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Integration of experimental data and use of
automated fitting methods in developing protein
force fields
Marcelo D. Polêto 1✉ & Justin A. Lemkul 1,2✉

The development of accurate protein force fields has been the cornerstone of molecular

simulations for the past 50 years. During this period, many lessons have been learned

regarding the use of experimental target data and parameter fitting procedures. Here, we

review recent advances in protein force field development. We discuss the recent emergence

of polarizable force fields and the role of electronic polarization and areas in which additive

force fields fall short. The use of automated fitting methods and the inclusion of additional

experimental solution data during parametrization is discussed as a means to highlight

possible routes to improve the accuracy of force fields even further.

Molecular dynamics (MD) simulations have been widely used to study chemical and
biophysical processes with atomistic resolution1,2. These simulations rely on the
accuracy of the so-called force fields (FFs), mathematical functional forms, and the

associated parameters that describe the relationship between a given set of atomic coordinates,

R
!

, and its potential energy, U( R
!

).
The quality of any force field is assessed by its ability to reproduce structural, dynamic, and

thermodynamic properties of a system, given enough sampling. Developing an accurate FF is a
complex task, as deriving parameter sets that can accurately reproduce experimental data is
challenging and time-consuming. The functional form underlying a FF is composed of multiple
expressions associated with different energy terms, each one describing specific types of inter-
actions between atoms. A common functional form is shown in Eq. (1):
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In Eq. (1), b is the bond length, θ is the valence angle, ϕ is the dihedral angle. The bond force
constant and equilibrium distance are kb and b0, angle force constant and equilibrium angle are
kθ and θ0, the dihedral force constant, multiplicity and phase angle are kϕ, n and δ, respectively.
Together, these terms are referred as bonded terms. The nonbonded terms between atoms i and j
are composed of electrostatic interactions between their respective partial charges qi and qj
separated by a distance rij and by van der Waals interactions, modeled by a 12-6 Lennard-Jones
(LJ) function using an LJ well-depth εij and a radius σij, which defines the distance at which the
interatomic LJ potential is zero.

Over the years, many different FFs have been developed and refined, including the well-
known CHARMM3–8, AMBER9–14, OPLS15–19, and GROMOS20–24 families. While the first
generation of protein FFs was developed with the primary goal of maintaining the tertiary
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structure of folded proteins9,25, later generations have been
refined using more robust and diverse experimental data, as well
as more accurate quantum mechanical (QM) calculations, which
have improved FF robustness and accuracy.

The most widely used FFs rely on fixed, atom-centered charges,
such that the interaction energy in a system is the sum of all the
pairwise interactions. For this reason, such FFs are classified as
additive FFs; that is, the removal of any set of atoms from a
system does not affect the interaction energies among the
remaining atoms because there are no multibody effects. Recently,
new functional forms that contain explicit terms to model the
change in the electronic structure of a molecule in response to
alterations of the local electric field have emerged. These polar-
izable FFs are non-additive; the removal of any atoms impacts the
inducible dipoles in the system, leading to different interaction
energies among the remaining atoms.

Here, we review the most common strategies used in the
development of additive and polarizable force fields for proteins,
the relationship between experimental data used as a reference,
biases in force field development and automated methods that
may overcome them, and the challenge of modeling structural,
dynamic, and thermodynamic properties accurately in multiple
chemical environments using additive and polarizable force fields.

Force field development strategies
Multiple parametrization strategies have been adopted by each FF
family over the years, using different types of experimental data
for calibration/validation, as well as different methods (automated
and empirical) to derive parameters sets. In this section, we
review general strategies applied in FF parametrization and
highlight novel strategies that have recently been applied in FF
refinement.

Bonded terms. Bond and angle parameters are the core basis of a
protein FF and are usually modeled via harmonic functions,
which are fit to spectroscopic data or crystal geometries. When
necessary, QM calculations can be employed to obtain optimized
geometries or vibrational frequencies as well, from which equi-
librium bond and angle values can be derived. Although these
parameters are kept mostly untouched throughout FF genera-
tions, recent work by König and Riniker26 suggested that they
could be tuned to better capture bond and angle responses to
changes in the local environment27, approximating the observed
QM behavior and yielding a better representation of the potential
energy landscape.

With respect to bonded terms, the major challenge in
describing protein structure and dynamics is related to torsional
parameters. Dihedral terms are used to correct inaccurate
torsional preferences that arise from the simplification of using
Coulomb and LJ potentials to model nonbonded interactions
between atoms separated by three bonds. The molecular
mechanics (MM) approximation underlying common FFs lacks
orbital effects and conformation-dependent polarization response
that are important at this length scale. Therefore, cosine
potentials are applied to torsions to recover the correct
configurational energy profile as a function of dihedral rotation,
thus yielding conformational populations. In the derivation of
protein FFs, careful attention must be paid to backbone dihedrals
(particularly ϕ and ψ), which govern secondary structure stability,
and sidechain dihedrals, which dictate rotamer preference, with
χ1 also being linked to the two key backbone dihedrals.

Early force fields developed dihedral parameters by targeting a
small number of low-energy conformations of dipeptides in gas-
phase via QM calculations, with special attention given to ϕ/ψ
backbone torsions15,28. Further refinements focused on

performing more robust QM calculations to scan potential
energy surfaces (PES) for backbone ϕ/ψ torsions4,13,16,17,29,30 or
sidechain χn torsions12,13,16,17,31 in dipeptides. These efforts
improved agreement with experimental 3J-coupling constants and
crystallographic sidechain rotamer distributions. However, the
inclusion of more robust ab initio calculations was not enough to
reproduce experimentally observed backbone conformational
preferences, requiring empirical adjustments. The main limitation
in this approach was proposed to be the use of molecular
fragments (usually capped amino acids or small peptides), which
might not necessarily capture the cooperativity in conformational
sampling observed in polypeptides and proteins.

To account for the coupled dynamics of ϕ/ψ torsions and their
subsequent conformational preferences, MacKerell et al. 4 intro-
duced a 2D correction map (CMAP) in the CHARMM22/CMAP
force field. A CMAP term is included in the functional form as an
additional energy term that is the difference between QM and MM
energies over the entire 2D ϕ/ψ conformational space. The authors
studied capped dipeptides in a vacuum to obtain CMAPs for
proline, glycine, and a general correction based on alanine, which
was applied to all other amino acids. Applying such CMAPs made
it possible to reproduce 2D QM energy surfaces, but led to
deviations in α-helical and β-sheet structure when simulating
proteins, thus requiring empirical modifications to recover agree-
ment with experimental data. MacKerell et al. 4 concluded that the
polarization response in the gas phase and, consequently, the PES
obtained from QM calculations in vacuum are different from the
ones obtained in solution. Later refinements in CMAPs were
presented in CHARMM366 and CHARMM36m8 using better ab
initio methods (RI-MP2/cc-pVT(Q)Z) and more robust empirical
adjustments based on PDB surveys or NMR structural data. Thus, it
is clear that even when targeting high-level QM data, it is
challenging to generate suitable FF parameters, which still rely on
the use of empirical data on protein conformational ensembles to
produce the final parameters.

The development of the AMBER ff15-FB31 is a demonstration
of such a challenge. The authors employed the ForceBalance
algorithm32, an automatic optimization method that uses
experimental and QM target data to fit multiple parameters at
once. In ff15-FB, bond, angle, and dihedral parameters from the
ff99SB parameter set were refined by ForceBalance by targeting
RI-MP2/aug-cc-pVTZ gas-phase QM calculations of ϕ/ψ 2D
potential energy and vibrational frequencies. Although non-
bonded parameters were not modified, the authors were able to
better reproduce S2 order parameters, NMR scalar couplings, and
temperature dependence of secondary structure. However, the
authors stressed that even though ForceBalance was able to
accurately fit N-dimensional parameters at once, targeting gas-
phase QM data proved to be a bottleneck when fitting parameters
in conjunction with condensed-phase data.

Subsequently, Cerutti et al. 33 proposed a solution to this
inconsistency of deriving parameters for use in the condensed
phase but targeting gas-phase data by introducing a modification
of the AMBER force field, named IPolQ model, which implicitly
accounts for polarization effects. In its first version (the ff14ipq
FF), partial charges are implicitly polarized to improve the
balance between solute–solvent and solute–solute interactions.
More information regarding nonbonded treatment in this model
will be discussed in Section Nonbonded terms. Briefly, partial
charges of an amino acid are predicted to be halfway between the
QM charges of a dipeptide in a vacuum and in the presence of a
reaction-field potential that models water. This approach allowed
the authors to implicitly account for polarization effects when
targeting QM PES obtained in a vacuum to derive dihedral
parameters. Overall, ff14ipq showed good agreement with ϕ/ψ
distributions of model peptides and yielded generally stable
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protein dynamics. Nevertheless, refinements were presented
by Debiec et al. 34 in an updated FF version, ff15ipq. More
specifically, new atom types were introduced for backbone atoms,
allowing for more specific dihedral refinements. Validation
simulations were carried out on globular proteins, short peptides,
and intrinsically disordered proteins (IDPs). ff15ipq produced
good agreement with challenging experimental data, such as the
temperature-dependent unfolding of K19 and (AAQAA)3 model
peptides or folding events of IDPs upon binding. Overall, the
results from the IPolQ model emphasize the importance of
developing force fields in a physically consistent manner,
especially when deriving torsional parameters.

Following the CMAP logic applied to CHARMM force fields,
the Simmerling group used ff14SB13 as a starting point to
developed residue-specific CMAPs for the AMBER FF family,
leading to ff19SB14. Tian et al. developed CMAPs for 16 residues
that are applied to all 20 natural amino acids. While the
CHARMM CMAP philosophy uses alanine CMAP as a general
correction to other amino acids, ff19SB uses leucine CMAP to
correct phenylalanine, tryptophan, tyrosine, cysteine in disulfide
bonds and all three protonation states of histidine. The remaining
amino acids have specific corrections, including different
protonation states for aspartate and glutamate. Another differ-
ence from the CHARMM CMAP philosophy is how ff19SB deals
with the polarization inconsistency of targeting gas-phase QM
PES. The authors derived CMAPs by calculating the QM PES
using the SMD implicit solvent model, whereas MM PES were
calculated using a generalized Born (GB-Neck2) continuum
solvation model. It is important to notice that while solving the
polarization inconsistency when deriving dihedral parameters,
the ff19SB still uses partial charges based on gas-phase QM
calculations. In contrast to the CHARMM FF series, Tian et al. 14

were able to reproduce secondary structure preference for
different amino acids without empirically adjusting CMAPs.
Also, amino acid-specific NMR properties such as scalar coupling
and helical propensities were in good agreement with experi-
mental data, as well as S2 order parameters for folded proteins.
Lastly, ff19SB could only accurately predict experimental
behavior when used in combination with the OPC water model,
suggesting a dependence on the water model.

Another novel approach was the recently reported
environment-specific force field (ESFF1)35. The authors built a
database containing ϕ/ψ values of tripeptide sequences extracted
from structures deposited in the Protein Data Bank (PDB). Each
sequence was classified based on the chemical properties of N-
and C-terminal residues, either polar (P) or nonpolar (NP). This
classification led to four possible configurations: P-X-P, NP-X-
NP, P-X-NP, and NP-X-P, with X being each of the 20 canonical
amino acids. Subsequently, the authors evaluated 80 specific
environments to derive 71 backbone CMAP corrections in an
attempt to implicitly account for sequence-specific conforma-
tional preferences. In this approach, parameters are assigned to a
residue based on its neighboring residues during topology
construction, challenging the “additivity” assumption common
to all force fields. ESFF1 demonstrated a good agreement with
NMR chemical shifts and 3J-coupling constants of tetrapeptides
and short peptides. By applying replica-exchange MD simula-
tions, the authors were able to demonstrate the folding of fast-
folding proteins. Interestingly, ESFF1 was able to reproduce the
structural behavior of both ordered and disordered proteins,
suggesting that such an approach to deriving torsional terms may
be promising in future FF development.

Overall, these strategies highlight the complexity of assigning
protein torsional parameters and their dependence on the target
data used. While QM calculations can be a good starting point,
capturing intricate protein dynamics requires an additional step

of empirical adjustment based on experimental data, typically in
the form of structural surveys and NMR data such as chemical
shifts and 3J-coupling constants. Also, the model chemistry
employed in QM calculations can impact target CMAP correc-
tions and torsional barriers, which can be a source of differences
in the performance of FF families. It is also important to mention
that ϕ/ψ distributions obtained from PDB surveys that are
commonly used as target data are usually averages over thousands
of different structures, and care must be taken when rebalancing
against these geometries since some error in their assignments
may be due to e.g. resolution and crystal packing effects from
X-ray experiments and the empirical nature of torsional assign-
ment with NMR. Lastly, the incorporation of solution data in
the training set has the potential to improve the accurate
modeling of proteins in solutions (discussed in Section More
diverse structural data).

Nonbonded terms. In the MM convention, interactions between
atoms that are not covalently bonded are typically described by
the sum of van der Waals and electrostatic terms. The most
common representation of van der Waals interactions is the 12-6
LJ potential shown in Equation (1). The LJ potential is commonly
tied to an “atom type” logic, in which each atom type is assigned σ
and ε values. The same chemical element can have multiple atom
types to more accurately model interactions between hetero-
geneous moieties, allowing the FF to cover a wide range of che-
mically diverse molecules. Since LJ parameters are assigned to
each atom type, an LJ interaction between a pair of atom types is
determined by a “combination rule” (or “mixing rule”) to model a
pairwise interaction. Such rules are generally applied to all-atom
types within the force field, which requires internally self-
consistent calibration efforts. Due to its simple nature, combi-
nation rules may fail to accurately describe the optimal LJ
interaction distance and its strength for a specific pair of atom
types. In such cases, most force fields allow pair-specific values of
σij and εij that override their combination rule. Such LJ correc-
tions were pioneered by the CHARMM force field and are
commonly referred to as “off-diagonal” or NBFIX terms.

Early LJ parameters were developed by targeting condensed-
phase properties of pure liquids, molecular volumes, crystal-
lographic data, and QM interaction energies36–40. More recent LJ
optimization efforts have focused on refining existing LJ parameters
to create new atom types or to correct existing ones, often using off-
diagonal terms to correct interaction energies8,19,23,24,34,41.

Electrostatic interactions are usually described by Coulomb’s
Law, in which each atom is assigned a partial charge and
interaction strength decays with r-1 dependence. Partial charge
assignment is usually based on gas-phase QM calculations of the
electron distribution of a molecule, specifically targeting electro-
static surface potentials or molecular dipole moments. In additive
force fields, the assigned charges in a molecule are often
strategically over-polarized to account for the expected polariza-
tion effects in the aqueous phase. In doing so, additive force fields
simplify the many-body components involved in electronic
polarization effects to a one-body problem (i.e., a mean-field
approximation) by assuming a constant dielectric medium
surrounding a molecule. In reality, the electronic medium around
a protein residue is frequently heterogeneous, impacting the
molecular polarization response and, in turn, the respective
interaction energies between the molecule and its environment.
The effects of explicitly modeling electronic polarization will be
discussed in Session Polarizable force fields.

Nonbonded interactions are perhaps the most challenging to
parametrize and different approaches to calibrate them have been
developed over the years. The AMBER FF family typically uses a
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rescaling factor on the partial charges obtained via gas-phase QM
calculations using the HF/6-31G* model chemistry, which
fortuitously over-polarizes partial charges and is used to account
for polarization as explained above. Some attempts to achieve
better-condensed phase behavior have been made by assuming
continuum solvent models during QM calculations42. More
recently, He et al. 43 developed a new semiempirical ab initio
method (named ABCG2) to derive new partial charges for small
molecules when using the General AMBER Force Field (GAFF) to
reproduce solvation free energies of small organic molecules. In
the CHARMM FF, the initial set of partial charges are obtained by
targeting a ~20% higher dipole moment calculated via gas-phase
MP2/6-31G* QM calculations. These charges are later validated
and refined based on water interactions calculated in both MM
and QM levels. In some additive FFs, like the GROMOS and
OPLS families, partial charges are empirically adjusted to target
condensed-phase properties such as heat of vaporization, liquid
density, and free energy of solvation. By targeting properties in
aqueous and nonpolar media simultaneously, such charges
implicitly account for polarization responses in condensed-
phase and are assumed to better reproduce interaction energies
in both polar and nonpolar environments frequently found in
protein simulations. Nevertheless, this approach also adopts a
mean-field approximation by deriving partial charges in homo-
geneous media (organic liquid or water) modeled via nonpolariz-
able solvent molecules.

The IPolQ model33,34 is also novel in its attempt to implicitly
represent polarization effects. In its parametrization, dipeptides
were initially simulated with the AMBER ff99SB force field to
obtain water distributions and configurations around chemical
moieties. These water molecules were replaced by perturbing
charges in QM calculations to generate a polarized electrostatic
surface potential (ESP) of the dipeptide, thereby approximating
the many-body component of the electronic polarization effects.
In addition, a gas-phase ESP was also calculated via QM methods
and the charges assigned in the IPolQ model are assumed to be
the average between the charges in the polarized system and the
charges in a vacuum. Thus, the IPolQ model accounts for a
heterogeneous polarization response during charge assignment
while still remaining nonpolarizable. Simulations using ff15ipq
showed that conformational dynamics of globular proteins and
disordered peptides were in good agreement with experimental
data. Moreover, ff15ipq is one of the most accurate FFs in
describing the probability of ion-pairing in solution among the
additive FFs, emphasizing the importance of considering
polarization during charge assignment.

Ultimately, all FFs aim to strike an optimal balance while
reproducing solute–solute and solute–solvent interactions, which
is important for accurately modeling protein dynamics in an
aqueous medium. Such a balance is critical when simulating
proteins encountering chemically distinct environments, like when
embedded in membranes, or when describing protein–protein
interaction. Doing so is particularly challenging for additive FFs
due to their nonpolarizable nature, in that they are not generally
calibrated to account for media of lower polarity.

Such balance has been highlighted by attempts to simulate
IDPs using additive FFs; several popular FFs were shown to
overestimate the secondary structure in IDPs and yield structures
that were too compact44–46. Some corrections were proposed by
tuning backbone torsional parameters, leading to the develop-
ment of IDP-specific force fields, such as CHARMM36IDPSFF47,
ff14IDPSFF48, and OPLSIDPSFF49. Other efforts aimed to correct
the balance between protein–protein and protein–water interac-
tions via LJ corrections or the creation of new atom types to
specifically describe conformational dynamics of IDPs8,35,41,50.
All of these refinements emphasize the difficulty in

simultaneously describing intramolecular and intermolecular
properties with sufficient accuracy.

Modifying protein–water interactions has been frequently
attempted in an effort to better represent the dynamics of difficult
systems like IDPs or other unfolded/partially folded states of
proteins and polypeptides. The AMBER ff99SB-disp41 used an
analogous approach: the authors tuned the FF to be compatible
with the TIP4P-D water model, which was developed to model
water dispersion interactions more accurately51. Robustelli
et al. adjusted LJ terms and backbone torsional parameters to
better balance intra- and intermolecular interactions. By doing so,
the authors were able to produce less compact structures of
disordered proteins while still preserving the conformational
dynamics of folded proteins, making it possible to use ff99SB-disp
to simultaneously study both folded and unfolded proteins. These
results suggest that modeling solute–solute and solute–solvent
interactions using additive force fields requires some sort of
compromise in nonbonded parameter refinement.

Although these approaches have been generating remarkable
results, additive force fields assume that solute–solvent and
solute–solute interaction energies are insensitive to the electronic
medium surrounding the molecules. For instance, it is quite
common to observe changes in the chemical environment of
protein residues during an MD trajectory, like the increase in
solvent accessibility of buried residues or vice-versa. The change
in the electronic properties of the media surrounding protein
residues triggers an electronic response in the molecules, which in
turn impacts the solute–solvent and solute–solute interaction
energies. In additive force fields, such responses are not taken into
account, thus challenging the development of parameters that can
simultaneously describe a wide range of electronic and con-
formational events in protein conformational dynamics.

Polarizable force fields. When it comes to macromolecular force
fields, reproduction of structural data is of critical importance, but
also correct energies are required to properly balance intra- and
intermolecular interactions. Obtaining such a balance is directly
linked to correct thermodynamics and kinetics (e.g., correct bal-
ance in conformational ensemble and accurate conformational
transition rates). Therefore, a model that explicitly accounts for
polarization effects has the potential to better reproduce inter-
action energies in different chemical environments52–55.
Overall, polarizable force fields are usually based on a variation

of the functional form presented in Equation (1), augmented by
an explicit term to model electronic degrees of freedom.
Currently, the most extensive polarizable force fields are the
AMOEBA force field55–57 and the Drude force field52,53,58.

AMOEBA force field. The AMOEBA FF is classified as an induced
dipole and multipole model. It extends the partial charge repre-
sentation used in Equation (1) to incorporate atomic multipoles,
which include monopoles (partial charges), dipole vectors, and
quadrupole tensors. Together, the interactions between the
atomic multipoles describe the so-called permanent electrostatic
interactions. In addition, an explicit polarization term models the
electronic polarization dynamically via a self-consistent relaxation
scheme, in which the atomic dipoles of all atoms are subject to the
electric field exerted by permanent electrostatics and induced
dipoles. Additionally, the AMOEBA FF uses a damping function
proposed by Thole59 to “smear” the atomic multipoles and avoid
over-polarization via the expression below:

ρ ¼ 3a
4π

exp �a
rij

ðαiαjÞ1=6

 !3" #
ð2Þ

in which a determines the strength of the damping and α is the
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atomic polarizability of each atom participating in the interaction.
In practice, both α and the Thole factor a become new parameters
to be fit alongside the atomic multipoles when calibrating the FF.

The first version of the AMOEBA protein FF (AMOEBA13)
was developed by Shi et al. 55. Remarkably, AMOEBA13
reproduced QM dipole moments of dipeptides and tetrapeptides
in a near-perfect agreement. Torsional parameters for ϕ and ψ
were fit against gas-phase 2D QM potential energy surfaces using
alanine, proline, and glycine dipeptides. In contrast to the CMAP
approach described above, the difference between QM and MM
energies were used to derive cosine parameters for ϕ and ψ. It is
important to note that polarizable FFs do not suffer from the
inconsistency of deriving parameters in the gas phase to be used
in the condensed phase due to the explicit modeling of
polarization response while deriving those MM parameters.

Torsional parameters were later refined against ϕ and ψ
distributions in the PDB by assigning weighting factors to
conformers in the polyproline (PPII), α-helical and β-sheet
regions. This approach yielded a good agreement with the
J-coupling values of Ala5. Without refining with empirical data
obtained from the PDB, the authors obtained worse structural
agreement, demonstrating the importance of combining experi-
mental structural data and robust QM calculations when
deriving torsional parameters. Moreover, the authors evaluated
ten well-studied folded proteins for 30 ns, producing RMSD
values of ~1Å. When compared with experimental J-coupling
NMR data, AMOEBA13 produced results comparable to
AMBER additive ff99SB and ff99SB-ildn FFs, a remarkable
outcome, considering that AMOEBA was not parametrized
against NMR data. Although NMR data also suggest that protein
loops in AMOEBA13 are somewhat too flexible, the overall
agreement was good.

Following AMOEBA13, the electrostatic treatment used in the
functional form was revised by Rackers et al. 60, who proposed an
optimized charge penetration model for the AMOEBA force field.
Later, Das et al. 61 revisited the atomic polarizability implemented
in AMOEBA13 to propose the inclusion of anisotropic polariz-
ability to better reproduce QM interaction energies. The authors
demonstrated the importance of anisotropy by calculating
interaction energies in clusters of water molecules, which were
subsequently more accurate.

The AMOEBA18 FF was later released and included
parameters for nucleic acids and an improvement in atomic
multipoles for proteins57. This new FF was used by Célerse
et al. 62 to study the role of electronic polarization in the
dissociation of protein–protein complexes and unfolding of
peptides. By simulating the unfolding dynamics of Ala10 in a
vacuum using both AMOEBA13, AMOEBA18, and additive FFs,
the authors showed that the AMOEBA FFs produced free-energy
profiles with much lower barriers due to the polarization response
to the gas phase. Another test was the dissociation of
protein–protein complexes, in which the AMOEBA FFs were
able to better reproduce protein–protein dissociation enthalpy
due to the better description of salt bridge energies and dynamics.
Such thermodynamic properties, e.g., unfolding and dissociation
free energies, are therefore useful and rigorous tests of FF quality.

Another feature in which better electrostatic description should
play an important role in the study of electric field organization
within enzyme active sites. In this regard, the studies
involving ketosteroid isomerase (KSI) are perhaps the most well
documented63–68. The Boxer group studied the electric field
magnitude and directionality exerted by the KSI active site onto
the C=O bond of substrates using the additive ff99-ILDN
FF, observing a near-perfect agreement with the experimental
electric field65. Interestingly, similar results were obtained
by Wang et al. 69 using ab initio path integral MD simulations

and by Welborn and Head-Gordon67 using the AMOEBA
polarizable force field, although the magnitude of the field in
the latter study was slightly lower. As reported by Wang et al. 69,
the KSI electric field is strongly dependent on the precise
chemical positioning of active site residues, such as Tyr16 and
Asp103 that together contribute to the vast majority of the total
field. These findings are supported by Fried et al. 65, who
observed that electric field magnitudes could decrease by ~50% if
the hydrogen-bond network stabilizing the substrate pose was
disrupted. Such results suggest that, given the correct configura-
tion, ff99-ILDN FF was sufficiently accurate to reproduce the field
magnitude exerted by KSI active site.

More recently, Bradshaw et al. 70 studied the electric field
exerted by peptidyl-prolyl isomerase cyclophilin A (CypA) in its
active site using AMOEBA13, AMBER ff14SB, and
CHARMM36m FFs. In contrast to the findings for KSI, Bradshaw
et al. 70 demonstrated that both additive FFs substantially
overestimated the electric field in the CypA active site, while
AMOEBA produced near QM-level accuracy. However, it is
important to mention that the authors did not compare the active
site structural organization modeled by additive FFs and
AMOEBA, which might have been a source of difference.
Although the electric field organization of more systems must
be investigated to draw an overall conclusion, the findings
reported so far indicate that: (1) electric field calculations might
require polarizable models to achieve quantitative accuracy and
(2) they are very dependent on precise chemical positioning of
protein atoms.

Drude force field. Another strategy to model electronic polariza-
tion was proposed by Drude et al. 71, in which the changes in the
atomic electronic cloud are modeled via auxiliary particles
attached to their parent atoms via harmonic springs. This
approach was used to develop the Drude polarizable FF52,53,58,72.
The displacement of these auxiliary Drude particles from their
parent atoms is induced by the surrounding electric field, creating
a charge distribution that can be calibrated to describe atomic
polarization. In the Drude FF, the Drude particles are negatively
charged by convention and the magnitude of the charge is
assigned according to the atomic polarizability of its parent atom:

α ¼ q2D
KD

ð3Þ

in which qD is the charge on the Drude particle and KD is the
bond force constant between the Drude particle and its parent
atom. By modeling the electronic polarizability via an auxiliary
particle, the Drude FF can model the relaxation of electronic
degrees of freedom dynamically via extended Lagrangian
integration73, therefore improving simulation speed over self-
consistent field approaches. In contrast with additive FFs, which
typically exclude nonbonded interactions between first and sec-
ond bonded neighbors, vicinal dipole-dipole interactions (1–2
and 1–3 interactions) explicitly contribute to the energy function
in the Drude FF. Due to the short distance, electrostatic inter-
actions are damped via an alternative screening function pro-
posed by Thole:

SijðrijÞ ¼ 1� 1þ arij

2ðαiαjÞ1=6

" #
exp

�arij

2ðαiαjÞ1=6

" #
ð4Þ

in which a is the Thole factor describing the damping
strength. The usage of a screening function to compute 1–2 and
1–3 interactions allows a better description of molecular
polarizability.

Similar to the AMOEBA FF, both α and Thole factors are
tunable parameters in the Drude FF. Initial values of α are taken
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from atomic polarizabilities proposed by Miller74, while a default
value of 2.6 is set for Thole factors, which is actually the sum of
atom-based Thole factors that default to 1.3 per atom. Electronic
properties obtained from QM calculations such as dipole
moments and molecular polarizabilities are usually targeted to
calibrate these parameters. In contrast to the AMOEBA FF, an
important feature of the Drude model is that atomic polarizability
can be modeled via a diagonal rank-2 tensor with force constants
that can be tuned to create anisotropic polarizabilities whenever a
directional polarization response is required. This feature has
been suggested to play an important role when modeling
heterogeneous chemical environments75.

The Drude FF also makes use of virtual sites to model lone
pairs on atoms that are hydrogen-bond acceptors and the σ-holes
on halogens. As such, these lone pairs are positioned according to
the ESP extracted from QM calculations and significantly
improve the reproduction of quadrupole moments. Moreover,
the use of lone pairs improves the directional response of
hydrogen bonding, halogen bonding, and ion interactions16,76,77.

As with additive FFs, the Drude FF was developed after
extensive and rigorous parametrization of small organic
molecules78–81. The first Drude protein FF (called Drude-
2013)52 was developed by deriving protein backbone and
sidechain parameters, building upon previously parametrized
model compounds. QM dipole moments, molecular polarizabil-
ities, and water interactions of the alanine dipeptide and Ala5
were used as targets to develop nonbonded parameters for the
protein backbone. After, extensive refinement of ϕ/ψ backbone
dihedrals and χ1 and χ2 sidechain dihedrals based on QM data
and empirical adjustments were carried out to improve agreement
with PDB surveys. The Drude FF also uses the same CMAP
approach used in the additive CHARMM FF to improve the
agreement with ϕ/ψ distribution from PDB surveys. Simulations
of peptides and folded proteins showed reasonable agreement
with NMR data for a first-generation FF. The authors observed
substantial variation in the dipole moment of amino acids in
response to subtle changes in their microenvironment, an
important feature for polarizable force fields. This observation
was later emphasized by Huang et al. 82, who demonstrated
profound sidechain dipole response of one glutamine residue as a
function of its rotation in and out of a hydrophobic micro-
environment in ubiquitin. Moreover, the authors showed that the
first solvation shell around charged amino acids had larger dipole
moments, which cannot be modeled using an additive FF and
might be crucial for accurately capturing a proper balance
between solute–solute and solute–solvent energies.

Later, Huang and MacKerell83 studied the helix formation of
the (AAQAA)3 peptide using both Drude-2013 and CHARMM36
FFs in conjunction with Hamiltonian replica-exchange MD
simulations. With the Drude FF, they were able to demonstrate
that cooperativity in helix formation is driven by dipole moment
enhancements in the peptide bonds involved in (i, i+ 4)
hydrogen bonding. The polarization response was directly tied
to the capacity of the Drude-2013 FF to reproduce the helical
content data of (AAQAA)3 peptide as a function of temperature,
a property that CHARMM36 was unable to capture. More
recently, Davidson et al. 84 used the Drude-2013 FF to study the
forces stabilizing amyloidogenic fibrils such as the 42-residue
alloform of the amyloid β-peptide (Aβ42) and the microtubule-
associated protein tau. The authors showed that water molecules
within the hydrophobic cores of the fibrils depolarize to maintain
more favorable interactions with these microenvironments, and
that buried polar residues have altered dipole moments, both of
which may contribute to fibril stability.

After further investigation, Lin et al. 85 refined the nonbonded
parameters of molecular ions used as the basis of sidechains of

charged amino acids, correcting some overly favorable free
energies of solvation. This work led to an extensive revision of
Drude-2013, culminating in the Drude-2019 FF53. The authors
refined atomic polarizabilities of sidechain carbons, which led to a
refinement of backbone ϕ/ψ parameters and χ1/χ2 sidechain
dihedral parameters. In addition, nonbonded interactions
between charged residues were optimized against QM interaction
energies and experimental osmotic pressures. Validation simula-
tions were carried out for 19 protein/peptide structures on the
microsecond timescale. The refinements made in Drude-2019
substantially improved the agreement with experimental
J-coupling constants and S2 order parameters. Simulations of
the potassium KcsA channel and the gramicidin A channel were
also performed to demonstrate the capacity of Drude-2019 to
accurately model membrane proteins. Overall, the Drude-2019 FF
was described as a robust FF capable of dealing with proteins in
many different chemical environments on the microsecond
timescale.

Experimental data availability
Developing a FF is a challenge that is often limited by the
underlying physics of the proposed model and the availability of
experimental data to be used as reference. As we have discussed
above, these experimental data are crucial for FF refinement. Over
the last 50 years, the continual increase in structural data has
paved the way for many advances in FF development. However,
FF development is still in need of more experimental data on the
structure of highly flexible macromolecules and smaller-scale
conformational properties such as sidechain preferences. An
analogous situation exists for thermodynamic properties of
charged chemical species, which are important for nonbonded
parameter refinement. Here, we highlight some experimental data
that could positively impact FF development efforts.

Better thermodynamic data. Biomolecular systems are inher-
ently heterogeneous in that they have to model e.g., the hydro-
phobic protein interior and polar solvent with equal accuracy.
Thus, it is important to consider such heterogeneity in parameter
development. Doing so thus requires the consideration of inter-
actions among different species, and calibrating parameters
against water or assuming a uniform high dielectric medium may
be insufficient.

While early FFs derived partial charges targeting QM
calculations directly, the next generation of FFs included QM
interaction energies as targets to refine interactions among
biomolecular moieties, such as charged sidechain analogs and
ions5,6,13,14. Although important, such interactions are computed
in the gas phase and their applicability to the actual screened
interactions in an aqueous solution is difficult to assess due to the
difference in polarization response in each case. In contrast, some
FFs targeted condensed-phase data directly such as liquid density
(ρl) and heat of vaporization (ΔHvap), like the original OPLS
parametrization scheme by Jorgensen et al. 15. Other force fields
also included free energy of solvation or hydration in their
calibration pipeline, like the GROMOS 53A5/53A6 FFs developed
by Oostenbrink et al. 22. By targeting ΔHvap, the authors assumed
that a single set parameter could accurately reproduce the
molecular behavior in two different polarization conditions (gas
and condensed phase), which could bias the derived parameters.
A similar assumption is made when targeting free energy of
hydration or solvation86,87.

Lately, attempts have been made to rebalance interaction
energies by targeting solution data88. Luo and Roux developed an
MD protocol to calculate osmotic coefficients, which was applied
to refine CHARMM FF parameters for Na+, K+, and Cl- to
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reproduce experimental osmotic pressure coefficients at high salt
concentrations, a challenging task for any additive FF. Later, Lay
et al. 89 applied the same method to optimize solute–solute
interactions of carbohydrates in both CHARMM and AMBER
FFs. Miller et al. 90 assessed the AMBER99SB-ILDN force field in
reproducing experimental osmotic pressure coefficients. The
authors reported that intermolecular interactions were system-
atically too favorable when combining the AMBER FF with the
commonly used TIP3P water model, which was not seen when
using TIP4P-Ew or TIP4P-D water models. Such results suggest
that a comprehensive benchmark of modern FFs against osmotic
coefficients could further improve the solute–solute and
solute–solvent interactions At the same time, such an undertaking
requires a comprehensive repository of experimental osmotic
pressure coefficients for protein backbone and sidechain analogs,
which simply does not exist. Most of the available experimental
data are decentralized and/or were obtained more than 50 years
ago with methodological details that are sparse in comparison to
modern publications91–95, which hampers all FF development
efforts on this front. Obtaining such experimental data for
multiple protein functional groups and making them publicly
available would represent a critical step for the improvement of
current FFs, allowing the new generation of both polarizable and
additive FFs.

Using a similar concept, the Open Force Field Consortium has
recently trained LJ parameters against properties of mixtures such
as partial densities (ρl(x)) and enthalpies of mixing (ΔHmix)96

obtained from the NIST ThermoML archive97. This approach
was used to optimize the OpenFF 1.0.0 (“Parsley”) drug-like
molecule FF98, which ultimately led to the development of
OpenFFF 2.0.0 (“Sage”) FF99. By using properties of condensed-
phase mixtures, the authors were able to better reproduce QM
geometries and energies. Although focused on small molecules, a
similar approach could be applied to amino acid analogs in order
to refine solute–solute and solute–solvent interactions.

Overall, the incorporation of solution data of protein analogs
could represent an important step to further improve solute–solute
and solute–solvent interaction energies for both polarizable and
nonpolarizable FFs, allowing to better capture protein structure,
dynamics, and thermodynamics in the condensed phase.

More diverse structural data. Historically, force fields aimed to
stabilize the tertiary folds of proteins, relying heavily on
PDB structures and survey data to define allowable conforma-
tional states. However, solution data have been a powerful
complement to static structures, helping researchers determine
the limitations of FFs and serving as new structural data for FF
refinement100–104. Moreover, solution data have the benefit of
incorporating conformational ensemble information of highly
flexible macromolecules such as IDPs, short peptides, or glyco-
sylated proteins into the FF development pipeline. The use of
more diverse data sets simultaneously to perform FF parameter
fitting should be emphasized going forward.

For instance, NMR data of the Ala5 peptide has been used to
refine backbone parameters for nearly 20 years and many FFs
parameters were validated using J-coupling data, residual dipolar
couplings (RDCs), and S2 order parameters of entire proteins.
Going beyond validation, some FFs used NMR data of proteins to
refine parameters6,13,30,105 without losing agreement with X-ray
structural data. More recently, Kümmerer et al. 106 developed an
approach that fits MD trajectories into sidechain NMR relaxation
measurements, highlighting areas in which FFs require further
refinement. While modern FFs do provide good agreement with
NMR data, the overlap of protein targets used in validations is

large, and a broader set of experimental NMR target data might
be necessary to test and refine FFs even further.

Repositories of solution data, such as the Biological Magnetic
Resonance Data Bank (BMRMB, https://bmrb.io/)107, the Small
Angle Scattering Biological Data Bank (SASBDB, https://
www.sasbdb.org/)108,109, and the Protein Circular Dichroism Data
Bank (PCDBB, https://pcddb.cryst.bbk.ac.uk/)110,111 play an impor-
tant role on protein FF development studies. The SASBDB has been
growing steadily since its release in 2014. The radius of gyration
values derived from SAXS data have been used in the development
of CHARMM36m, ff99SB-disp, and ESFF1 FFs while specifically
targeting IDPs. A similar approach has been used by incorporating
NMR and circular dichroism spectral data in the FF development
pipeline. Nevertheless, using a broader range of experimental
outcomes to refine and validate FFs can be useful in judging the
quality of the conformational ensemble produced.

Overall, the use of solution data has been pivotal to the
development of more robust models in the last decade, and
the influence and importance of such data are expected to grow as
the availability of more comprehensive data sets are made public.

Challenges and opportunities in parameter fitting
While early FFs suffered from the lack of computational power at
the time to validate their parameters by simulating large protein
target sets on the microsecond timescale, current challenges are
more directly related to the amount of available training data and
possible biases when refining parameters.

To overcome implicit biases, machine learning (ML) methods
are emerging as a powerful tool to reduce much of the empirical
tweaking often involved in FF development, yielding more robust
parameter sets in a more efficient manner.

Although no protein FF has yet been developed using ML
approaches, some promising cases should be mentioned. The
Roitberg group developed the so-called ANI approach, a deep
neural network trained on QM DFT data, to derive parameters
for small organic molecules with remarkable accuracy112,113. The
authors concluded that the most recent model, ANI-2x, produces
1D and 2D torsional energy profiles with similar accuracy as
ωB97X/6-31G* calculations and outperforms MMFF94 and
OPLS3 force fields. Nevertheless, the ANI approach was devel-
oped with the aim of developing parameters for small molecules
and its application to complex biomolecules such as proteins has
yet to be demonstrated. On a similar path, the Open Force Field
(OpenFF) initiative has been consistently and successfully
applying ML approaches as their core method to derive para-
meters for small organic molecules98,99. After the release of their
newest small molecule parameter set, OpenFF introduced in their
roadmap (https://openforcefield.org/about/roadmap/) a goal to
move toward biomolecules in the near future114.

More recently, the CHARMM36 lipid force field100 employed a
semi-automatic approach to fit bonded and nonbonded para-
meters of lipid head groups altogether. The authors used per-
turbed parameters in high-dimensional space and applied to
reweight procedures to determine optimal solutions. In terms of
polarizable FFs, the MacKerell group employed neural networks
in the development of electrostatic parameters for small organic
molecules based on the Drude polarizable FF115. The authors
were able to determine atomic polarizabilities and partial charges
in excellent agreement with high-level QM data, even though just
information regarding molecular connectivity was parsed to the
algorithm. Such findings suggest that both molecular polariz-
ability and partial charges can be well described by additive
contributions of proximal atoms, decreasing the workload usually
employed when deriving electrostatic parameters.
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Ultimately, FF parametrization is a problem that must be
solved in high-dimensional space, and, historically, the inter-
dependence of each parameter makes it difficult to isolate them
for the purpose of the fitting. However, methods like the For-
ceBalance algorithm32 and the ones described above can be seen
as demonstrations that automated parameter fitting procedures
are powerful and can reduce implicit bias and overfitting while
refining multiple parameters at once. In this sense, the growing
use of such methods suggests that the quality and availability of
the required experimental data targeted could soon become the
main bottleneck in FF development.

An interesting demonstration of how powerful the combina-
tion of empirical biophysical data and machine learning
approaches can be the work of Tesei et al. 116. The authors used a
coarse-grained model along with a modified LJ expression that
takes into account a residue-specific hydrophobicity parameter
(λ) that modulates the original LJ energy term. The authors
trained λ values using SAXS and paramagnetic relaxation
enhancement NMR data of 45 IDPs selected from the literature
through a series of state-of-the-art simulations, which allowed
them to reproduce sequence-specific propensities of IDPs to
undergo liquid-liquid phase separation and form condensates.
Although more testing is needed to demonstrate the general
applicability of this model for IDPs not used in the training phase,
the authors envision the refinement of their automated method as
more experimental data are made available and even extend it for
specific pairwise interactions such as cation-π interactions or
post-translational modifications.

Such examples are clear demonstrations of how powerful
automated fitting methods are when combined with compre-
hensive experimental data in refining FF parameters to avoid
overfitting issues or unconscious biases. Further improvements
and applications of such methods in FF development are expected
to have a profound impact on our field.

Conclusions and outlook
Although many innovative methods have been applied to further
improve these models, the underlying physics applied to additive
FFs throughout the last 20 years is known to only achieve some
quantitative accuracy due to their limited representation of inter-
and intramolecular energies. Even though polarizable FFs are very
recent and might still need thorough usage and testing, they
demonstrate great potential in better reproduction of inter- and
intramolecular energies of proteins in different chemical envir-
onments. The recent advances in computing hardware and soft-
ware allow polarizable MD simulations to reach the microsecond
timescale in a feasible timeframe, making these robust models
more available.

Nevertheless, both additive and polarizable FFs will benefit
from the availability of comprehensive experimental data. The
increased incorporation of solution data from ever-diverse sour-
ces and the inclusion of ML approaches to derive more robust
parameters will play an integral role in FF refinement and ulti-
mately the quality of MD simulations arising from their appli-
cation. To do so requires access to high-quality structural and
thermodynamic data, ideally in machine-readable formats and
residing in open repositories. Moving forward, objective fitting
functions and other ML approaches will rely on these data to
improve existing FFs and derive new ones. In this regard, the
theoretical and experimental communities will equally benefit
from more robust models and associated empirical data.
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