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Thiazol-2-ylidenes as N-Heterocyclic carbene
ligands with enhanced electrophilicity for transition
metal catalysis
Jin Zhang 1✉, Tao Li1, Xiangyang Li1, Anqi Lv1, Xue Li1, Zheng Wang1, Ruihong Wang2, Yangmin Ma1,

Ran Fang 1✉, Roman Szostak3 & Michal Szostak 4✉

Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant

direction in ligand development in transition metal catalysis. In particular, strong σ-donation
in combination with tunable steric environment make NHCs to be among the most common

ligands used for C–C and C–heteroatom bond formation. Herein, we report the study on steric

and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle

and enhanced π-electrophilicity result in a class of highly active carbene ligands for elec-

trophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of

steric, electron-donating and π-accepting properties as well as structural characterization and

coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug

functionalization to furnish attractive building blocks for medicinal chemistry. Considering the

key role of N-heterocyclic ligands, we anticipate that N-aryl thiazol-2-ylidenes will be of broad

interest as ligands in modern chemical synthesis.
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S ince the first successful isolation in 19911 and the first use in
catalysis in 19952, N-heterocyclic carbenes (NHCs) have
emerged as a powerful class of ligands in transition metal

catalysis3–14. The tremendous utility of NHCs hinges on strong σ-
donation15,16 in combination with tunable steric environment17,18,
supercharging the catalytic activity of transition metals beyond
other ligands. The most remarkable impact is in the development
of Ru-catalyzed olefin metathesis19,20 and Pd-catalyzed cross-
couplings21–23, where the strong σ-donation and high stability of
M–C(NHC) bond render NHCs superior to the more ubiquitous
phosphine ligands. Thus far, NHC ligand development in transition
metal catalysis has been almost exclusively limited to N-aryl-imi-
dazolylidenes A5–23, such as IPr24–26, prepared by deprotonation of
symmetrical imidazolium salts (Fig. 1). This is presumably due to
enhanced electronic and steric stabilization of the carbene center by
two nitrogen atoms as well as two N-Ar wingtip substituents, which

render N-aryl-imidazolylidenes more stable and easier to handle27.
The pioneering studies by Bertrand and co-workers established that
cyclic carbene systems with a marked decrease of heteroatom sta-
bilization, such as CAACs B (cyclic (alkyl)amino)carbenes)28–35,
are readily available, showing unique reactivity as supporting
ligands in transition metal catalysis. More reactive and less stabi-
lized systems, such as diamidocarbenes C36–38, mesoionic carbenes
D39–41 and remote carbenes E42–45, have been developed, each class
showing varying degrees of heteroatom stabilization and distinctive
promise in transition metal catalysis46–48.

In this context, N-aryl thiazol-2-ylidenes F are an intriguing class
of N-heterocyclic carbenes (Fig. 1). Following the isolation of a
stable thiazol-2-ylidene by Arduengo in 199749, this class of ligands
stayed dormant until 2008, when Grubbs demonstrated the unique
reactivity of Ru-based thiazol-2-ylidene olefin metathesis catalysts50.
To our knowledge, this is the only application of N-aryl thiazol-2-
ylidene ligands in transition metal catalysis reported to date51–54.
More recently, there has been a resurgence of organocatalyzed
radical relays and decarboxylative couplings made possible through
the persistent radical stabilization by thiazol-2-ylidenes55–60. In the
meantime, studies by Boydston demonstrated organocatalyzed
anodic oxidation of aldehydes through in situ generation of elec-
troauxiliaries of thiazol-2-ylidenes61, while the first characterization
of elusive Breslow intermediates from thiazol-2-ylidenes by spec-
troscopic and crystallographic methods has been reported62,63.
Thiazol-2-ylidenes are key intermediates in biochemical transfor-
mations of vitamin B164,65.

Geometrically, replacement of one of the nitrogen atoms in
imidazol-2-ylidene systems with sulfur in thiazol-2-ylidenes results
in disrupting the ring geometry of imidazolylidenes66–68. At the
same time, there is a strong electronic effect in decreasing stabili-
zation of the carbene center through diminished π donation from
sulfur69. Finally, the sulfur atom does not bear any wingtip sub-
stituents that in imidazolylidene systems often provide a significant
contribution to the stabilization of the carbene center5–23,66–68.
These geometrical and electronic factors might explain why, with
exception of the report by Grubbs50, N-aryl thiazol-2-ylidenes have
been unexplored as NHC ligands in transition metal catalysis.

In terms of electronics, the diminished π donation from sulfur
due to ring geometry and large sulfur radius is expected to result
in more electrophilic carbenes than traditional imidazol-2-ylidene
systems, while maintaining strong donor ability (Fig. 1)69.

In terms of geometry, the effect of typical NHC ligands on
M–C(NHC) bond is defined as “umbrella” shaped, in contrast to cone
shaped phosphines (Fig. 1)17,18. The combination of a nitrogen
atom with a quaternary carbon in CAACs renders these ligands as
“wall-shaped” in some cases with regard to the M–C(NHC)

bond28–35. The steric properties of N-aryl thiazol-2-ylidenes render
these ligands “half umbrella” shaped with the nitrogen N-wingtip
oriented toward the M–C(NHC) bond and lack of substitution on the
sulfur atom.

As a part of our interest in NHC catalysis70–76, herein, we report
the study on steric and electronic properties of thiazol-2-ylidenes.
Most importantly, we demonstrate that the thiazole heterocycle and
enhanced π-electrophilicity result in a class of highly active carbene
ligands that supersede imidazol-2-ylidenes. We present the eva-
luation of steric, electron-donating and π-accepting properties as
well as structural characterization and coordination chemistry.
Considering the key role of N-heterocyclic ligands, we envision that
N-aryl thiazol-2-ylidenes will be of broad interest as ligands in
chemical synthesis.

Results
Synthesis of Thiazol-2-ylidene precursors. N-Aryl thiazol-2-
ylidenes carbene precursors are readily available on multigram

Fig. 1 Structures of N-heterocyclic carbenes with different degrees of
stabilization. Energies calculated at B3LYP 6-311++g(d,p) level, R=Dipp.
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scale following protocols for organocatalytic transformations (see
Supplementary Method 2)55–60. Four N-aryl thiazol-2-ylidenes
carbene precursors were selected as a starting point (Fig. 2). For
the study, we chose structural sulfur analogues of IPr and IMes on
3-aryl-4,5-dimethylthiazol-2-ylidene framework; MeIPrS and
MeIMesS. IPr ligand (IPr= 1,3-bis(2,6-diisopropylphenyl)imida-
zol-2-ylidene; N-Dipp, Dipp= 2,6-diisopropylphenyl) is by far
the most common NHC ligand used in transition metal catalysis,

while its smaller IMes (IMes= 1,3-bis(2,4,6-trimethylphenyl)
imidazol-2-ylidene, N-Mes, Mes= 2,4,6-trimethylphenyl) coun-
terpart is often used for transformations requiring lower steric
demand of the N-wingtip substituents. Furthermore, 3-aryl-4,5-
cyclohexylthiazol-2-ylidene and 3-aryl-4,5-cycloheptylthiazol-2-
ylidene, 6IPrS and 7IPrS were selected on the basis of the recent
reports in organocatalytic transformations55–60, where the fused
cyclic ring on the backbone of N-aryl thiazol-2-ylidenes often
provided advantageous stability of the system.

Synthesis of Thiazol-2-ylidene Complexes. With access to N-
aryl thiazol-2-ylidene precursors, we next prepared Ag(I) com-
plexes [Ag(NHC)2](ClO4) 4a-4d by the reaction with Ag2O in
CH2Cl2 (Fig. 3). Interestingly, complexes 4a-4c ([Ag(MeIPrS)2]
(ClO4) (4a), [Ag(6IPrS)2](ClO4) (4b) and [Ag(7IPrS)2](ClO4)
(4c)) were found to be stable to air and moisture and could be
fully characterized by X-ray crystallography (Fig. 4, for more
details, see Supplementary Note 1 and Supplementary Data 1–3).
In contrast, the less sterically-hindered Ag(I) complex 4d
[Ag(MeIMesS)2](ClO4) was found to be significantly less stable.
Arduengo reported that small N-wingtip substituents in thiazol-
2-ylidenes result in unstable carbenes49. Unsurprisingly, the
“half-umbrella” shape of N-aryl thiazol-2-ylidenes requires larger
groups at the nitrogen atom for easy handling and isolation.
Likewise, we found that the formation of bis-NHC–Ag(I) is
needed to prevent decomposition of monomeric Ag(I)–NHCs in
these thiazol-2-ylidene systems. From the outset, we were inter-
ested in Ag(I)–NHC complexes because of the untapped potential
of Ag(I)–NHC complexes in catalysis as compared to other
coinage metals77,78.

We next comprehensively evaluated steric and electronic
properties of these N-aryl thiazol-2-ylidene ligands. As shown
in Fig. 5, the linear copper(I) complex [Cu(MeIPrS)Cl] (5a) was
prepared after deprotonation with an excess of KOt-Bu (2 equiv),
while Rh(I) complexes, [Rh(6IPrS)(CO)2Cl] (6b) and [Rh(7IPrS)
(CO)2Cl] (6c) were prepared by a two-step procedure via

Fig. 2 Synthesis of thiazol-2-ylidene precursors. See Supplementary
Method 2 for details.

Fig. 3 Synthesis of Ag(I) complexes. Conditions: Ag2O (0.5 equiv), NaCl
(2.0 equiv), CH2Cl2, 25 °C, 16 h, 4a: 96%; 4b: 95%; 4c: 97%; 4d: 90%.

Fig. 4 X-ray crystal structure of Ag(I) complexes 4a-4c. Two views: front (A. top); side (B. bottom). Hydrogen atoms and counterion have been omitted
for clarity. Selected bond lengths [Å] and angles [°]: 4a: Ag–C13, 2.082(3); Ag–C30, 2.086(3); N1–C13, 1.335(4); N2–C30, 1.337(4); S1–C13, 1.703(3);
S2–C30, 1.697(3); C13–Ag–C30, 175.0(1). 4b: Ag–C1, 2.075(4); Ag–C4, 2.078(4); N1–C1, 1.342(6); N2–C4, 1.331(6); S1–C1, 1.691(5); S2–C4, 1.693(6);
C1–Ag–C4, 172.2(2). 4c: Ag–C40, 2.087(2); Ag–C39, 2.081(3); N1–C40, 1.339(3); N2–C39, 1.336(3); S1–C40, 1.699(4); S2–C39, 1.704(3); C40–Ag–C39,
175.5(1). 4a: CCDC 2117719; 4b: CCDC 2117722; 4c: CCDC 2117721.
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[Rh(NHC)(cod)Cl] and the reaction with carbon monoxide. We
have also prepared the selenium adducts [Se(NHC)] (5a–5d) by
adding the free carbene generated in situ to excess of selenium
(The respective experimental conditions could be found in the
Supplementary Method 4–6.).

Cu(I)–NHC complex [Cu(MeIPrS)Cl] (5a) was fully character-
ized by X-ray crystallography (Fig. 6, for more details, see
Supplementary Note 4 and Supplementary Data 4). Studies by
Cavallo and co-workers demonstrated that catalytic pockets of
M–NHCs are best described by the % buried volume (%Vbur) of
model linear [M(NHC)Cl] complexes79. Complex [Cu(MeIPrS)
Cl] (5a) is linear (C(NHC)–Cu–Cl, 177.0°; C–Cu, 1.871 Å), making
it a good model for evaluating %Vbur of N-aryl thiazol-2-ylidene
ligands. Thus, the (%Vbur) of (5a) is 37.0%, which can be
compared with the (%Vbur) of 47.6% determined for [Cu(IPr)Cl]
(C–Cu–Cl, 176.7°; C–Cu, 1.881 Å)80. A graphical representation
of the steric mapping is shown in Fig. 3b. Importantly, the X-ray
crystallographic analysis revealed the (%Vbur) of 50.2%, 52.0%,
22.6%, 23.1% for each quadrant (Fig. 6). The values can be
compared with the (%Vbur) of 55.5%, 39.6%, 39.6%, 55.5% for
each quadrant of [Cu(IPr)Cl], revealing a “half-umbrella” steric
arrangement of N-aryl thiazol-2-ylidene ligands.

The Tolman electronic parameter (TEP) has been determined
from the CO stretching frequencies of [Rh(7IPrS)(CO)2Cl] of
νsym= 2078.0 cm−1 and νasym= 2001.4 cm−1 (CH2Cl2, 0.20 M),
respectively. This corresponds to a TEP of 2051.9 cm−1 as
a combined measure of the electronic properties of N-aryl

thiazol-2-ylidene ligands81. These values can be compared
with the classical imidazol-2-ylidene IPr (TEP of 2051.5 cm−1)
and a model cyclic (alkyl)amino)carbene CAACCy (TEP
of 2048.6 cm−1)28, indicating strong donor ability of N-aryl
thiazol-2-ylidenes.

In the same vein, selenourea adducts allow to determine π-
backbonding of NHC ligands from the 77Se NMR spectra82–85. As
such, the δSe values of 375.99 ppm for [Se(MeIPrS)] and 374.88 ppm,
366.70 ppm, 329.96 for [Se(6IPrS)], [Se(7IPrS)], [Se(MeIMesS)]
(CDCl3), respectively, indicate significantly better π-acceptance of N-
aryl thiazol-2-ylidenes than imidazol-2-ylidene, IPr (δSe= 90 ppm),
as expected from the sulfur substitution.

Moreover, one-bond CH J coupling constants from 13C
satellites of the 1H NMR spectrum give a good prediction of σ-
donating properties of NHC ligands86,87. The values of 218.70 Hz
for MeIPrS and 218.34 Hz, 218.82 Hz, 219.36 Hz for 6IPrS, 7IPrS,
and MeIMesS (HClO4 salts, CDCl3), respectively, are consistent
with N-aryl thiazol-2-ylidenes as strongly σ-donating NHC
ligands, which can be compared with imidazol-2-ylidene IPr
(1JCH= 223.70 Hz). However, at the same time, N-aryl thiazol-2-
ylidenes are significantly more π-accepting and feature a distinct
“half-umbrella” steric impact.

Ag–NHC-catalyzed cyclization. With structural and electronic
characterization of N-aryl thiazol-2-ylidenes, we next evaluated
the activity of Ag(I)–thiazol-2-ylidene complexes in catalysis
(Table 1, and Figs. 7–8). As stated above, we selected Ag(I)–NHC
complexes because Ag(I) complexes have been much less
explored in catalysis than other group 11 metals77,78 as well as to
probe electrophilic π-activation of the ligands. Electrophilic O-
cyclization of N-propargylic amides was selected as a model
reaction due to the importance of the product oxazoline hetero-
cycles in medicinal chemistry research88. As shown, the reaction
proceeds under very mild conditions using bis-NHC–Ag(I) salts
4a-d (5-10 mol%) in the presence of AcOH in CH2Cl2 at room
temperature (Table 1, entries 1-8, see Supplementary Method 8
for details). AcOH is required as an additive (vide infra)89,90.
Likewise, no reaction takes place in the absence of N-aryl thiazol-
2-ylidene Ag(I) complexes (Table 1, entries 9-10). Out of the
complexes 4a-d, the cycloheptyl complex [Ag(7IPrS)2](ClO4)
showed the highest reactivity and was selected for scope studies.

Fig. 6 X-ray crystal structure and Topographical steric map. A X-ray crystal structure of complex (5a). Hydrogen atoms have been omitted for clarity.
Selected bond lengths [Å] and angles [°]: Cu–C1, 1.871(2); Cu–Cl, 2.0947(7); C1–N1, 1.338(2); C1–S1, 1.700(2); C6–N1, 1.460(3); N1–C3, 1.402(3); S1–C2,
1.723(2); C1–Cu–Cl, 176.98(7); N1–C1–S1, 107.3(1); C6–N1–C1, 121.3(2); C3–N1–C1, 117.0(2); C2–S1–C1, 94.5(1). B Topographical steric map of [Cu(MeIPrS)
Cl] (5a) showing % Vbur per quadrant. CCDC 2117739. Note dissymmetry of the ring.

Fig. 5 Synthesis of thiazol-2-ylidene complexes. The respective
experimental conditions can be found in the Supplementary Method 4–6.
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The loading could be further decreased to 1mol% with excellent
efficiency (>95%) (Table 1, entries 11-14). Most importantly, the
use of classical imidazol-2-ylidene complexes [Ag(IPr)Cl] and
[(Ag(IMes)Cl] resulted in negligible reactivity (7-16%) (Table 1,
entries 15-16), indicating superior reactivity of N-aryl thiazol-2-
ylidenes. Further comparative studies between thiazol-2-ylidene
and IMes/IPr to eliminate the effect of counterion were conducted.
Specifically, we also prepared and tested thiazol-2-ylidene
[NHC–Ag]2PF6 (NHC= 3c, 90% yield), imidazol-2-ylidene
[NHC–Ag]2ClO4 (NHC= IPr, <5% yield, IMes, 30% yield) and
imidazol-2-ylidene [NHC–Ag]2PF6 (NHC= IPr, <5% yield, IMes,
21% yield). These results are consistent with the superior reactivity
of N-aryl thiazol-2-ylidene Ag(I) complexes (See Supplementary
Method 10). As expected, marginal reactivity was observed in the
presence of soluble silver salts (AgOTf, 11%; AgSbF6, 5%).

Having established the optimal conditions for electrophilic
cyclization using N-aryl-thiazol-2-ylidene–Ag(I) complexes, next
the scope was examined (Fig. 7).

As shown, the scope of the reaction is very broad and
encompasses a variety of N-propargylic amides (Fig. 7). As such,
aromatic amides with neutral (9a), electron-donating (9b-9f),
electron-withdrawing (9g-9n) substituents at the para, ortho and
meta positions could be successfully reacted to give diverse 2-aryl-2-
oxazolines. Importantly, medicinally-relevant substituents, such as
3,4,5-trimethoxyphenyl (9 f), nitro (9 g), cyano (9 h), trifluoro-
methyl (9i-9j) as well as halide functional handles that enable
further derivatization (9k-9n) were well compatible with the
reaction. Furthermore, π-conjugated substituents, such as naphthyl
(9o) and cinnamyl (9p) furnished the products in high yields.
Heterocyclic amides, such as 2-thienyl (9q) were well tolerated.
Interestingly, highly selective mono-cyclization is possible using
meta-substituted propargylic diamide (9r). Pleasingly, aliphatic
amides with α-branching (9 s) as well as 1° (9t, 9w), 2° (9 v), and 3°
sterically-hindered aliphatic amides (9 u) are tolerated in this
process despite the lack of Ar→π*C=O conjugation with the amide
oxygen atom. Furthermore, substitution at the methylene carbon

adjacent to the nitrogen to deliver 4-substitued oxazolines is also
compatible (9x-9aa), increasing the overall synthetic utility of the
process. Further, substitution of the alkyne is tolerated without loss
in reaction efficiency (9ab-9ad), furnishing fully substituted
oxazolines. The product 9ad was crystalline and the structure was
confirmed by x-ray crystallography (for more details, see
Supplementary Note 1 and Supplementary Data 5), indicating
(Z)-geometry of the double bond (dr > 98:2). This result is
consistent with an anti-attack of the amide bond oxygen on the
Ag(I)–NHC-π-activated alkyne (vide infra).

Most crucially, the mild reaction conditions enabled by the N-
aryl thiazol-2-ylidene ligands permit this mode of catalysis to be
applied to late-stage functionalization to furnish attractive hetero-
cyclic building blocks for medicinal chemistry and agrochemistry
research (Fig. 8). Thus, electrophilic cyclization of propargylic
amides from acifluorfen (9af, protoporphyrinogen oxidase inhibi-
tor), piperonylic acid (9ag, trans-cinnamate hydroxylase inhibitor),
dicamba (9ah, broad spectrum herbicide), febuxostat (9ai, antigout)
and probenecid (9aj, antihyperuricemic) delivered cyclization
products in good to high yields without modification of the
reaction conditions. This successful late-stage diversification high-
lights the mild conditions of the present protocol with tolerance to
an array of sensitive functional groups (halides, cyano, nitro,
sulfonamide, aryl ethers, S-heterocycles), demonstrating prospective
impact on medicinal chemistry research.

Mechanism. To gain insight into the reaction mechanism of this
intriguing transformation, catalytic cycle was studied by DFT
computations (Fig. 9). D3 correction has been omitted in opti-
mization. Based on the previous work89,90, our calculation results
show that the catalytic cycles for these processes are comprised of
three key steps. In the first step, L2Ag will give active catalyst 1′ in
the presence of AcOH. The free energy of activation for this step
is 20.1 kcal/mol for TS1 (Fig. 9). This step is also the rate-
determining one for this reaction, and the calculated free energy

Table 1 Optimization of Ag–NHC-Catalyzed Cyclization of N-Propargylic Amidesa.

O

cat. [Ag-NHC]

conditions
8 9

O

NN
H

entry catalyst additive mol% yield (%)

1 4a CH3CO2H 10 90
2 4b CH3CO2H 10 95
3 4c CH3CO2H 10 98
4 4d CH3CO2H 10 96
5 4a CH3CO2H 5 90
6 4b CH3CO2H 5 93
7 4c CH3CO2H 5 96
8 4d CH3CO2H 5 91
9 - CH3CO2H - -
10 4a–4d - 10 -
11 4a CH3CO2H 1 88
12 4b CH3CO2H 1 85
13 4c CH3CO2H 1 >95
14 4d CH3CO2H 1 87
15 [Ag(IPr)Cl] CH3CO2H 10 16
16 [Ag(IMes)Cl] CH3CO2H 10 7

aConditions: 8 (1.0 equiv), Ag–NHC ([Ag], 1-10mol%), additive (1.0 equiv), CH2Cl2 (1.0M), 25 °C, 8 h. See Supplementary Method 8 for details.
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Fig. 7 Scope of Ag–NHC-catalyzed cyclization of N-propargylic amides. Conditions: amide (1.0 equiv), catalyst 4c ([Ag], 1 mol%), CH3CO2H (1.0 equiv),
CH2Cl2 (1.0M), 25 °C, 8 h. See Supplementary Method 9 for details, 9ad: CCDC: 2125052.
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of activation is in good agreement with the kinetics of the reac-
tion. After formation of active catalyst 1, the ligand exchange
between AcO- and amide Re would give intermediate 2 with a
free energy release of −6.7 kcal/mol. In second step, 2′ would

generate putative vinyl–silver intermediate 3′ by a 5-exo-dig
cyclisation. The free energy of activation for TS2 (Z) and TS22
(E) is 12.7 and 19.6 kcal/mol, respectively. This calculation result
for Z/E selectivity is fully consistent with the experiments results.

Fig. 8 Late-stage functionalization in Ag–NHC-catalyzed cyclization of N-propargylic amides. Conditions: amide (1.0 equiv), catalyst 4c ([Ag], 1 mol%),
CH3CO2H (1.0 equiv), CH2Cl2 (1.0M), 25 °C, 8 h. See Supplementary Method 9 for details.

Fig. 9 DFT-computed free energy profile of Ag–NHC catalyzed cyclization of N-propargylic amides. See Supplementary Note 3 for computational details.
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The final step involves a 1,4-H shift that leads to the final product
P1. First, two- and three-molecule HOAc-assisted 1,4-H shift
(TS31 and TS32) were calculated. The calculated activation
free energy of TS31 and TS32 is high (27.4 and 24.5 kcal/mol,
See Supplementary Note 3 for details) to occur under the
experimental conditions. Another possible pathway involves
HOAc and ligand assisted 1,4-H shift. In this pathway, coordi-
nation of HOAc and ligand with 3′ would generate intermediate
4′ with a free energy release of −10.0 kcal/mol. The proto-
demetallation step would form the product P1 and regenerate the
silver catalyst and HOAc. This step is exergonic by −30.6 kcal/
mol and the free energy barrier is 15.8 kcal/mol.

To further evaluate the effect of nitrogen to sulfur replace-
ment in N-aryl thiazol-2-ylidenes, HOMO and LUMO energy
levels of carbenes MeIPrS, 6IPrS, 7IPrS and MeIMesS were
determined at the B3LYP 6-311++g(d,p) level (Fig. 10 and See
Supplementary Note 3 for details). It is now recognized that the
donating ability of carbenes is closely associated with the
HOMO orbital, while the electron acceptance is associated with
the LUMO orbital15,16,28–35,81. Computation of frontier orbitals
represents the most accurate evaluation of nucleophilicity
(higher energy of HOMO) and electrophilicity (lower energy
of LUMO) of NHC ligands15,16,28–35,81, while the comparison
must be available at the same level of theory.

The HOMO of MeIPrS (−6.07 eV, σ-bonding orbital) is
comparable with IPr (−6.01 eV), which is a routine model for
σ-donating NHCs. The HOMO of 6IPrS, 7IPrS and MeIMesS are
−6.05 eV, −5.99 eV, −6.02 eV respectively, indicating that these
N-aryl thiazol-2-ylidenes are similarly strongly nucleophilic as N-
aryl-imidazol-2-ylidenes. Furthermore, the LUMO+ 3 of MeIPrS
(−0.36 eV, π-accepting orbital) is compared with the standard
imidazol-2-ylidene ligands IMes (−0.03 eV), IPr (−0.20 eV) of
the corresponding π-accepting orbitals. The LUMO+ 3 of 6IPrS,
7IPrS and MeIMesS are −0.33 eV, −0.29 eV, −0.36 eV, respec-
tively (LUMO+ 3 due to required symmetry), indicating that N-
aryl thiazol-2-ylidenes are as good π-acceptors as the standard
imidazolylidene IMes and IPr ligands. In addition, the HOMO-1
(π-donating orbital) in the series of MeIPrS, 6IPrS, 7IPrS and

MeIMesS is −6.57 eV, −6.49 eV, −6.44 eV, −6.51 eV, which is in
the same range as for the π-donating orbital for the standard
imidazolylidene IMes (−6.44 eV) and IPr (−6.55 eV) determined
at the same level of theory. Overall, N-aryl thiazol-2-ylidenes can
be characterized as π-accepting, σ-donating and sterically-distinct
“half umbrella” shaped ligands that are well-poised for electro-
philic catalysis91–95.

It should be further noted that in terms of the steric profile,
%Vbur of MeIPrS (37.0%, CuCl complex) is much smaller than
that of IPr (47.6%, CuCl complex) and CAACEt (43.1%, AuCl
complex)79.

Conclusions
In conclusion, although N-heterocyclic carbenes represent a
dominant direction in ligand development in the last 20 years,
the majority of efforts in catalysis have been almost exclusively
limited to N-aryl-imidazolylidenes, such as IPr. In this study,
we reported the study on steric and electronic properties of
thiazol-2-ylidenes. We presented comprehensive evaluation of
steric, electron-donating and π-accepting properties as well as
structural characterization of Ag(I) and Cu(I) complexes of N-
aryl thiazol-2-ylidenes. The thiazole heterocycle and enhanced
π-electrophilicity result in a class of highly active carbene
ligands that supersede imidazol-2-ylidenes. We showed that
this mode of catalysis can be applied to late-stage drug func-
tionalization to furnish attractive building blocks for medicinal
chemistry. The unique electronic properties in combination
with steric differentiation in a “half umbrella” shape with the
single nitrogen N-wingtip oriented toward the metal open a
plethora of possibilities in the development of enhanced arsenal
of thiazol-2-ylidene ligands of broad interest in chemical
synthesis. Our ongoing studies are focused on expanding the
scope of reactions catalyzed by thiazol-2-ylidenes in catalysis
using electrophilic group 11 metals as well as comparative
studies using other NHC ligands. We believe that the class of
N-aryl thiazol-2-ylidenes is well poised to make an impact on
catalysis via electrophilic mechanisms.

Fig. 10 HOMO and LUMO energy levels (eV) calculated at B3LYP 6-311++g(d,p). See Supplementary Note 3 for details.
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Methods
General information. For more details, see Supplementary Method 1.

General procedure for the synthesis of Ag(I) complexes. An oven-dried vial
equipped with a stir bar was charged with N-Aryl thiazol-2-ylidenes carbene
precursors (1.0 equiv), Ag2O (typically, 0.5 equiv) and NaCl (typically, 2.0 equiv).
The reaction mixture was placed under a positive pressure of argon and subjected
to three evacuation/backfilling cycles under high vacuum. DCM (typically, 0.04M)
was added and the reaction mixture was stirred away from light overnight at room
temperature. The reaction mixture was filtered through Celite with DCM as eluent
and concentrated under reduced pressure, and dried under high vacuum to afford
silver(I) complex. For more details, see Supplementary Method 3.

General procedure for the synthesis of propargylic amides. An oven-dried
100 ml round-bottomed flask equipped with a stir bar was charged with pro-
pargylic amine (1.0 equiv), Et3N (typically,1.0 equiv), DMAP (typically,0.02 equiv)
and DCM (typically, 0.25M). The resulting mixture was cooled to 0 °C, and the
acid chloride (1.0 equiv) was added. The mixture was stirred for 30 min at 0 °C and
3–12 h at room temperature. H2O (typically, 0.33M) was added, and the aqueous
layer extracted with DCM. The combined organic extracts were washed with
saturated NaHCO3, H2O and brine, dried over Na2SO4 and concentrated in vacuo.
The crude products were purified by column chromatography on silica gel (EtOAc/
hexanes). For more details, see Supplementary Method 7.

General procedure for the cyclisation of propargylic amides. An oven-dried
vial equipped with a stir bar was charged with propargylic amides (1.0 equiv),
Ag catalyst 4c (typically, 1.0 mol%). The reaction mixture was placed under a
positive pressure of argon and subjected to three evacuation/backfilling cycles
under high vacuum. Then AcOH (typically, 1.0 equiv) and DCM (typically,
1.0 M) was added and the reaction mixture was stirred at room temperature for
8 h. The volatiles were removed in vacuo and the products were purified by
column chromatography on silica gel (EtOAc/hexanes). For more details, see
Supplementary Method 9.

Compound characterization. See supplementary note 2 for NMR spectra.

Data availability
The authors declare that all data supporting the findings of this study, including
Experimental procedures, characterization data, computational details, coordinates and
energies are available within this article and its Supplementary Information. Data are also
available from the corresponding author on request.
The X-ray crystallographic coordinates for structures of 4a-4c, 5a and 9ad reported in
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under deposition numbers 2117719, 2117722, 2117721, 2117739, 2125052. These data
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Data 1–5.
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