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Computational screening methodology identifies
effective solvents for CO2 capture
Alexey A. Orlov1, Alain Valtz2, Christophe Coquelet2, Xavier Rozanska3, Erich Wimmer3, Gilles Marcou1,

Dragos Horvath1, Bénédicte Poulain4, Alexandre Varnek 1✉ & Frédérick de Meyer 2,4✉

Carbon capture and storage technologies are projected to increasingly contribute to cleaner

energy transitions by significantly reducing CO2 emissions from fossil fuel-driven power and

industrial plants. The industry standard technology for CO2 capture is chemical absorption

with aqueous alkanolamines, which are often being mixed with an activator, piperazine, to

increase the overall CO2 absorption rate. Inefficiency of the process due to the parasitic

energy required for thermal regeneration of the solvent drives the search for new tertiary

amines with better kinetics. Improving the efficiency of experimental screening using com-

putational tools is challenging due to the complex nature of chemical absorption. We have

developed a novel computational approach that combines kinetic experiments, molecular

simulations and machine learning for the in silico screening of hundreds of prospective

candidates and identify a class of tertiary amines that absorbs CO2 faster than a typical

commercial solvent when mixed with piperazine, which was confirmed experimentally.
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Numerous technologies exist for capturing CO2 including
chemical absorption, cryogenic separation, removal
with membranes, and adsorption with zeolites or

metal–organic frameworks1–6. The cyclic chemical absorption and
regeneration process based on common primary and secondary
amines such as monoethanolamine (MEA) and diethanolamine
(DEA) is the most mature in industrial applications3,5. Unhindered
primary and secondary amines react rapidly with CO2 to form very
stable carbamates. The amount of energy required for the regen-
eration of these solvents is large. Carbon capture applied to a coal-
fired power plant may reduce the net output of the plant by 30%6.
With sterically hindered amines or tertiary amines like the standard
methyldiethanolamine (MDEA), CO2 is captured as bicarbonate,
which has a much smaller heat of reaction than carbamate forma-
tion, resulting in regeneration energy savings7. Moreover, their CO2

absorption capacity is much higher. Tertiary amines are therefore
increasingly used in the high-pressure natural gas treatment industry
to remove acid gases like CO2. However, in general, the rate of direct
bicarbonate formation is much lower than that of carbamate for-
mation resulting in much slower CO2 absorption rates with tertiary
amines and thus in unacceptable large equipment for low pressure,
anthropogenic (flue gas), CO2 capture applications5,7. To tackle this
problem, several approaches were suggested. Several studies reported
that the usage of a catalyst allows one to speed up the absorption of
CO2 and/or to lower the energetic cost of solvent regeneration8.
Another option, which is currently followed by the industry, consists
in adding an activator, piperazine, significantly boosting the overall
CO2 absorption rate without increasing the regeneration energy too
much9. A more straightforward strategy would be the identification
of new tertiary amines with much higher absorption rates with
respect to standard MDEA and to which piperazine can eventually
be added. Since experimental measurement of CO2 absorption
kinetics is a time and labor-intensive process, the rational approach
to the design of tertiary amines that can rapidly absorb CO2 requires
a quantitative model enabling to select only the best candidates for
experimental measurements.

Concerning alternative processes based on adsorption in porous
solids (still under development), a lower theoretical energy con-
sumption is expected due to the weaker physical adsorption.
Molecular simulations and machine learning have already been
extensively used to perform virtual screening of hundreds of
thousands of structures to identify potentially better materials for
CO2 adsorption10,11. Until now it was not possible to apply a
similar methodology for amines, because of the difficulty related to
the computation of chemical reactions. Amines were rationally
designed based on physical and thermodynamic properties and
the CO2 absorption rates were measured experimentally for only
the most promising candidates7,12. Previously, machine-learning
algorithms were tentatively applied for modeling quantitative
structure–property relationship (QSPR) of alkanolamines’ CO2

absorption-related properties13–18. However, the availability of
only a very small amount of data points limited the applicability
domain of the models. Hence, to address this issue, we developed
and applied a methodology for the identification of tertiary amines
effectively absorbing CO2 based on the combination of molecular
simulations19 and machine learning. In parallel, an experimental
setup for the measurement of CO2 absorption rates has been
specifically designed and put in place to validate the approach.

Results and discussion
Design of the methodology for CO2 absorbents screening. The
workflow of the methodology is presented in Fig. 1. Chowdhury
et al.20 published a consistent experimental dataset of the
absorption rates of CO2 for 24 aqueous tertiary amines (313 K,
30 wt% amine). In the absence of a clear relationship between the

structure or the chemical properties (e.g., the basicity) of the
amines and the CO2 absorption rates, we developed a molecular
dynamics (MD) based model that can accurately predict those
experimental CO2 absorption rates19. It was found that, while the
basicity of the amine (quantified by the pKa) is important, the key
to the precision of molecular simulations is the inclusion of subtle
but important solvation effects in the calculation of the activation
Gibbs free energy of the reaction with an accuracy better than
1 kJ mol−1. One of the important features of the MD model19 is
the robustness to reasonable changes in the concentration of
amine and in temperature, enabling to apply it to a rather wide
range of experimental setups. Hence, the model was applied to
predict the rates at 13 mol% of amines and at 323 K, because these
conditions are more representative of industrial absorption5.

Being much less resource- and cost-demanding, molecular
simulations can thus be used instead of the experiments to get
enough data for building a reliable QSPR model with a wide
applicability domain.

Molecular simulations of CO2 absorption process. A dataset
containing 100 structurally diverse tertiary amines was composed
based on the in-house TotalEnergies’s dataset of amines with
known experimental properties, complemented with tertiary amines
extracted from literature and public databases (PubChem21,22,
ZINC23,24). The selected compounds comprise diverse chemotypes,
including linear and cyclic amines, diamines, amines containing
thiol and thioether groups. Molecular simulations (see “Methods”)
were performed for the initial set of 24 amines and for the selected
set of 100 amines at 323K and using a 13mol% concentration of
amine. From MD simulations absorption rates (RMD) and free
energies of absorption (ΔGMD) were obtained. Notably, the RMD

values calculated at 313 and 323 K are highly correlated (Fig. 2a,
Spearman rank correlation coefficient (ρ) 0.99).

As shown in Fig. 2b, the most rapidly absorbing compound
according to the MD calculations and the data from Chowdhury
et al.20 was 3-(Diethylamino)-1,2-propanediol (DEA-1,2-PD).
However, most of the other compounds with the largest predicted
rates of absorption (RMD) contained either piperidine or
pyrrolidine cycles. This is in line with the data from Chowdhury
et al.20, who showed that 3-piperidino-1,2-propanediol (3PP-1,2-
PD) and 1-methyl-2-piperidineethanol were significantly faster
than the industrially used methyldiethanolamine (MDEA).
Figure 2c illustrates that the computed CO2 absorption Gibbs
free energies ΔGMD are almost perfectly correlated with the CO2

absorption rates, RMD (Spearman ρ −0.98): the slower the CO2

absorption, the higher the absorption Gibbs free energy. The
correlation is not linear, and the decrease of ΔGMD slows down
significantly at higher CO2 absorption rates.

Virtual screening of tertiary amines and experimental valida-
tion. Machine-learning algorithms were applied to establish
quantitative structure–property relationships and screen a set of
tertiary amines from a public dataset. The values of pKa predicted
by the OPERA model25 can be used as a rather good predictor for
ΔGMD. Indeed, the fitting of linear regression with the pKa values
as the only predictor leads to a reasonable predictive performance
in cross-validation (Supplementary Table 2). For modeling both
end-points (ΔGMD and RMD), we implemented a machine-
learning workflow combining several machine-learning algo-
rithms and various descriptors of molecular structures. Thus,
predicted pKa values were complemented with other descriptor
types: physicochemical descriptors from OPERA and various
types of molecular fragments calculated using ISIDA-
Fragmentor26,27. Finally, we used a consensus of several indivi-
dual models built with the help of random forest (RF)28 and
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Fig. 1 Workflow of the methodology suggested in this paper. a A high precision molecular simulation-based model for absorption rate prediction is
developed19 and validated with experimental data on CO2 absorption rates for 24 tertiary amines20. The accuracy of the Gibbs free energies of absorption
is better than 1 kJ mol−1 in comparison to experimental values19. b This model is applied to a diverse dataset containing 100 tertiary amine structures to
calculate the CO2 absorption rate (RMD) and free energy of absorption (ΔGMD) (see “Methods”). c QSPR models were built for RMD and ΔGMD. d QSPR
models were used to select perspective commercially available amines from public datasets. e Experimental measurement of CO2 absorption rates for
selected amines. f The most selective ones can be further studied and eventually tested in a pilot unit.

Fig. 2 Results of molecular dynamics simulations of the CO2 absorption process. a CO2 absorption rates (RMD) at 313 K (gray) and 323 K (orange)
predicted using MD and the experimental absorption rates (Rlit) at 313 K. b RMD vs predicted pKa values (pKa). c energy of absorption (ΔGMD) predicted by
MD vs RMD. d ΔGMD vs predicted pKa. The 24 amines from Chowdhury et al.20 are shown in orange. The 100 amines for which MD simulations were
performed are shown in black. Industrially used reference compound (MDEA) is shown in green.
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eXtreme Gradient Boosting (XGBoost))29 machine-learning
algorithms on a merged subset of ISIDA fragments and
descriptors generated with the OPERA tool. Although the pre-
dictive accuracy in terms of RMSE is of the same order of mag-
nitude as in Kuenemann et al.13 for absorption rates
(Supplementary Table 2 and Supplementary Fig. 1), the applic-
ability domain of our models is much larger, since the training set
contained three times more compounds. It is worth noting that a
QSPR model which did not allow one to achieve an excellent
accuracy can still be useful for ranking the amines from the large
compounds databases13,30. Therefore, we retrieved from the
public database ZINC23 the tertiary amines which were not too
large (Mw ≤ 250 gmol−1), not too lipophilic (−1 ≤ clogP ≤1), and
readily available from suppliers. In total, more than 800 amines
were screened virtually. Numerous amines outranking MDEA in
terms of the predicted absorption rates (RQSPR) were identified
(Fig. 3a). For example, various substituted piperidines were
among the compounds with the largest RQSPR (Fig. 3a).

Experimental measurement of the CO2 absorption kinetics. An
experimental setup was put in place to measure and compare the
rate of CO2 absorption in aqueous tertiary amines. For each
experiment, the same initial amount of CO2 was set in contact
with the solvent and the evolution toward equilibrium of the
partial pressure of CO2 in the gas phase was measured over time.
The slope of the absorption curve at the time at which 50% of the

CO2 was absorbed (with respect to the equilibrium value) was
calculated (r(CO2)). It is a measure of the rate of CO2 absorption.
Eighteen amines comprising 7 amines from the initial set of 24
amines from Chowdhury et al.20, 3 amines from the diverse
dataset of 100 amines, and 8 novel amines that were never present
in the training set were purchased and an assessment of their
absorption rate was performed (Fig. 3b, c, e and Supplementary
Tables 3 and 4). Both ΔGQSPR and absorption rates RQSPR were
highly correlated with r(CO2) for eight novel amines (Spearman ρ
0.93) as well as the predicted pKa values. Five out of eight pur-
chased amines absorbed CO2 faster than MDEA. Two amines: 1-
methyl- and 1-ethyl-3-pyrrolidinol (EPOL) were especially effec-
tive. These compounds represent an interesting class of the tertiary
amines, which to our knowledge have not been explored yet.

While tertiary amines like the standard MDEA are often used
for high-pressure natural gas treatment, they are not suitable for
low-pressure anthropogenic CO2 removal due to the low CO2

absorption rate. Activators such as piperazine can be added to
enhance the CO2 absorption rate. The impact of piperazine is
shown in Fig. 4 for two amines, namely MDEA and EPOL. The
latter is a tertiary amine that has been selected for its fast CO2

absorption rate following the virtual screening. In the absence of
piperazine EPOL absorbs CO2 much faster than MDEA. The
addition of piperazine significantly enhances the CO2 absorption
rates with EPOL+ PZ showing the fastest absorption.

In conclusion, a methodology for computer-aided design of
tertiary amines effectively absorbing CO2 was suggested in this

Fig. 3 Virtual screening of tertiary amines and experimental validation. a Absorption rates predicted by the QSPR model (RQSPR) vs predicted pKa values.
b RQSPR vs experimentally measured absorption rate (r(CO2)). c r(CO2) vs predicted pKa. d Free energies of absorption predicted by QSPR model (ΔGQSPR)
vs predicted pKa. e ΔGQSPR vs r(CO2). f ΔGQSPR vs RQSPR. Amines present in the initial dataset from Chowdhury et al.19,20 are shown in orange. Amines
selected for MD simulations in the present work are shown in black. The industrially used reference compound (MDEA) is shown in green. Eight novel
amines which were not present in the training set are shown in blue. The CAS numbers of the most perspective compounds are shown.
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paper. The methodology is based on the combination of state-of-
the-art molecular dynamics simulations that generate a sufficiently
large dataset that are used as an input for machine-learning
modelling followed by large-scale virtual screening. In parallel, the
approach is experimentally validated. It allowed the identification
of amines that absorb CO2 faster than those currently used in the
industry. Since the development of an optimal solvent is a multi-
objective task, we believe that the proposed methodology can be
provisionally repurposed to application for modeling of other
industrially important properties of alkanolamine-based solvents.

Methods
Molecular simulations. The approach developed recently and described in
Rozanska et al.19, was used to compute the rates of CO2 absorption in aqueous
amine solvents (see Supplementary Methods), which relies primarily on the sol-
vation properties of OH–, CO2, and HCO3

−. In this model, the tertiary amine
solely acts as a base.

RMD ¼ A Tð Þ ´ exp �4G≠

RT

� �
´ CO2

� �½OH�� ð1Þ

The rates are obtained from Eq. (1) where RMD is the absorption rate, [CO2] and
[OH–] are the concentrations of carbon dioxide molecules and hydroxyl anions,
respectively, ΔG⧧ is the Gibbs free energy barrier of the reaction CO2+OH– to
HCO3

–, RT is the macroscopic thermodynamic energy unit, where R is the uni-
versal gas constant and T the absolute temperature, and A(T) is a temperature-
dependent pre-exponential factor. In Eq. (1), ΔG⧧ is obtained from a
Polanyi–Evans relation with as input the energy differences of solvation of
OH–+CO2 (reactants) and HCO3

– (product) computed in the 124 aqueous amine
solvents. The concentrations [CO2][OH−] are obtained numerically solving pH
equations, and A(T) is fitted using the experimental rates of the reaction CO2+
OH− in ten aqueous amine solvents. The Polanyi–Evans relation between ΔG⧧ and
energy differences of solvation, ΔG, of OH–+ CO2 and HCO3

– is given by Eq. (2).

ΔGz ¼ aΔGðTÞ þ b ð2Þ
where a and b are fitted to reproduce the experimental rates in pure water and ten
aqueous amine solvents and ΔG(T) is the energy difference of solvation of
OH–+CO2 and HCO3

– obtained from molecular dynamics simulations. Addi-
tional details and the values for A(T), a, and b can be found in Rozanska et al.19.

For the calculation of the regeneration energy, the following three reactions are
considered:

OH� þ CO2 ¼ HCO3
� ð3Þ

AmineþH2Oþ CO2 ¼ ammoniumþHCO3
� ð4Þ

AmineþH2O ¼ ammoniumþ OH� ð5Þ
The free energy of absorption is ΔG4 (=ΔGMD in Fig. 2)= ΔG3+ ΔG5 with ΔG3

calculated from the molecular simulations (ΔG(T) in Eq. (2)) in every aqueous
amine and ΔG5 calculated from the amine pKa.

Quantitative structure–property relationship modeling. All compound struc-
tures were standardized using RDKit31 nodes in KNIME32. The standardization
procedure included aromatization, stereochemistry depletion, removal of salts/
solvents, neutralization, removal of explicit hydrogens. Standardized structures for
124 amines are given in Supplementary Table 1 and at https://github.com/
AxelRolov/CO2_chemical_solvents.

In all, 193 different ISIDA fragment descriptors were generated using the
Fragmentor17 software26,27. These fragments represent either sequences (the
shortest topological paths with an explicit presentation of all atoms and bonds),
atom pairs, or triplets (all the possible combinations of three atoms in a graph with
the topological distance between each pair indicated).

Various physicochemical properties (pKa, logP, melting and boiling points,
vapor pressure, water solubility, etc.) and several substructural fragments counts
(ring count, heavy atom count, etc.) used as descriptors, were calculated using
OPERA v.2.625.

All descriptors used in this work are available at https://github.com/AxelRolov/
CO2_chemical_solvents.

Prior to the application of machine-learning algorithms RMD and ΔGMD values
were transformed to a logarithmic scale, i.e., the negative value of decimal
logarithm was taken (−log10RMD, −log10(−ΔGMD)).

Random forest (RF): RF algorithm28 implemented in sci-kit learn library (v.
0.22.1)33, was used. The following hyperparameters were optimized (grid search):
number of trees (100, 300, 1000), number of features (all features, one-third of all
features, log2 of the number of features), the maximum depth of the tree (10, 30,
full tree), bootstrapping (with and without the usage of bootstrap samples for
building the tree).

XGBoost (XGB): XGBoost algorithm29 as implemented in XGBoost python
module (v.1.2.0; https://xgboost.readthedocs.io/en/latest/python/python_intro.html)
was used. The following hyperparameters were tuned during optimization (grid
search): number of trees (50, 100, 300, 500), number of features (all features, 70% of
all features), number of samples (all samples, 70% of all samples), the maximum
depth of the tree (5, 20, full tree), learning rate (0.3, 0.1, 0.5, 0.05). All other
parameters were left as default.

Support vector regression (SVR): SVR algorithm34 implemented in sci-kit learn
library (v. 0.22.1), was used. The descriptors were scaled to the [0,1] range before
applying the algorithm. The following hyperparameters were tuned during
optimization (grid search): kernel (linear, rbf, poly, sigmoid), kernel coefficient (1,
0.1, 0.01, 0.001, 0.0001), regularization parameter (0.1, 1, 10, 100, 1000).

The modeling workflow was implemented using the sci-kit learn library (v.
0.22.1) in Python 3.7 scripting language (Supplementary Fig. 2). Identical modeling
workflows were used for modeling absorption rates (RMD) and energies of
absorption (ΔGMD). The values were expressed as negative logarithms of base 10.
At the first stage of the modeling, a machine-learning algorithm: RF, SVR, and
XGB were tested in fivefold cross-validation, which was repeated five times. For
each descriptor set, the model’s measures of performance were calculated and
several models with a coefficient of determination Q2

CV ≥ 0.6 for (RMD) and
Q2

CV ≥ 0.7 for (ΔGMD) were selected for consensus modeling. Consensus models
were built for each descriptor type separately. In order to assess a propensity to
predict data never seen during the training of the model, a nested cross-validation
procedure35 has been implemented. Here the method hyperparameters were found
by optimizing the model performance in the fivefold cross-validation inner loop,
while prediction was made for the test set from the outer loop, which represent a
fold of the outer fivefold cross-validation cycle. To avoid a bias with the
compounds numbering in the parent set, this procedure was repeated five times
after reshuffling of the compounds. In such a way, the overall performance of the
model (Q2

NCV, RMSENCV, MAENCV) were estimated as an average of related
statistical parameters obtained for each (out of 5) individual cross-validation loop.

Equations (6–8) were used to calculate the measures of the model’s performance
in cross-validation:

Q2
CV ¼

∑5
j¼1ð1�

∑n
i¼1 ðyi;exp�yi;pred Þ2
∑n

i¼1ðyi;exp��yÞ2 Þ
5

ð6Þ

RMSECV ¼
∑5

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1
ðyi;exp�yi;pred Þ2

n

q
5

ð7Þ

MAECV ¼
∑5

j¼1∑
n
i¼1

yi;exp�yi;pred

�� ��
n

5
ð8Þ

Above, n is the number of compounds in the learning set, yi,exp, yi,pred experimental
and values predicted in fivefold cross-validation for compound i from the learning
set, j is the index of the repetition of the tenfold cross-validation procedure.

Each of the selected models was then associated with an Applicability Domain
(AD), defined as a boundary box. The pool of selected models extracted from the
given dataset can now be used as a consensus predictor, returning for each input
solvent candidate a mean value of solubility estimates and its standard deviation,

Fig. 4 Experimental kinetic measurements with piperazine.
Experimentally measured CO2 absorption rate (r(CO2)) of standard MDEA
and EPOL, a new amine suggested in this work, and their mixtures with
piperazine (+PZ). Aqueous alkanolamine mixtures contain 13 mol% amine
and water and mixtures with PZ contain 11 mol% amine, 2.5 mol% PZ and
water. Standard deviations of the values are shown as error bars.
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taken over the predictions returned by each model in the pool or, alternatively, over
the predictions returned by only those models having the candidate within
their AD.

Outlying data points were defined as the data points, for which absolute errors
(|χexp−χpred | ) from cross-validation were larger than 2×RMSECV threshold.

The absence of chance correlation was checked through the Y-randomization
procedure. A Y-randomization test was performed in the following way: −log10χ
values (y values) were shuffled, models were built using shuffled values and the
values from the corresponding cross-validation test set were calculated. This
procedure was repeated 100 times for each fold and the maximum values of the
out-of-bag coefficient of determination were reported.

A library for virtual screening was performed in the following way. At first, all
compounds from ZINC database with molecular weight no larger than 250 g/mol
and calculated logP in the range of (−1,1) were retrieved. Structures were
standardized and then filtered. All compounds which did not contain tertiary
amines, compounds, containing double bonds, aromatic rings, primary or
secondary amine groups, ketones and sulfur-containing compounds except for
thiols and thioethers were removed. Structures of screened compounds as well as
predicted values are available at https://github.com/AxelRolov/
CO2_chemical_solvents.

Experimental measurement of CO2 absorption rates. To measure the kinetics of
absorption and desorption of acid gases in aqueous amine solutions, a thermo-
regulated constant interfacial area Lewis-type reactor cell was used36. The reactor
(Supplementary Figs. 3–6) is equipped with an internal stirring system (magnetic
stirrer) with the external motor. The operator needs to take care to select the speed
of stirring without disturbing the interface (interface must be flat). Temperature is
given by two platinum probes located at the upper and lower flanges (with the
possibility to determine the gradient of temperature). The cell is immersed in a
liquid bath. An electric resistor is introduced into the upper flange to control the
gradient of temperature and avoid condensation of water and amine. Two capillary
samplers are adapted to sample the vapor phase. The capillary samplers (ROLSI®,
Armines’ patent) are capable of withdrawing and sending micro samples to a gas
chromatograph without perturbing the equilibrium conditions over numerous
samplings, thus leading to repeatable and reliable results. Analytical work was
carried out using a gas chromatograph (PERICHROM model PR2100, France)
equipped with a thermal conductivity detector (TCD) connected to a data software
system. Helium is used as the carrier gas in this experiment. The model of the GC
column is Porapak R (Porapak R 80/100 mesh, 1 m × 2mm ID Silcosteel). Each
ROLSI® sampler is connected to a TCD. A tube allows either to evacuate or to
introduce CO2 from or into the cell. The kinetics of gas absorption are determined
by recording the pressure drop through a calibrated pressure transducer. A com-
puter equipped with data acquisition system records the pressure as a function
of time.

The experimental procedure is the following:
The desired amount of solvent is introduced into the cell. The density obtained

using a low-pressure vibrating tube densitometer (Anton Paar DSA 5000) is used to
determine the exact mole number of solvent.

At least 5 bar of methane is added. We add methane because with this
configuration, it is not possible to sample at pressures lower than GC carrier gas
pressure.

CO2 is added from the thermal press. We record pressure and temperature
before and after the loading (see Supplementary Fig. 7 as an example). It permits to
calculate very accurately the mole number of CO2 introduced and so, we can
estimate very accurately the loadings of CO2.

The experimental method36 is similar to the one used to calculate the solubility
of CO2 in alkanolamine amine solution at equilibrium. The method considered is
based on the “static-synthetic method”. More details concerning the method are
presented in the Supplementary Methods.

During the absorption of the CO2, we take samples to follow the evolution of
the vapor composition (and so CO2 partial pressure) as a function of time. When
the equilibrium is reached (constant pressure and constant temperature), the vapor
phase composition is determined.

We have used the GERG 2008 Equation of state37 implemented in REFPROP
10.038 to estimate the densities of the vapor phase which is a mixture of CO2 and
CH4.

The calculation of the acid gas solubility in the solvent is based on mass balance.
The volume of the liquid phase is obtained by considering the mole number of

solvent introduced and its density at the temperature of measurement.

VL ¼ nsolvent
ρ Tcell

� 	 ð9Þ

Consequently, the volume of the vapor phase is calculated by difference between
the total volume and the volume of the liquid phase.

VV ¼ VT � VL ð10Þ
If the introduction of the solute doesn’t modify the level of the liquid interface

in the equilibrium cell, we can consider Eq. (11).

VL ¼ πr2cellhliq ð11Þ

Where rcell is the radius of the equilibrium cell, hliq the level of the vapor liquid
interface.

The mole number of solute in the vapor phase is calculated by considering the
density of the gas at the temperature and pressure of solute (PSolute ¼ Pcell � Psat

solvent).
REFPROP v10.0 is used to calculate this density ρV Tcell;Psolute

� 	
. In the case of a

mixture, the global composition needs to be considered ρV Tcell; Psolute; y
� 	

.
The volume of the vapor phase is used to calculate the mole number of solute in

the vapor phase (Eq. (12)).

nV ¼ VVρV Tcell;Psolute

� 	 ð12Þ
In the case of a mixture, the same equation is used to calculate the total mole

number of solute in the vapor phase.
So, the mole number of solute in the liquid phase is determined by considering

Eq. (13).

nL ¼ nT � nV ð13Þ
In the case of the mixture, the mole number of each species is calculated by

considering the global composition of the mixture (z) and the composition of the
vapor phase (y), Eq. (14).

nLi ¼ zin
T � yin

V ð14Þ
The solubility is determined with Eq. (15).

xi ¼
ni
∑nj

ð15Þ

Data availability
All the experimental data are available in Supplementary Materials and at https://
github.com/AxelRolov/CO2_chemical_solvents. Structures of compounds, descriptors
and predicted values are also available at https://github.com/AxelRolov/
CO2_chemical_solvents. The data are also deposited into a DOI-minting repository
ZENODO: https://doi.org/10.5281/zenodo.6010667.

Code availability
Jupyter notebooks containing the Python code used for model building, evaluation and
virtual screening are available at https://github.com/AxelRolov/CO2_chemical_solvents.
The code is also deposited into a DOI-minting repository ZENODO: https://doi.org/
10.5281/zenodo.6010667. Python libraries used for machine-learning and OPERA
software are freely available. ISIDA-Fragmentor is available upon reasonable request to
Prof. Alexandre Varnek.
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