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Machine learning for laser-induced electron
diffraction imaging of molecular structures
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Ultrafast diffraction imaging is a powerful tool to retrieve the geometric structure of gas-

phase molecules with combined picometre spatial and attosecond temporal resolution.

However, structural retrieval becomes progressively difficult with increasing structural

complexity, given that a global extremum must be found in a multi-dimensional solution

space. Worse, pre-calculating many thousands of molecular configurations for all orientations

becomes simply intractable. As a remedy, here, we propose a machine learning algorithm

with a convolutional neural network which can be trained with a limited set of molecular

configurations. We demonstrate structural retrieval of a complex and large molecule,

Fenchone (C10H16O), from laser-induced electron diffraction (LIED) data without fitting

algorithms or ab initio calculations. Retrieval of such a large molecular structure is not

possible with other variants of LIED or ultrafast electron diffraction. Combining electron

diffraction with machine learning presents new opportunities to image complex and larger

molecules in static and time-resolved studies.

https://doi.org/10.1038/s42004-021-00594-z OPEN

1 ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain. 2 ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain. ✉email: jens.biegert@icfo.eu

COMMUNICATIONS CHEMISTRY |           (2021) 4:154 | https://doi.org/10.1038/s42004-021-00594-z | www.nature.com/commschem 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-021-00594-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-021-00594-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-021-00594-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-021-00594-z&domain=pdf
http://orcid.org/0000-0003-0758-1541
http://orcid.org/0000-0003-0758-1541
http://orcid.org/0000-0003-0758-1541
http://orcid.org/0000-0003-0758-1541
http://orcid.org/0000-0003-0758-1541
http://orcid.org/0000-0002-2491-1672
http://orcid.org/0000-0002-2491-1672
http://orcid.org/0000-0002-2491-1672
http://orcid.org/0000-0002-2491-1672
http://orcid.org/0000-0002-2491-1672
http://orcid.org/0000-0002-7349-4887
http://orcid.org/0000-0002-7349-4887
http://orcid.org/0000-0002-7349-4887
http://orcid.org/0000-0002-7349-4887
http://orcid.org/0000-0002-7349-4887
http://orcid.org/0000-0002-9256-8714
http://orcid.org/0000-0002-9256-8714
http://orcid.org/0000-0002-9256-8714
http://orcid.org/0000-0002-9256-8714
http://orcid.org/0000-0002-9256-8714
http://orcid.org/0000-0002-7556-501X
http://orcid.org/0000-0002-7556-501X
http://orcid.org/0000-0002-7556-501X
http://orcid.org/0000-0002-7556-501X
http://orcid.org/0000-0002-7556-501X
mailto:jens.biegert@icfo.eu
www.nature.com/commschem
www.nature.com/commschem


The retrieval of complex molecular structures with electron
or X-ray diffraction is challenging due to the multi-
dimensional solution space in which a global extremum

has to be found1 to extract structural information from the dif-
fraction data. Simple convergence strategies are readily imple-
mented for small molecules, but such methods quickly become
intractable for complex systems. For example, relativistic 3.7 MeV
ultrafast electron diffraction (UED) time resolved the ring-
opening reaction of 1,3-cyclohexadiene, but the method could not
identify the complex transient structure beyond 3 Å, which is
expected to arise from three possible isomers2. X-ray diffraction
imaging with free-electron laser pulses requires a careful balance
between sufficient beam brightness and avoiding structural
damage by the strong X-ray pulses3–5. Such issues severely limit
the number of studies and necessitate ab initio calculations6–8.
Laser-induced electron diffraction (LIED)1,9–22 is a powerful
laser-based UED method that images even singular molecular
structures with combined sub-atomic picometer and
femtosecond-to-attosecond spatiotemporal resolution. Here the
challenge of structural retrieval arises from the strong-field nature
of self-imaging the structure1,16–18,20,23,24 by recolliding a laser-
driven attosecond wavepacket after photo ionization. In LIED, an
electron wave packet is: (i) tunnel ionized from the parent
molecule in the presence of strong laser field; (ii) accelerated and
driven back by the oscillating electric field of the laser; and (iii)
rescattered against the parent ion’s atomic cores. The geometrical
information of the target nuclei is encoded in the detected
momentum distribution of rescattered electrons. LIED often uses
the quantitative rescattering (QRS) theory13,14 to retrieve the
structure of simple molecular systems. The QRS theory enables
the extraction of field-free elastic electron scattering cross-
sections from electron rescattering measurements performed
under the presence of a strong laser field. The molecular structure
is embedded onto the momentum distribution of the highly
energetic rescattering electrons. But for large and complex
molecular structures, the QRS retrieval quickly becomes intract-
able due to the difficulty in identifying a unique solution in the
multi-dimensional solution space. A somewhat remedy is found
by reducing the dimensionality of the problem with FT-
LIED1,17,24,25. Nevertheless, a multi-peak fitting procedure is
needed to identify bond distances. Such an approach becomes
ambiguous when the radial distribution function does not exhibit
clear and separable structures. We note that similar problems
arise in essentially all implementations of structural imaging and
many retrieval algorithms severely limit the size of the molecular
system under investigation.

To overcome these limitations, we employ a machine learning
(ML) algorithm for LIED (ML-LIED) to accurately extract the
three-dimensional (3D) molecular structure of larger and more
complex molecules. The ML-LIED method avoids the use of chi-
square fitting algorithms, multi-peak identification procedures,
and ab initio calculations. The method draws from the inter-
polation and learning capabilities of ML which significantly
reduces the required molecular configurations to train the system
for a much larger solution space. We demonstrate our method’s
capability by extracting a single accurate molecular structure with
sub-atomic picometer spatial resolution on the symmetric top
linear system acetylene (C2H2), an asymmetric top 2D system,
carbon disulfide (CS2) and a complex large 3D system,
(+)-fenchone (C10H16O). For the specific problem of LIED, we
employ ML with a convolutional neural network (CNN). Com-
paring with the commonly used artificial neural networks such as
a fully connected neural network26 or recurrent neural network
(RNN)27, the CNN is well suited for problems in image recog-
nition to identify subtle features from an image at different levels
of complexity similar to a human brain28,29. ML algorithms are

usually trained either with supervised or unsupervised learning.
Under the supervised learning scenario, both the classification
and regression methods are commonly chosen. The classification
method is generally used to predict a specific category of data,
such as in facial recognition29 and crystal determination30. Here,
we implement the regression method to quantitatively extract the
structural parameters that identify the molecular structure. The
molecular structure is found via the relationship between the
molecular configuration and the molecular interference signal
through the corresponding two-dimensional differential cross-
sections (2D-DCSs) from its database. Using 2D-DCSs as an
input, our ML algorithm takes full advantage of the complete
molecular interference signal rather than only considering a one-
dimensional (1D) portion of the interference signal as is typically
used in other methods16,17. Moreover, the ML CNN is capable to
interpolate between samples in the database of precalculated
structures to provide a meaningful configuration to measured
data. This feature of ML CNN is especially important to identify
large and complex molecular structures, since it is simply
impossible to calculate all possible molecular structures with
sufficient structural resolution and due to the many degrees of
freedom. We show a sufficiently reduced database suffices, which
only considers (i) changes in a few important groups of atoms
and (ii) a molecule-wide global change, allowing the algorithm to
learn the relationship between the molecular structures and
corresponding interference signals in our input database. Thus,
our ML model, together with the CNN algorithm and regression
method, provides a new way forward to identify the structure of
large complex molecules and transient structures with similar
geometric configurations in time-resolved pump-probe
measurements.

This paper starts with a description of the ML scheme for
LIED, followed by details on our ML model’s training with a
CNN and its subsequent validation. We then predict the mole-
cular structure of C2H2 and CS2 using the ML algorithm and
experimental LIED data, followed by a comparison of the ML-
predicted molecular structures to those retrieved with the QRS
method. We then demonstrate our ML model’s capability to
accurately predict the 3D molecular structure of (+)-fenchone,
which failed to retrieve with FT-LIED and QRS-LIED. Lastly, we
discuss the advantages, limitations, and many applications of the
ML framework in retrieving large complex gas-phase molecular
structures in the context of structural retrieval and time-resolved
imaging of chemical reactions.

Results
ML scheme for LIED. We employ machine learning (ML as an
image recognition system to predict the measured molecular
structure, a schematic of which is shown in Fig. 1. We start by
generating a database containing the 3D Cartesian coordinate of
each atom in thousands of different molecular structures (as
labels), spanning a coarse array of possible structures. For each
structure, we generate the corresponding 2D-DCS map (stored as
images in the database) by calculating the DCS of the elastic
scattering of electrons on atoms in the molecule using the inde-
pendent atomic model (IAM)14,31,32. The 2D-DCSs are calculated
as a function of the electron’s return energy (i.e., energy at the
instance of rescattering) and rescattering angle (i.e., the change in
angle caused by rescattering). The measured 2D-DCS signal, σtot,
is comprised of two components: (i) the incoherent sum of
atomic scatterings, σatom, and (ii) a modulating coherent mole-
cular scattering signal, σcoherent, which is approximately one order
lower than σatom, i.e. σtot= σatom+ σcoherent. Here, the σatom signal
contributes as a background signal to our total scattering signal
and it depends on the number and types of atoms but it is
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independent of the molecular structure. The two-center σcoherent
signal is dependent on the internuclear distance between two
atoms. Next, we subtract the slowly varying background from the
2D-DCS maps of the ML database33,34 and from the measured
data to enhance the DCS. We note that the exact functional form
for the subtraction is irrelevant as it is applied to database entries
and data. For simplicity, one can use the equilibrium structure for
a known molecular system. This procedure leads to clearly visible
fringe patterns in the resulting difference 2D-DCS maps. We
show them for the two small molecules in Fig. 1b, c. These fringe
patterns are unique to the individual molecular configuration,
making it significantly easier for the machine algorithm and its
neural network to find the relationship between the molecular
structures and their corresponding 2D-DCS maps. The database
is split into three datasets to train, validate and test the model (see
Fig. 1a). The training set trains the ML model to find the rela-
tionship between the molecular structures and their corre-
sponding 2D-DCSs. The validation set is then used to assess the
accuracy of the model during the training process and to deter-
mine the hyperparameters for training the model, ensuring that
the trained model is not overfitting or underfitting the validation
data. After the training process, the final model’s quality and
reliability are tested using the test set of molecules, which we have
previously measured with LIED, C2H2 and CS2. Once the model
is validated, we use the experimental 2D-DCS map as the input
for our ML model to extract the molecular structure that most
likely corresponds to the measured LIED signal (see Table 1).

CNN training of ML algorithm. Our ML algorithm utilizes a
CNN to discriminate subtle features between the 2D-DCS maps,
which are used as the algorithm’s input data. The architecture of
CNN is composed of two parts: convolutional layers and a fully
connected neural network. A 2D-DCS map is first passed through
the convolutional layers to extract features using different con-
volution filters, convoluted across every source pixel of the input
map. The filters provide various feature maps that possess distinct

subtle features present in the 2D-DCS map, making the image
recognition process more efficient (see Fig. 2a). The collection of
feature maps is the output of the convolution process, subse-
quently used as the input of the fully connected neural network
(see Fig. 2b). The neural network consists of layers, and each layer
contains neurons (blue circles) comprising of different weighting
factors, wi. These weighting factors across all the connected layers
in the neural network ultimately determine the relationship
between the 2D-DCS and the molecular structure. The collection
of features maps is first flattened to a 1D array and then multi-
plied by each neuron’s weight in the first layer. The atomic
position’s predicted value is calculated from all the weights in
each neuron within all layers (see Fig. 2b). At the final layer, the
predicted value is compared to the real value through the cost
function (see Fig. 2c), given by

Cost ¼ 1
2
ðypre� yrealÞ2 ð1Þ

where ypre and yreal are the predicted and real values of the atom’s
position, respectively. This whole procedure is iterated (from
Fig. 2a–c) to minimize the difference between the predicted and
real value of the atomic position and to minimize the cost func-
tion. At each iteration, the filters and weights are optimized. The
new optimized weight, ωiter+1, in each iteration is calculated by
subtracting the partial derivative of the cost function from the

Fig. 1 Machine learning schematic. a A database of molecular structures and their corresponding simulated 2D-DCSs are split into three sets: training,
validation, and test sets. Here, the simulated 2D-DCS maps are calculated via the independent atomic model (IAM). Once the machine learning (ML)
model is validated, the experimental 2D-DCS map is used as an input to predict the molecular structure that most likely contributes to the measured
interference signal. b, c Exemplary simulated difference 2D-DCS maps for four structures of carbon disulfide (b) and acetylene (c) calculated from
subtracting the corresponding 2D-DCS of the equilibrium molecular structure33,34. Fringe patterns are visible, enhancing the difference in the elastic
scattering signal for the different molecular structures. The molecular coordinates (used as labels in ML algorithm) for C2H2 (a) and CS2 (b) molecules in
Cartesian and polar coordinates, respectively.

Table 1 Machine learning C2H2 and CS2 predicted structures.

Parameter Equilibrium QRS ML

C2H2 RCC (Å) 1.2034 1.24 ± 0.0416 1.23 ± 0.11
RCH (Å) 1.0634 1.10 ± 0.0316 1.08 ± 0.03

CS2 RCS (Å) 1.5533 1.86 ± 0.2320 1.87 ± 0.14
θSCS (Å) 18033 104 ± 20.220 104.7 ± 6.4

The machine learning (ML) predicted results are compared to those retrieved by the
quantitative rescattering (QRS) model16,20 and to the equilibrium structure30,31 of the
corresponding neutral molecule in its ground electronic state.
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current weight, ωiter+1, as shown in Eq. (2).

ωiterþ1
i ¼ ωiter

i � α
∂Costiter

∂ωiter
i

ð2Þ

Figure 2c shows a schematic contour plot of the cost function
with respect to the two weights (ωi and ωi+1). The evolution of
the cost value (blue dots) after five iterations is shown. The
change in gradient of the cost function is also given by the red
arrows, with the arrow length illustrating the step size taken at
each iteration, called the learning rate (α). The weights are
randomly initialized at the beginning. After five iterations, we
observe a decrease in the cost function, which indicates that the
model is optimized and that the predicted values are close to the
real values. In reality, our CNN model calculates a cost function
based on thousands of parameters (e.g., weights, biases, filters)
instead of only two weights, as discussed above. At each iteration,

all the parameters are simultaneously updated and optimized to
minimize the cost function and the difference between predicted
and real value. This capability is unique to the ML CNN and does
not exist for simple regression methods or evolutionary
algorithms.

Training and evaluation of ML model. We next evaluate the
accuracy of the predicted molecular structure generated by our
ML model during and after the training process. Training, vali-
dation, and testing sets are generated from the normalized dif-
ference DCS maps and their molecular structures (see
Supplementary Note 1 and 2). We use the mean absolute error
(MAE) during the training process, also known as the prediction
error, to evaluate the model’s accuracy using the training and
validation data. 3a shows the reduction in the MAE with an
increasing number of times an entire dataset is iterated through
the neural network during the model’s training, referred to as the

Fig. 2 CNN training of ML algorithm to predict molecular structure. a The 2D-DCS is convoluted by different filters to generate a collection of feature
maps. b The collection of feature maps is first flattened into a one-dimensional array and multiplied by the weights in each neuron of all layers to predict
the atomic position for each atom in the molecule. c Contour plot of the cost function for two weights (ωi and ωi+1). The blue dot represents the cost
function value, and the red arrows show the direction of the gradient of the cost function. After five iterations, the cost function is minimized.

Fig. 3 Evaluating the machine learning results during and after the training process. a Mean absolute error (MAE) obtained for each iteration number
that the neural network convolutes the training and validation sets of our simulated data. The MAE obtained with the test data is indicated by the red cross.
b Correlation between normalized experimental and theoretical two-dimensional differential cross-section (2D-DCS), reshaped into a 1D array. A linear fit
(blue dashed line) and the 90% confidence interval (blue shaded area) using the bootstrapping method are applied to the correlated scatters. A Pearson
correlation coefficient of 0.94 is obtained, indicating a strong correlation between the two data. c Predicted structural parameters obtained by machine
learning.
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iteration number. With increasing iteration number, the MAE
converges to a constant value of ~0.016 for both the training and
validation sets of data, confirming that the model is well-trained,
predicting a structure very similar to that of the input. Moreover,
a similar MAE for both sets of data signifies that the model does
not overfit or underfit the data. Once we find a converged MAE,
we use the test data to evaluate the ML’s reliability and accuracy
after the training process assuming no knowledge of the input
molecular structure to mimic our experimental data. Here, we use
the 2D-DCSs of the test set as our input to generate the predicted
structures. These predicted structures are then compared to the
molecular structures from the test set of the input data. We obtain
a MAE of ~0.015 using the test data (red cross in Fig. 3a), which
is in good agreement with the converged MAE value (~0.016)
achieved at the end of the training process using the training and
validation datasets. This MAE value confirms that our final ML
model is accurate and reliable. We then predict the molecular
structure from our measured DCS using a normalized difference
map as our ML model’s input. The normalized difference map
comprises the normalized experimental 2D-DCS subtracted by
the normalized theoretical 2D-DCS of the equilibrium
structure33,34. The normalization process ensures that the
experimental and theoretical DCS values are on the same order of
magnitude. We also avoid the need for a fitting factor as is
typically used in QRS-LIED (see Supplementary Note 3). The
molecular structure predicted by our ML model and the experi-
mental DCS input is then used to calculate its corresponding
theoretical 2D-DCS. We then evaluate the correlation between
the normalized theoretical and experimental 2D-DCS using the
Pearson correlation (see Supplementary Note 4). We obtain a
Pearson correlation value of 0.94 (see Fig. 3b), which indicates
that both DCSs are strongly correlated and that the predicted
molecular structure is accurate and reliable.

Extracting measured molecular structure with ML. As a first
step, we test the ML framework by applying it to the small linear
symmetric top and non-linear asymmetric top molecules, whose
structure we have previously determined with LIED. We extract
the molecular structure of CS2 and C2H2 from the experimental
2D-DCS using our ML model trained on five separate datasets.
Figure 3c shows the average structural parameters of the so
determined structure for C2H2 (CS2) of RCC= 1.23 ± 0.11 Å and
RCH= 1.08 ± 0.03 Å (RCS= 1.87 ± 0.14 Å and θSCS= 104.7 ±
6.4°). These values are in excellent agreement with the values
retrieved by the QRS model; see the comparison in Tab. 1. After
training our ML model on five separate datasets, the predicted
structures vary slightly. This is because the neural network during
the training process uses a random number generator to select the
input–target pairs of data. Thus, each neuron’s corresponding
initial weights and biases are also randomly chosen, leading to
slightly different starting conditions in the CNN training of the
ML model. Using random initial conditions for the neurons
ensures that systematic errors are minimized. In addition, we
generated predicted structures from the ML model, trained on
five separate occasions, to ensure the reliability of the predicted
values. We find that the uncertainty in our ML-predicted struc-
tural parameters arise from two contributions: the predicted
model error and the experimental statistical error. The predicted
model error is obtained by calculating the MAE between the
absolute and calculated value of the structural parameter using
the test set as described earlier. The experimental error arises
from the standard error in our experimental DCS, following a
Poissonian statistical distribution (see Supplementary Note 5).
We include the experimental error into the predicted values using
a modified experimental DCS that contains the extrema of the

experimental error. Then, we study the variance in the predicted
structure that includes the experimental error relative to the
original unmodified experimental DCS. This procedure leads to
extracted structures with picometer accuracy.

Extracting complex 3D molecular structure. With the successful
retrieval of the smaller 1D and 2D molecules, we put our ML
framework to the test to extract the structure of gas-phase
(+)-fenchone (C10H16O; 27 atoms), measured with LIED. For
such a large and complex 3D molecule, the ML has the decisive
advantage to interpolate and learn between the course grids of
precalculated structures and to take into account a manifold of
degrees of freedom in the solution space. Thus, we can use a
sufficiently reduced database that only considers (i) four groups
of atoms of the molecule (see inset of Fig. 4a) and (ii) a molecule-
wide global change in structure. Next, we train our ML model to
find the relationship between the molecular structures and cor-
responding 2D-DCSs with such reduced database. This approach
drastically minimizes computational time. Figure 4a shows the
MAE achieved at each iteration number using the neural network,
convolved with training and validation sets of simulated data.
This achieves a MAE of 0.02. Consequently, Fig. 4b shows a
strong correlation between the experimental and predicted the-
oretical 2D-DCS with a Pearson correlation coefficient of 0.94. As
example, Fig. 4c shows the extracted (x, y, z) 3D Cartesian
coordinates of seven atoms of (+)-fenchone (green circles). We
find that the ML-LIED-measured (+)-fenchone structure shows
only slight deviations from the equilibrium ground-state neutral
molecular structure (red triangles) which are involuntarily caused
by the presence of the LIED laser field. The degree of uncertainty
of the predicted 3D positions (green circles) are shown on top of
the predicted 3D molecular structure in Fig. 4d. This shows that
ML-LIED is capable to extract a complex 3D molecular structure
such as (+)-fenchone.

Discussion
This work establishes a ML-based framework to overcome pre-
sent limitations in structural retrieval from diffraction mea-
surements. The problem with present methods is the need to
compare a measured diffraction pattern with a precalculated
structure and the extremely poor scaling of pattern matching
methods with the quickly increasing number of degrees of
freedom of larger complex molecular structures. This is com-
pounded by the need precalculate a very large set of molecular
configurations in different orientations and with high resolution.
Further, identification of such a precalculated set reduces to
finding a global extremum in a multi-dimensional solution space
which is a difficult inverse problem to solve. These issues are
tractable for small molecular systems and for systems where
dimensionality of the problem can be reduced significantly. This
is however not possible for large and complex molecular struc-
tures and the total calculation time scales as n × 3N, where N is
the number of atoms and n is the number of steps. To put this
into perspective, it takes approximately 5 min to calculate a
single 2D-DCS map for (+)-fenchone on a standard desktop
computer (i3 Intel processor, 8 GB RAM). A 20-atom system
with n= 5 steps will require an unrealistic 1.4 × 109 h of calcu-
lation time. Thus, it is not feasible at the present time to extract
complex molecular structures via calculating all possible con-
figurations for all degrees of freedom. To overcome the unfa-
vorable scaling of the problem, we make use of the fact that a ML
framework can simultaneously identify a large multitude of
features by pattern matching on an interpolated dataset, despite
having initially trained the ML framework on a coarse ensemble
of structures. We showed that this permits ML-LIED to reveal
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the 3D location of each atom in the molecule, providing sig-
nificantly more detailed structural information than any other
method that relies on the identification of non-overlapping peaks
in the scattering radial distribution function. Such identification
is near impossible for larger and complex molecular structures
due to the large number of peaks in the radial distribution that
overlap due to the multitude of unresolvable two-atom combi-
nations. The reduced computational demands for complex
molecules may prove decisive to address transient structures and
transition states of complex molecules. ML-LIED has the
advantage that once the ML model is validated, the molecular
structures can be identified for each experimental 2D-DCS map,
avoiding the high computational cost of repeated chi-square
fittings as in time-resolved QRS-LIED. Lastly, using 2D-DCSs as
an input instead of 1D-DCSs utilizes the complete measured
molecular interference signal thus maximizing confidence in the
identification of the measured molecular structure. We also note
that the ML framework draws from unambiguous pattern
matching conditions. It is conceivable, though very unlikely, that
different non-equilibrium structures may be identified as the
same structure. The ML framework is amendable to be adapted
and trained on the existence of a combined total interference
signal from two or more molecular structures. This may allow to
predict the multiple molecular structures contributing to the
total measured interference signal. It should be noted that the
same problem of contributions from multiple molecular struc-
tures to the measured signal can also arise in other LIED and
UED methods, and it is not unique to just ML-LIED. This
possibility for ML-LIED may overcome standing problems in
time-resolved UED studies of isomerization or ring-opening
reactions, e.g., where the molecular structure changes will lead to
subtle changes in the measured 2D-DCS. Thus, the combination
of LIED with a ML framework and CNN provides a powerful
new opportunity to determine the structure of large molecules.

Methods
LIED data. In this work, we used experimental data for C2H2

16
, CS220 and

(+)-fenchone, which were measured with a reaction microscope35 to demonstrate
our ML algorithm. We calculated the 2D-DCS of 40,000–120,000 possible mole-
cular structures in our database using the IAM.

ML framework. We generate thousands of structures and calculated their 2D DCS
as an input dataset. Our CNN contained 3 convolutional layers and 30 fully
connected layers, with the first convolutional layer containing 32 filters with kernel
size 5 × 5, the second layer has 32 filters with kernel size 3 × 3, and the third has 32
filters with kernel size 3 × 3. A batch size of 120 was used, and batch normalization
is used to avoid overfitting. Our model was trained and validated with an iteration
number of greater than 50 to generate a model that does not overfit or underfit the
input data. The training of the ML model costs 1–2 h to run on the Google cloud
GPU (NVIDIA® Tesla® V100). To predict a molecular structure with an experi-
mental 2D-DCS input requires less than 1 min of calculation time.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes used in this study are available from the corresponding author upon
reasonable request.
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Schematic of the predicted 3D molecular structure. The green circles indicate the area of uncertainty.
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