉

Understanding of the roles of oxygen species at reducible metal oxide surfaces under real

oxidation conditions is important to improve the performance of these catalysts. The present

study addresses this issue by applying a combination of operando diffuse reflectance infrared

Fourier transform spectroscopy with a temperature-programmed reaction cell and mass

spectrometry to explore the behaviors of oxygen species during H2 oxidation in a tem-

perature range of 25–400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated

simultaneously into terminal-type oxygen (M2+-O2–) and bridge-type oxygen (M+-O2–-M+)

via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn

cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of

110–150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb

from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and

dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation

for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen

vacancies are important to improve the performance of reducible metal oxide catalysts.
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Oxygen vacancy (OV) defects at reducible metal oxide
surfaces play a key role in a heterogenous catalytic oxi-
dation process1–4. In 1954, Mars and van Krevelen

reported that the oxidation of organic compounds on V2O5

includes V2O5 reduction by an organic compound and the sub-
sequent oxidation of V2O5 by O2

5. This reduction and oxidation
mechanism had been verified the OVs at the atomic level for the
oxidation of CO on RuO2 (110) surfaces using scanning tunneling
microscopy (STM) in conjunction with density-functional theory
(DFT) calculations6. This has induced a boost in studies to
identify OVs on metal oxide surfaces. For example, OVs have
been identified on the surfaces of rutile TiO2 using high-
resolution STM7. Other studies have demonstrated that many
types of OVs with different catalytic reaction characteristics can
exist on metal oxide surfaces. OVs have been observed on metal
oxide surfaces in association with three metal (M) and oxygen
(O) groups (M=O, M–O–M, and M3–O)8. Moreover, the local
structures of OVs on the treated and untreated surfaces of CeO2

(110) crystal planes have been elucidated using STM in con-
junction with DFT calculations9.

Recent reviews have summarized the methods that can be
applied to characterize oxygen species at catalyst surfaces10

(Supplementary Table S1). An overview has focused on under-
standing the roles of OVs playing in the oxidation reaction at
reducible metal oxide surfaces11. For example, the dissociation of
O2 at OVs was found to greatly impact oxygen adsorption on
TiO2 (110) surfaces, where one O atom from the dissociated O2

molecule is postulated to fill an OV and the second O atom
deposited at the five-coordinate Ti4+ site12. The roles of oxygen
atoms and molecules at catalyst surfaces and the properties of
OVs have also been the subject of a recent review13.

The importance of OVs has led to the development of
numerous strategies for increasing the concentration of OVs in
metal oxide catalysts. Some success has been achieved via doping
with secondary metal ions and nano structuring14,15, and the
doping strategy has been expanded to develop four-layer metal
oxide catalysts (CuO/VOx/Ti0.5Sn0.5O2) with layers composed of
synergistic OV concentrations16. The dispersal of metal ions on
the surfaces of metal oxides has also been demonstrated to
increase the concentration of OVs effectively17,18. These strategies
have been widely used in photocatalytic materials, electrocatalytic
materials, thermal catalytic materials, and optical materials19–21.
However, effective methods to improve the performance of metal
oxide catalysts are influenced by current characterization tech-
nologies. Therefore, it is required to find an effective character-
ization technology to identify OVs and understand oxidation
mechanisms that occur at the surfaces of metal oxides under real
reaction conditions.

The operando diffuse reflectance infrared Fourier transform
spectroscopy (DRIFTS) is a powerful technology that can
identify surface species on a catalyst under real reaction con-
ditions. Ye et al. found that toluene adsorption and reaction
with OVs can effectively reduce the accumulation of by-
products22. Li et al. investigated the structure-performance
relationships of α, β, γ, and δ-MnO2 catalysts, they found that
toluene adsorption is promoted by rapid dehydrogenation of
methyl groups on the surface of δ-MnO2

23. Yao et al. used the
combination of DRIFTS with a mass spectrometry (MS) to
observe the functional groups on the catalyst surface and the
changes in MS signals of gaseous components during the cat-
alytic oxidation of toluene on CeO2

24.
Due to its multiple valence states and structural diversity (e.g.,

tunneling (α, β, and γ-MnO2) and layered (δ-MnO2) structures),
MnO2 is an important functional metal oxide material25–27. β-
MnO2 has a thermodynamically stable phase and high crystal-
linity, and become one of the hot spots in current researches28,29.

The present work addresses these issues by combining an
operando DRIFTS with a temperature-programmed reaction
(TPR) cell and MS to explore the behaviors of OVs and adsorbed
oxygen species at β-MnO2 surfaces during H2 oxidation reaction
conducted in the temperature range of 25–400 °C. The roles of OVs
in H2 oxidation process are explored according to relations between
OVs and oxygen species, which in turn reveal interactions between
surface oxygen species with H2 at different reaction temperatures.

Results and discussion
Catalyst characterization. The crystal structure of β-MnO2 was
confirmed using X-ray diffraction (XRD). β-MnO2 has good
crystallization and no obvious crystal defects (Fig. 1a). High-
resolution transmission electron microscope (HRTEM) image of
β-MnO2 is shown in Supplementary Fig. S1. The well-identified
periodic lattice fringes of 2.41 and 3.15 nm are corresponding to
the interplanar distances of (101) and (110) facets of β-MnO2.
Whereas severe blurring of the lattice fringes is also found
(highlighted by red rectangles), suggesting the existence of OVs at
β-MnO2 surfaces30.

Figure 1b shows the Raman scattering spectrum of β-MnO2.
The band at 630 cm–1 corresponds to the tensile pattern of the
[MnO6] octahedron, and the band at 330 cm–1 is assigned to the
metal-oxygen chain of Mn–O–Mn in the MnO2 octahedral
lattice, indicating the presence of a well-developed rutile-shaped
skeleton31.

Thermogravimetric (TG) analysis result shows that the weight
loss of β-MnO2 is not obvious below 500 °C (Fig. 1c). This is due
to the coordination of Mn and O in the phase structure is close to
saturation, and the phase tunnel structure is stable. The weight
loss at higher temperatures is attributed to the removal of lattice
oxygen, resulting in the reduction of MnO2 to Mn2O3 (between
500 and 600 °C) with a weight loss of 9.63% and to Mn3O4

(between 720 and 820 °C) with a weight loss of 3.62%32.
O2 temperature-programmed desorption (O2-TPD) was used

to observe the O2 desorption from β-MnO2 (Fig. 1d). There is a
small desorption peak around 150 °C, which is a signal of surface
oxygen desorption. When the temperature reaches about 587 and
813 °C, two obvious desorption peaks appear. The small peak at
around 150 °C is due to O2 desorbed from β-MnO2, the peaks at
587 and 813 °C are related to the desorption of lattice oxygen and
bulk lattice oxygen33,34.

X-ray photoelectron spectroscopy (XPS) was used to measure
the valence states of Mn and the types of O at β-MnO2 surfaces
(Fig. 1e, f and Table 1). The fraction ratios of Mn3+ and Mn4+

are 32.0% and 68.0%, respectively, indicating that β-MnO2 is
oxidizable and reducible. O1s spectrum can be divided into lattice
oxygen (Olatt) at 529.2 eV and adsorbed oxygen/surface hydroxyl
groups (Oads and (OH)ads) at 531.7 and 533.2 eV (Fig. 1f)35,36.
The fraction ratio of Olatt is 77.2%, indicating the presence of OVs
at β-MnO2 surface.

H2 oxidation by surface oxygen species in the absence of O2.
The DRIFTS spectra, MS signals, and normalized peak intensities
during H2 oxidation by oxygen species at β-MnO2 surfaces in the
absence of O2 are shown in Fig. 2. Seven kinds of oxygen species
at β-MnO2 surfaces can be found, those are bridge-type (M+–
O2––M+) group (750–800 cm–1)37, terminal-type (M2+–O2–)
group (1300–1400 cm–1)38–40 (Supplementary Figs. S2–S4 also
prove that 1300 cm–1 belongs to M=O at β-MnO2 surfaces),
M+–O– group (870 cm–1)41, adsorbed molecular O2 groups
including M+–O2

− group (1110–1120 cm–1)42,43 and M2+–O2
2−

group (930–960 cm–1)44, and oxidation products including
δ(H2O) (1520, 1610, and 1640 cm–1) and v(OH) (3080, 3230,
3530, and 3720 cm−1)45,46 (Supplementary Table S3).
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At a temperature higher than 110 °C, H2O MS signal increases
obviously (Fig. 2c) and the normalized intensity of M+–O2––M+

(M–O–M) decreases (Fig. 2d), but the normalized intensity of
other surface oxygen species do not change significantly below
110 °C. This finding implies that the bridge-type of oxygen atom
in M+–O2––M+ (M–O–M) first reacts with H2 to form gaseous
H2O and bridge-type OV (M–□–M, where, OV is represented by
an empty square □) (Eq. (1)). When the temperature exceeds
150 °C, except M+–O2––M+, the normalized intensities of

M+–O2
−, M2+–O2–, M+–O–, and v(OH) decrease, but the

normalized intensities of δ(H2O) and M2+–O2
2− increase with

increasing temperature. These results indicate that M+–O–

(M–O) and M2+–O2– (M=O) can react with H2 above 150 °C
to generate H2O and terminal-type OV (bare M) (Eqs. (2) and
(3)), which leads to an increase in the normalized intensity of
δ(H2O)47. M2+–O2– (M=O) reacts with surface H2O to form OH
(Eq. (4)), which leads to a decrease in the normalized intensity of
v(OH) in H2O at β-MnO2 surfaces.

M�O�MþH2 ! M�&�MþH2O ð1Þ

M�OþH2 ! MþH2O ð2Þ

M¼OþH2 ! MþH2O ð3Þ

M¼OþM�H2O ! 2M�OH ð4Þ
It is interesting that the normalized intensity of M2+–O2

2−

increases with increasing temperature even in the absence of O2

(Fig. 2d). The relation of normalized intensities of M2+–O2
2−

and M2+–O2
− is correlated (Supplementary Fig. S5). It was found

Fig. 1 Catalyst characterization of β-MnO2. a XRD patterns. b Raman spectrum. c TG profile. d O2-TPD profile. e Mn2p XPS spectrum. f O1s XPS
spectrum.

Table 1 Mn2p, O1s binding energies, and the corresponding
parameters.

Elements Assignment Peak position (eV) Fraction (%)

Mn2p Mn3+ 642.3 32.0
Mn4+ 643.4 68.0

O1s Olatt 529.2 77.2
Oads 531.7 16.2
(OH)ads 533.2 6.6
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that a standard deviation (R2) of the relation is 0.965, which clearly
indicates that the normalized intensity of M2+–O2

2− is strongly
correlated with that of M+–O2

−. Li et al. also reported similar
phenomena48. The conversion reaction between M2+–O2

− and
M2+–O2

2− is shown in Eq. (5), where the valence state of the M
cation in M+–O2

− is kept constant via M+–O2
− conversion to

M2+–O2
2− after the formation of M–□–M.

O�
2

� �
M�O�MþH2 ! O2�

2

� �
M�&�MþH2O ð5Þ

H2 oxidation by surface oxygen species in the presence of O2.
The DRIFTS spectra, MS signals, and normalized intensities
during H2 oxidation by oxygen species at β-MnO2 surfaces in the
presence of O2 are presented in Fig. 3. The primary difference due
to the presence of O2 is that the normalized intensity of v(OH)
increases with temperature in the presence of O2 (Fig. 3d), but
decreases in the absence of O2 (Fig. 2d). It is also noted that H2O
MS signal (3.0E-09) at 400 °C in the presence of O2 (Fig. 3c) is
much stronger than that (1.48E-09) in Fig. 2c in the absence
of O2. These differences in the normalized intensity of v(OH)
trend and H2O MS signal are evidence of O2 involvement in
H2 oxidation. O2 can promote not only the release of O in
M+–O2−–M+ (Eq. (1)) but also the formation rate of M–OH
from M2+–O2– (Eq. (6)). With the increase in temperature,
M–OH reacts with H2 (Eq. (7)) to form surface adsorption of
H2O that desorbs into gaseous H2O at 250 °C (Eq. (8))49,
resulting in the formation of terminal vacancies (bare Mn).

2M¼OþH2 ! 2M�OH ð6Þ

2M�OHþH2 ! 2M�OH2 ð7Þ

M�OH2 ! MþH2O ð8Þ
Regeneration of H2-reduced β-MnO2 with Ar or O2. The fact
that the normalized intensities of M+–O2––M+ and M2+–O2–

are all negative during H2 oxidation in both H2/Ar and (H2+O2)
atmospheres (Figs. 2 and 3) indicates that OVs (M–□–M and M)

can be generated even in the presence of O2. A similar result has
been reported by Sun et al., where they found that M+–O2––M+

and M2+–O2– can be reduced by CO on ZnO50. The generation
of the M–□–M and M may be due to either the decomposition
rate of O2 at β-MnO2 surfaces is less than that of H2 oxidation or
M–□–M and M cannot be regenerated. This issue was evaluated
by conducting successive regeneration experiments in an Ar or
O2/Ar atmosphere (Supplementary Table S2). β-MnO2 was first
reduced by H2 in the TPR cell at 200 °C for 10 min, the regen-
eration was then carried out in an Ar or O2/Ar atmosphere by
elevating the temperature from 25 °C to 400 °C.

DRIFTS spectra and normalized intensities at various tem-
peratures during the regeneration of H2-reduced β-MnO2 in the
Ar atmosphere are presented in Fig. 4. When increasing
temperature from 25 °C to 300 °C, the normalized intensity of
M2+–O2

2− decreases rapidly to zero, while those of M2+–O2–

and M+–O2
− increase rapidly to zero (Fig. 4b). The normalized

intensities of M+–O2––M+ and M+–O− asymptotically approach
to –1.0 at a temperature close to 400 °C. This finding indicated
that O atoms in M+–O2––M+ and O2 molecules in M2+–O2

2−

can migrate on β-MnO2 surfaces (Eqs. (9) and (10))32.

M�O�MþM ! M�&�MþM¼O ð9Þ

O2�
2

� �
M�&�MþM�O�M ! M�&�M

þ O�
2

� �
M�O�M

ð10Þ

DRIFTS spectra and normalized intensities at various tem-
peratures during the regeneration of H2-reduced β-MnO2 in the
O2/Ar atmosphere are illustrated in Fig. 5. The normalized
intensity of M+–O2––M+ increases from at a temperature higher
than 100 °C, indicating that the regeneration of M+–O2––M+

from M–□–M and O2 requires a temperature higher than
100 °C51,52. Furthermore, the normalized intensity of M+–O2––
M+ becomes positive at temperatures greater than 250 °C, at which
all other surface oxygen species increase or decrease to 0.0,
suggesting all other surface oxygen species have been completely

Fig. 2 Experimental results of H2 oxidation by oxygen species at β-MnO2 surfaces in H2/Ar as a function of temperature. a, b DRIFTS spectra. c MS
signal. d Normalized intensities where the error bars are the standard deviations obtained by measuring the peak heights more than three times.
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Fig. 3 Experimental results of H2 oxidation by oxygen species at β-MnO2 surfaces in (H2+O2) as a function of temperature. a, b DRIFTS spectra. cMS
signal. d Normalized intensities where the error bars are the standard deviations obtained by measuring the peak heights more than three times.

Fig. 4 Experimental results of the regeneration of H2-reduced β-MnO2 in Ar at various temperatures. a DRIFTS spectra. b normalized intensities where
the error bars are the standard deviations obtained by measuring the peak heights more than three times.

Fig. 5 Experimental results of the regeneration of H2-reduced β-MnO2 in O2/Ar at various temperatures. a DRIFTS spectra. b normalized intensities
where the error bars are the standard deviations obtained by measuring the peak heights more than three times.
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regenerated. We may further note that M+–O2––M+ can convert
to M2+–O2– (Eq. (9)). From the fact that the normalized intensity
of M2+–O2– increases little at temperatures greater than 250 °C but
that of M+–O2––M+ increases significantly, these findings deduce
that the reaction in Eq. (9) is reversible.

The decreases in normalized intensities of δ(H2O) and v(OH)
indicate that H2O can desorb from M–OH2 and M–OH at β-
MnO2 surface, resulting in the formation of bare M.

Roles of OVs in H2 catalytic oxidation. The roles of OVs in H2

oxidation process at β-MnO2 surfaces in the presence of O2 can
be deduced from the above discussion, and the proposed
mechanism is illustrated in Fig. 6. First, when the reaction tem-
perature is in a range of 110–150 °C, the oxygen atom in the
bridge-type M+–O2––M+ can react with H2 to form H2O and
OV via steps (1) and (6) in Fig. 6a. According to steps (2) and (7),
the oxygen atoms in the terminal-type M2+–O2– and M–OH
react with H2 to generate surface M–OH and gaseous H2O. The
gaseous O2 adsorbed at the bare M site in M+–□–M+ (step (4))
yields M2+–O2

2−. M2+–O2
2− dissociates simultaneously to

M+–O2––M+ and M2+–O2– (step (5), Eq. (11)). We can only
find the decrease in M+–O2––M+ and increase in M–□–M in
this temperature range as the step (2) is rate limited reaction.

O2�
2

� �
M�&�M ! M�O�M¼O ð11Þ

As the oxidation process in Fig. 6b, when the temperature is
above 150 °C, OH in M–OH becomes reactive enough, the O2

dissociation step (6) is slowest, resulting in the accumulation of
M–□–M and M2+–O2

2−.

Conclusion. We explored O2 dissociation, OVs formation, and
surface oxygen species conversion during H2 oxidation at β-
MnO2 surface using the operando TPR-DRIFTS-MS technology.
The results demonstrate that the operando TPR-DRIFTS-MS
technology employed herein is a highly useful tool for identifying
OVs at β-MnO2 surfaces and CeO2 and Co3O4 surfaces (Sup-
plementary Fig. S6), and for understanding the roles of OVs and

oxygen species in catalytic processes. In particular, the difference
in the reaction characteristics of bridge-type (M+–O2––M+) and
terminal-type (M2+–O2–) oxygen species can be clearly observed
using the operando TPR-DRIFTS-MS technology. Accordingly,
we expect this technology could provide an important char-
acterization method to understand the roles of surface oxygen
species on metal oxide catalysts and enable the rational design of
catalysts of OVs with satisfied performance.

Methods
Materials. β-MnO2 (99%) was purchased from Aladdin, Shanghai, China. Pure Ar
(99.999%), pure O2 (99.999%), 5 vol% H2 standard gas (Ar balanced), and 5 vol%
CO standard gas (Ar balanced) were purchased from Huayang, Changzhou, China.

Catalyst characterization. Physicochemical properties of β-MnO2 were char-
acterized by via various techniques, such as X-ray powder diffraction (XRD),
thermogravimetric (TG) analysis, Raman, X-ray photoelectron spectroscopy (XPS),
oxygen temperature-programmed desorption (O2-TPD), and high-resolution
transmission electron microscopy (HRTEM).

DRIFTS-MS system. A schematic diagram of the operando TPR-DRIFTS-MS
system is shown in Supplementary Fig. S7. The system consisted of gas cylinders,
gas flow meters (MFC, D07, Sevenstars Beijing, China), operando DRIFTS (Nicolet
50, Thermo Scientific, USA), and MS (Tilon LC-D200M, Ametek, USA). The
DRIFTS was equipped with a TPR cell (HVC-DRP-5, Harrick, USA) and a narrow-
band mercury cadmium telluride (MCT-A) detector with liquid nitrogen cooling
for high sensitivity (0.09 cm−1) in collecting DRIFTS spectra between 4000 and
650 cm−1.

For the DRIFTS spectrum collection experiment, β-MnO2 powders were
pretreated for 1 h in Ar at 450 °C (20 mL/min). Then, the β-MnO2 powders were
cooled to room temperature and stabilized for 10 min, and DRIFTS background
spectra were collected. The gas mixture (Supplementary Table S2) was supplied
into the TPR cell for 20 min. The β-MnO2 powder temperature was elevated with
programmed heating using a temperature controller. Series software was used to
collect the corresponding spectra. Thirty-two scans were performed with a
resolution of 4 cm−1, and the spectrum data of DRIFTS were analyzed using
OMNIC software during the acquisition. The Kubelka–Munk function was used to
convert the obtained spectra into absorption spectra, whose intensities were
linearly related to the amount of adsorption. The gas from the TPR cell was
analyzed using mass spectrometer (MS) (Tilon, LC-D200M, Ametek, USA) to
obtain signals of H2 (m/z= 2), H2O (m/z= 18), O2 (m/z= 32), and Ar (m/z= 40).

Fig. 6 Roles and mechanisms of surface oxygen species and OVs in H2 oxidation at β-MnO2 surfaces. a H2 oxidation between 110 and 150 °C. b H2

oxidation at a temperature higher than 150 °C.
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Normalization of peak intensity. The collected infrared spectra at different
temperatures were normalized for relatively quantitative analysis. The normal-
ization was calculated using Eqs. (12) and (13) based on the absolute values of the
highest height (Pi max) for positive peaks and lowest peak height (Pi min) for
negative peaks, respectively.

Ni ¼
Pi

Pimax
ð12Þ

Ni ¼
Pi

Pimin

�� �� ð13Þ

Ni represents the normalized intensity of the absorption peak i at the
corresponding temperature; Pi represents the peak height of the absorption peak i
at the corresponding temperature.

Data availability
Data will be made available on request.
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