
ARTICLE

The origin of enhanced Oþ
2 production from

photoionized CO2 clusters
Smita Ganguly 1, Dario Barreiro-Lage 2, Noelle Walsh3, Bart Oostenrijk 1, Stacey L. Sorensen 1,

Sergio Díaz-Tendero 2,4,5✉ & Mathieu Gisselbrecht 1✉

CO2-rich planetary atmospheres are continuously exposed to ionising radiation driving major

photochemical processes. In the Martian atmosphere, CO2 clusters are predicted to exist at

high altitudes motivating a deeper understanding of their photochemistry. In this joint

experimental-theoretical study, we investigate the photoreactions of CO2 clusters (≤2 nm)

induced by soft X-ray ionisation. We observe dramatically enhanced production of Oþ
2 from

photoionized CO2 clusters compared to the case of the isolated molecule and identify two

relevant reactions. Using quantum chemistry calculations and multi-coincidence mass

spectrometry, we pinpoint the origin of this enhancement: A size-dependent structural

transition of the clusters from a covalently bonded arrangement to a weakly bonded poly-

hedral geometry that activates an exothermic reaction producing Oþ
2 . Our results unam-

biguously demonstrate that the photochemistry of small clusters/particles will likely have a

strong influence on the ion balance in atmospheres.
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Molecular clusters have distinctive physicochemical
properties that evolve from free molecules to bulk-like
with increasing cluster size. The presence of inter-

molecular interactions within these clusters creates a rich envir-
onment for the complex interplay between geometry and intra-
cluster chemistry. In planetary atmospheres, molecular clusters
act as precursors to larger particles like aerosols and cloud
nuclei1–5 and the interaction of solar radiation with these atmo-
spheric particles drives both the chemistry and radiative transfer
mechanisms that control planetary surface temperatures and
climate.

In CO2-rich atmospheres like that of Mars, the presence of
CO2 particles at different altitudes between 60 and 100 km has
been confirmed in the form of CO2 ice aerosols6 and CO2 ice
clouds7–10. However, the exact composition of these particles is
the subject of debate. Whilst classical nucleation theories rule out
homogeneous nucleation of CO2 molecules into larger particles in
the atmosphere of Mars11, recent quantum chemical calculations
predict the existence of pure CO2 clusters at high altitudes12.

Models for predicting and understanding the Martian atmo-
sphere are based upon photochemical processes aimed at pre-
dicting the concentration of the most abundant charged/neutral
species. Observations from the many space probes which have
passed or landed on Mars provide information on atmospheric
constituents and can be compared to these models. Cardnell et al.
recently revealed the fundamental role that aerosols and water
clusters play in the photochemistry that takes place at altitudes
<70 km on Mars13,14 and the influence of molecules at altitudes
>100 km in the Martian atmosphere is well understood15,16.
However, the photochemistry of small CO2 clusters in the
interface between these extremes is not fully elucidated.

Ionospheric models and observations show that Oþ
2 is the

dominant ionic species in the lower Martian ionosphere.14,15,17

At these altitudes, O2 is believed to be primarily produced by
photodissociation of CO2 molecules18. However, the O2 densities
calculated by Lo et al.19 are an order of magnitude less than the
direct measurements indicating the presence of additional O2

sources. Therefore, to understand the mechanisms that lead to
such significant Oþ

2 production in a CO2-rich environment, it is
necessary to consider all photoreactions that may take place at
these altitudes.

The photochemistry that occurs at altitudes >70 km is sig-
nificantly influenced by solar soft X-rays20 as these can penetrate
deeper into the atmosphere and ionise atmospheric particles (e.g.
CO2 clusters). When a soft X-ray photon of sufficient energy
ionises a molecular cluster, an inner-shell electron can be ejected.
The excited cluster subsequently relaxes via Auger decay, result-
ing in the formation of a multiply-charged cluster ion21. The
stability of the cluster ion depends mainly upon its size22, and
clusters smaller than a critical size will dissociate in order to reach
energetic stability23. Previous studies have demonstrated that the
dissociation of small multiply charged CO2 cluster ions can
produce Oþ

2
24–27 and to date, the production of Oþ

2 from such
ionised CO2 clusters has been attributed to collision and
recombination processes of O+ with surrounding molecules in
the cluster24–26. However, these processes are only superficially
understood. Therefore, given the crucial role of Oþ

2 in atmo-
spheric chemistry a detailed study of the soft X-ray induced
dissociation of CO2 cluster ions into Oþ

2 is well motivated.
In this work, we present new insights into the production of

Oþ
2 ions from CO2 clusters, deduced with the help of a multi-

coincidence mass spectrometer28 and theoretical calculations. We
observe that soft X-ray ionised CO2 clusters consisting of a few
to ~100 molecules produce a significant amount of Oþ

2 . For the
range of cluster diameters (≤2 nm) in our study, ionisation is
expected to mainly take place on the surface of the cluster. Our

use of a position-sensitive detector at the end of the ion time-of-
flight spectrometer enables us to perform 3D-momentum ima-
ging of the ions produced in the cluster dissociation and we use
this information to interpret the dynamics of the photoreactions.
We found that multiple decay processes are accessible to unstable
doubly charged clusters and studied two distinct mechanisms that
lead to production of Oþ

2 ; both reactions exhibit a strong
dependence on the size of the precursor cluster. Ab initio quan-
tum chemical calculations were used to determine structures for
clusters, potential energy surfaces, and the structural evolution of
the doubly-ionised clusters as a function of size. The theory
provides a kinematic picture of the possible pathways accessible
in an exciting cluster dication, but most significantly, our calcu-
lations identify fundamental changes in the structure of the
cluster dications which are likely related to the emergence of the
different mechanisms for producing Oþ

2 . Thus, here we report an
enhancement in the yield of Oþ

2 produced from ionised CO2
clusters compared to the case of Oþ

2 production from ionised CO2
molecules29 and our results highlight that the mechanism for
producing Oþ

2 is closely related to the geometric structure of the
cluster dications. Our findings shed light on the importance of the
photochemistry of even the smallest particles present in planetary
atmospheres.

Results
The principle of our measurements is presented in Fig. 1a and
explained in more detail in the methods section. Briefly, X rays
intersect a beam composed of a mixture of free neutral CO2

molecules and clusters at the centre of a multi-coincidence 3D-
momentum imaging mass spectrometer28,30. Measurements are
only recorded upon detection of an electron, enabling detection of
each cluster ‘ionisation/fragmentation event’ independently. Two
ions detected during a single ‘ionisation/fragmentation event’ are
identified as ions measured in coincidence. Figure 1b depicts a
coincidence map of all ions detected following ðCO2Þ2þn cluster
fragmentation after ionisation at 320 eV (above the C1s edge).
The mean cluster size in the beam, Nmean, was about 20. The
relative intensities of the fragmentation channels resulting from
the dissociation of the unstable multiply-charged clusters21 are
reflected in this plot. The most prominent experimentally
observed fragmentation channels correspond to coincident
detection of ðCO2Þþm=ðCO2Þþn (m, n= 1, 2, 3, . . . ), i.e. related to
the dissociation of clusters into smaller (singly-charged) units, in
agreement with previous studies21,31. The next dominant frag-
mentation channel is associated with intra-cluster reactions
related to Oþ

2 production; these channels are of the type-
Oþ

2 =ðCO2Þþm (m= 1, 2, 3, . . . ). The yield of Oþ
2 production from

clusters is clearly distinct from that observed following the photo
dissociation of free CO2 molecules at 320 eV. In the case of free
doubly-charged CO2 molecules, bond rearrangement before
fragmentation leads to the production of the Oþ

2 =C
þ pair, and the

yield of Oþ
2 from this process is below 1% at this photon energy29.

The pie chart in Fig. 1c clearly shows that the yield of Oþ
2 =ðCO2Þþm

channels in clusters is significantly larger than the molecular
Oþ

2 =C
þ channel, despite an ~10 times higher fraction of isolated

molecules in the beam (see Supplementary Table 1). The strong
enhancement of Oþ

2 production clearly originates from the
clusters rather than from the molecular portion of the beam.

To understand the dynamics of the photochemical reactions
leading to this enhancement, we analysed a subset of our data,
namely the Oþ

2 =CO
þ
2 channel (the dominant channel in the pie

chart in Fig. 1c). The imaging capability of our spectrometer
allows the 3D momenta of individual ions to be determined and
hence, the momentum correlation between ionic fragments can
be mapped. The dissociaton of these doubly-charged clusters may
also produce additional neutral fragments which cannot be
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detected by our system. However, the momenta of these frag-
ments are encoded in the kinematics of the detected ions and can
be extracted using the following approach: The momentum of the

undetected cluster fragments is defined as Pres
�! ¼ �∑j Pj

!
where j

denotes the measured ions and by using a framework for a three-
body break up, the momentum correlation between the measured
ions and the undetected particles can be visualised using a Dalitz
plot32,33.

Figure 2 shows the evolution of the Dalitz plot for two different
average cluster sizes, Nmean ~4 and ~20. The coordinates are given
by ϵi ¼ j~Pij2=∑ij~Pij2 for each particle i. For small cluster sizes,
Nmean ~4, a distribution can be observed on the left-hand side of
the plot where the momenta of Oþ

2 and of the residual cluster
fragments are strongly anti-correlated; we refer to this as region A
(highlighted in red in Fig. 2). The fragments associated with this
region are produced sequentially as follows:

ðCO2Þ2þk ! Tþ þ COþ
2 ! ::: ! X þOþ

2 þ COþ
2 ð1Þ

where T+ represents a short-lived transient species that under-
goes fragmentation. As the COþ

2 ion is produced first, its
momentum is uncorrelated to Oþ

2 and the undetected residual
cluster fragments, X.

For slightly larger cluster sizes (Nmean ~20), a broad distribution
appears on the right-hand side of the Dalitz plot; we denote this
region B (highlighted in blue in Fig. 2). A continuous distribution
that extends between regions A and B is also evident in the plot.
For fragments associated with region B, the momentum of COþ

2
and of the residual cluster fragments are strongly anti-correlated
and the momentum of Oþ

2 is uncorrelated. This corresponds to a
sequential fragmentation process

ðCO2Þ2þk ! Tþ þ Oþ
2 ! ::: ! X þ COþ

2 þ Oþ
2 : ð2Þ

The analysis of the coincidence data using the Dalitz plot
provides strong evidence that the yield of Oþ

2 arises mainly due to
sequential fragmentation. In one case, leading to prompt ejection
of Oþ

2 , in the other case with a delay. The Dalitz plot for the
Oþ

2 =ðCO2Þþ2 channel also shows prompt emission of Oþ
2 (see

Supplementary Figure 3). The previously proposed mechanism in
the literature24–26 for the formation of ðCO2ÞmOþ

2 species,

invoking collision and recombination of O+ with surrounding
molecules in the cluster, is not sufficient to explain the signatures
of multiple processes observed in the Dalitz plots.

To investigate the competition between the multiple-
fragmentation channels, we look at the ratio of measured events
in regions A and B in the Dalitz plots that were generated for
different mean cluster sizes. Figure 2b shows the cluster-size
dependence of this ratio. A small cluster sizes region A is
dominant, indicating a preference for sequential breakup up with
a delayed emission of Oþ

2 . As the cluster size increases to Nmean
~11, region B becomes dominant in the Dalitz plot, favouring a
sequential breakup up with prompt emission of Oþ

2 . Thus, we
conclude that the fragmentation channel contributing to region B
is sensitive to the size of the parent cluster and we find that it is
only present when Nmean > 4. The results of our quantum che-
mical calculations (see Methods) across a wide range of cluster
sizes indicates a structural transition around size N= 11. We find
that doubly-charged clusters with only a few molecules form a
covalently-bonded species of a specific structure, which we sub-
sequently name “2Y-structures”. In contrast doubly charged
clusters composed of more than 12 molecules stabilise as closed-
shell polyhedral structures (see Supplementary Note 3). There-
fore, our results indicate that the fragmentation channel con-
tributing to region B in the Dalitz plot is activated when the
closed-shell polyhedral structure is formed.

To gain deeper insight into the multiple reaction mechanisms
leading to the formation of the Oþ

2 =CO
þ
2 channel, we performed

ab initio molecular dynamics (AIMD) simulations of the first few
hundred femtoseconds after ionisation of a ðCO2Þ2þ5 —our test
model. The simulations reveal that there are two different primary
mechanisms leading to the formation of Oþ

2 from doubly-ionised
ðCO2Þ2þ5 cluster. The first of these involves the formation of
complex ðCO2Þ2þm structures (see Fig. 3a), whilst the second
mechanism is invoked after dissociation of a CO2 molecule and
subsequent intracluster reactions with surrounding CO2 molecules
(see Fig. 3b). Comparison of the yield ratio between different
fragmentation channels as determined from our AIMD simula-
tions is in agreement with our observations and thereby confirms
the validity of our model. This leads us to an estimate of the

Fig. 1 Principle of the measurement. a Schematic of the experiment showing a typical double-ion coincidence measurement. After ionisation, the detection
of an electron, Detector1, triggers the acquisition system and the arrival time-of-flight (TOF) of the ions and their positions are recorded on Detector2,
allowing us to determine the momentum of individual ions. b Two-dimensional coincidence map of Ion1 TOF vs Ion2 TOF produced following ionisation of
CO2 clusters (Nmean ~ 20) at 320 eV. The data is filtered to remove false coincidences. The cluster dissociation channels are shown, together with an
expanded view of the Oþ

2 /CO
þ
2 channel. c Pie chart indicating the dissociation channels that lead to Oþ

2 production from clusters (Nmean ~ 20) along with
the Oþ

2 =C
þ channel. In free CO2 molecules, Oþ

2 =C
þ is the only channel that can produce Oþ

2 , however, in clusters this channel is overshadowed by the
dominating Oþ

2 =ðCO2Þþm channels (m= 1, 2, . . . , 10).
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internal energy remaining in the cluster after photoionisation -
which is on the order of several tens of eVs (see Supplementary
Note 6).

In order to unravel the energetic aspects of these mechanisms,
we also explored the potential-energy surfaces (PES) involved in
producing these fragments, thus identifying intermediate species
and transition states in the paths that lead to the Oþ

2 =CO
þ
2 exit

channel (see Supplementary Note 4). When a neutral cluster is
irradiated with X-rays, the ionisation of a molecule in the cluster
creates a localised core–hole state. The singly-charged cluster will
very likely emit a second electron to fill the inner-shell vacancy,
and this creates a second vacancy in either the same molecule via
Auger decay or in the neighbouring molecule for instance
through Intermolecular Coulombic Decay34–42. This type of non-
local Auger decay leads to rapid redistribution of the charge and
of electronic excitation in the cluster ðCO2Þ2þm . In the upper panel
of Fig. 4, we illustrate a mechanism starting from ðCO2Þ2þ4 —an
example of a fragmentation pathway after charge and energy
redistribution. The most favourable channel corresponds to the
fragmentation of the cluster into 2COþ

2 þ 2CO2, in agreement
with the experimental results. The PES indicates other pathways
that are accessible in clusters with internal energy on the order of
~1–2 eV. In this case, stable structures corresponding to cova-
lently bonded ðCO2Þ2þ4 are formed. With additional internal
energy, a variety of intra-cluster chemical reactions can be acti-
vated from this structure. We follow the pathways of these

reactions and find that they result in two endothermic reactions,
asymptotically reaching the dissociation channels Oþ

2 =CO
þ
2 and

Oþ
2 =CO

þ; both of these are observed in the experiments.
A local Auger decay creates a doubly ionised molecule within

the cluster, CO2þ
2 , which is surrounded by several neutral CO2

molecules. The excess positive charge within a single molecule
facilitates the molecular Coulomb Explosion, which creates O+

and CO+ fragments with substantial kinetic energy. The sur-
rounding neutral molecules act as a cage, increasing the prob-
ability of recombination of O+ in the cluster. This in turn results
in the production of Oþ

2
43–45 through the formation of the

OCOO+ ion46,47 or other more complex structures. Ultimately a
charge-transfer process takes place between the CO+ fragment
and one of the molecules in the cage, producing COþ

2
48,49. The

PES in the lower panel of Fig. 4 shows the path toward pro-
duction of Oþ

2 =CO
þ
2 in an exothermic process. Note that the

charges of (metastable) CO2þ
2 can be delocalised due to interac-

tion with surrounded molecules, opening the exothermic channel,
which eventually results in smaller singly-charged cluster units.

Discussion
Our experimental and theoretical results unambiguously indicate
that the Oþ

2 ion production in CO2 clusters is the result of rich
photochemistry, and includes multiple mechanisms which cannot
be explained by the models proposed in the literature. To gauge
the relative importance of these mechanisms, we investigate the
endothermic and exothermic reactions as the cluster size grows.

In Fig. 5, the yields of Oþ
2 in different channels relative to the

Oþ
2 yield in free molecules as a function of the cluster size are

shown. All yields present a steep increase in the small cluster
range, from ~4 to ~10 molecules. The yield of Oþ

2 =CO
þ, which

arises from an endothermic reaction with a high activation bar-
rier, reaches a peak around 10–20 molecules, then decreases
gradually to a constant level for larger clusters. This behaviour
reflects the residual (internal) energy being redistributed as heat
among a growing number of degrees of freedom as the cluster size
increases. Above a critical size, this internal energy is not suffi-
cient to pass the activation barrier, leading to the almost complete
extinction of this channel.

The total Oþ
2 =CO

þ
2 yield exhibits a peaked structure with

contributions from different types of reactions. Similar to the
Oþ

2 =CO
þ channel, an endothermic reaction can be expected as

Fig. 2 Sequential cluster dissociation processes forming Oþ
2 . a Dalitz plot (guide for interpretation is provided in Supplementary Fig. 2) showing the

momentum distribution between the fragments in the Oþ
2 =CO

þ
2 channel for different mean cluster sizes (Nmean). In the centre, we schematically show the

three-body dissociation of the mother cluster into Oþ
2 , CO

þ
2 and the undetected residual cluster fragment. For smaller cluster sizes Nmean ~4, we observe a

distribution labelled region A (in red, left-hand side of Dalitz plot), for larger cluster sizes a second distribution labelled region B (in blue) appears to the
right. b The cluster-size dependence of the intensity ratio between region A and region B from the Oþ

2 =CO
þ
2 channel. The error bars for the Nmean values

are calculated as described in Harnes et al65. The geometry of the doubly-charged cluster evolves from a 2Y-structure for small clusters to a polyhedral
structure for cluster sizes above 11.

Fig. 3 Snapshots of molecular dynamics trajectories. Starting from a
ðCO2Þ2þ5 cluster leading to the formation of COþ

2 þ Oþ
2 a through the

formation of a covalently-bonded structure and b through O+/CO+. The
arrow indicates the site of subsequent bond formation in each step.
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predicted by our theoretical results. The significant yield of Oþ
2

that remains for the larger clusters is the signature of an exo-
thermic reaction due to intra-cluster collisions. A detailed study
of the exothermic reaction is beyond the scope of this paper. As
the mean cluster size increases, a multitude of competing frag-
mentation channels involving ðCO2Þþm (m ≥ 3) units become
accessible. However, the yield of these channels involving larger
fragments in coincidence with Oþ

2 is limited by the experimental
detection efficiency and can result in aborted coincidence events50
with only Oþ

2 measured. Therefore, in Fig. 5 we present the total
yield of Oþ

2 to account for all possible fragmentation channels.

The total yield of Oþ
2 behaves essentially as a step function, with a

slight maximum between Nmean ~10 and ~20 molecules. This
behaviour indicates that there is a minimum size required to
activate the exothermic reaction. The efficiency of the reaction is
then roughly constant for large clusters, even beyond the critical
size for the formation of stable doubly-charged species.

In summary, we observe that the interaction of soft X-ray
radiation with CO2 clusters results in an enhanced yield of Oþ

2
compared to the case of free molecules. We specifically investi-
gate: (i) a sequential fragmentation process that involves prompt
emission of COþ

2 , followed by Oþ
2 emission, and (ii) the opposite

sequence—initial loss of Oþ
2 followed by loss of COþ

2 . The relative
importance of these two processes is observed to depend upon
cluster size and our theoretical modelling indicates that a struc-
tural transition of the cluster dication from the 2Y shaped
covalently bonded structure to the polyhedral shaped weakly
bonded structure is the origin of this dependence. Using quantum
chemistry calculations we explored the pathways that lead to Oþ

2
production and compared this to our experimental Oþ

2 yield. The
results reveal that an exothermic reaction is relevant for the case
of localised charged states of the cluster. In contrast, for deloca-
lised charged states we find that two endothermic reactions play
a role.

In CO2 rich atmospheres, when the conditions are favourable
for CO2 cluster nucleation, these clusters may strongly influence
the photochemistry that takes place. Our results demonstrate that
the Oþ

2 yield will be at least 100 times enhanced compared to the
case when only uncondensed CO2 molecules are present in the
atmosphere. In analogy to the Martian photochemical models
used to simulate the behaviour of water clusters at low altitudes14,
the work presented here highlights the need to consider the
potential influence of CO2 clusters at higher altitudes.

Methods
The experiments were performed at the soft X-ray beamline I411 at MAX-lab,
Lund, Sweden. We used a multi-ion coincidence 3D momentum imaging spec-
trometer described in Laksman et al.28 and a specially developed data analysis
package for clusters30,51. CO2 clusters were produced using supersonic nozzle
expansion of gaseous CO2. The mean cluster size in the beam was estimated using
the Γ* formalism (see Supplementary Note 1). The photon energy was kept con-
stant at 320 eV, about 20 eV above the C 1s ionisation edge. Since we study the
photodissociation of the doubly-charged cluster ion, only double coincidence data

Fig. 4 Possible paths that a ðCO2Þn cluster can follow after core-electron ionisation followed by Auger emission. (i) Charge and internal energy are
redistributed along the cluster, which leads to the formation of stable ðCO2Þ2þ4 —2Y structures—in the potential energy surface. (ii) Coulomb explosion of a
single molecule CO2þ

2 ! Oþ þ COþ, which leads to the reaction of both charged species with the surrounding CO2 molecules. Relevant points in the
potential energy surface leading to the most important channels are shown, energy values are given in eV and refereed to the neutral cluster.

Fig. 5 Relative increase of Oþ
2 yield from CO2 clusters with reference to

CO2 molecules. Experimental Oþ
2 yields as a function of the mean cluster

size (Nmean) for events in coincidence with CO+ ion (green) or COþ
2 ion

(blue), and for all Oþ
2 events (red) including single ion events. The yields

are normalised to the Oþ
2 yield from the molecule given by the coincidence

signal Oþ
2 =C

þ. The dotted line shows the formation of a stable doubly-
charged cluster above the critical size22 of Nmean= 44.
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with two ions detected simultaneously was used. The ionisation probability is
assumed to be a Poisson distribution, the statistical error for sample size N is
estimated to be

ffiffiffiffi

N
p

. Further information about the experimental technique and
data processing can be found in Supplementary Note 2.

The Dalitz plots at different cluster sizes were filtered to plot the ratios of a
number of events in regions A and B in Fig. 2b. The kinetic energy (KE) filters used
to define regions A and B

● Region A: KEOþ
2
≤ 20:99 eV and KECOþ

2
≤ 0:15 eV

● Region B: KEOþ
2
≤ 0:37 eV and KECOþ

2
≤ 15:27 eV

From the theory side, neutral structures up to 13 CO2 molecules were taken from
Takeuchi’s work52 and re-optimised using density functional theory (DFT), in
particular with the Minnesota functional M06-2X53 and the Pople basis set 6-31+
+G(d)54–56. Vertical Ionisation Potentials, cationic and dicationic structures and
the PES exploration for the most interesting channels were obtained at the same
level of theory. We have checked the accuracy of the relative energies computed at
this level of theory by comparing them with results obtained at a much higher level
of theory, namely DLPNO-CCSD(T)/def2-TZVP57–59, for one of the computed
mechanisms (see Supplementary Note 4). In order to study the temporal evolution
of the doubly-ionised excited clusters, ab initio molecular dynamics simulations
were performed using the Atom-centred Density Matrix Propagation (ADMP)
formalism60–62. Trajectories have been carried out at a DFT level of theory, also
using the M06-2X functional with the 6-31++G(d) basis set. All simulations were
performed with a time step of Δt= 0.1 fs, a fictitious mass of μ= 0.1 a.u., and a
maximum propagation time of tmax = 200 fs. A typical excess/excitation internal
energy, Eexc= 25, 40 and 50 eV, was used to consider states prepared upon ioni-
sation. For each value of excitation energy, 100 trajectories have been carried out.
All the calculations were performed using the Gaussian16 programme63, except the
CCSD(T) ones that were carried out using Orca 5.0 programme64.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The package we used for data cleaning and analysis is provided in a public repository. It
is available at https://github.com/gasfas/ANACONDA_2.git.
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