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Extended experimental inferential structure
determination method in determining the structural
ensembles of disordered protein states
James Lincoff 1,2,8,9, Mojtaba Haghighatlari 2,3,9, Mickael Krzeminski4, João M. C. Teixeira 4,5,

Gregory-Neal W. Gomes6, Claudiu C. Gradinaru 6, Julie D. Forman-Kay 4,5 & Teresa Head-Gordon 1,2,3,7✉

Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology,

requiring the characterization of diverse and dynamic structural ensembles. Here we intro-

duce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure

Determination (X-EISD) method, which calculates the maximum log-likelihood of a dis-

ordered protein ensemble. X-EISD accounts for the uncertainties of a range of experimental

data and back-calculation models from structures, including NMR chemical shifts, J-cou-

plings, Nuclear Overhauser Effects (NOEs), paramagnetic relaxation enhancements (PREs),

residual dipolar couplings (RDCs), hydrodynamic radii (Rh), single molecule fluorescence

Förster resonance energy transfer (smFRET) and small angle X-ray scattering (SAXS). We

apply X-EISD to the joint optimization against experimental data for the unfolded drkN SH3

domain and find that combining a local data type, such as chemical shifts or J-couplings,

paired with long-ranged restraints such as NOEs, PREs or smFRET, yields structural

ensembles in good agreement with all other data types if combined with representative IDP

conformers.
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Experimental techniques such as X-ray and electron crystal-
lography and microscopy, which have traditionally excelled
at determining the atomic structures of protein macro-

molecules and their complexes, are ill-suited for analysis of
proteins with intrinsic or unfolded state disorder1. Instead the
degree to which a simulated conformational ensemble for an
intrinsically disordered protein (IDP) or unfolded state of a
protein can be trusted to represent functionally relevant con-
formations is judged by the extent to which it conforms to the
information available from solution experimental data1,2. His-
torically disordered ensemble representations were derived by
utilizing the experimental data as a restraint in a molecular
dynamics simulation or by choosing sets of conformations con-
sistent with such solution data using Monte Carlo or related
methods, as in the ENSEMBLE approach3–5.

More recently Bayesian statistical models are seen as a needed
component of these approaches for disordered proteins, given the
under-determined nature of solution experiments that can only
measure time and/or ensemble averages and limitations of how
putative ensembles are generated. Bayesian models in the protein
structure context trace their origin to determine the most prob-
able structure for folded native states using the inferential
structure determination (ISD) method6. But to fully embrace the
probabilistic interpretation of structural ensembles for disordered
states, Bayesian and the related Maximum Entropy formulations
account for the many different sources of uncertainty in deter-
mining the optimized structure or ensemble7–14. Although most
of these methods have focused primarily on NMR or SAXS
experimental errors and uncertainties, others have also con-
sidered the back-calculation model errors from the structure to
experimental observables, or the error introduced by force field
generated conformers, as summarized in a recent review15.

In this work, we focus on the statistical approaches for dis-
ordered states of proteins, as they raise several challenging issues
in the generation and validation of structural ensembles using
integrative experimental and computational techniques16,17. This
work is distinguished from previous methodological studies15 as
it explicitly performs single, dual, and complete joint optimiza-
tion using all the experimental data for refining computational
ensembles, thereby providing insights into the relative value and
impact of certain data types, such as the current debate about the
relationship between SAXS and smFRET18–20. We introduce a
complete Bayesian model, the extended Experimental Inferential
Structure Determination (X-EISD) method, for the statistical
modeling of a wide range of experimental data types for proteins
with disordered states: NMR chemical shifts and J-couplings9,
homonuclear nuclear Overhauser effects (NOEs)16,21,22, para-
magnetic relaxation enhancements (PREs)23,24, residual dipolar
couplings (RDCs)25,26, hydrodynamic radii (Rh)27, and small-
angle X-ray scattering (SAXS) intensity curves28,29. By perform-
ing single and joint optimization using all experimental data types
that probe both local and global disorder, necessary given the
under-determined nature of the IDP problem30, we ascertain the
most valuable information that takes into account uncertainties
and errors provided by laboratory experiments and reported
theory for back calculations.

We apply the X-EISD procedure on the unfolded state of the
drkN SH3 domain because of the wide variety of experimental
data types made available by the Forman-Kay and Gradinaru
groups27,31, and which has made it popular as a test system for
other ensemble scoring and refinement programs4. Expanding on
previous work on the drkN SH3 domain, we have also introduced
transfer efficiencies from single-molecule Förster resonance
energy transfer (smFRET) for its unfolded state32,33. Starting
from either an unoptimized random coil ensemble or using a
reported structural ensemble of the unfolded state of the drkN

SH3 domain34, we show through a series of single, dual and
complete joint optimizations and cross-validation tests the rela-
tive influence of the different data types in scoring the putative
structural ensembles. With optimization using a straightforward
Markov chain Monte Carlo (MCMC) procedure on a mixed
ensemble on a spectrum of disordered to ordered conformations,
we show that the extensive experimental data set supports two
equally probable ensembles, but each yielding an alternative
structural view that can stimulate further experiments. The X-
EISD Bayesian method can be downloaded and run stand-alone
from a publicly available GitHub repository (https://thglab.
berkeley.edu/software-and-data/) or as part of the ENSEMBLE
program5.

Results
Theory. The X-EISD method is formulated as a generalized
Bayesian model

log p X; ξjD; Ið Þ ¼ log p XjIð Þ þ
XM
j¼1

log p djjX; ξ j; I
� �

p ξjjI
� �h i

þ C

ð1Þ
where the additive constant C accounts for the general formula-
tion when certain probabilities do not vary as a function of the
parameters being optimized. More interestingly, log p X; ξjD; Ið Þ is
the log-likelihood that the ensemble of N conformations X ¼
xif gNi¼1 are in agreement with the set of M experimental values

D ¼ dj
n oM

j¼1
, given back-calculation error and experimental

uncertainties {ξ}, and any related prior information I. The
structural prior p(X|I) can be treated as either an uninformative
prior or a structural prior based on Boltzmann weighting; in this
work we use Jeffries uninformative prior9. Other Bayesian
methods have primarily used a Boltzmann weighted ensemble13,
although the general form of Bayes theorem and hence other
methods acknowledge that other priors are possible. The reason
we have chosen not to use Boltzmann weighted simulation con-
formers is that force fields are not particularly reliable for IDPs, as
we have shown previously9. It is important to state that the prior

distribution p ξjjI
� �

represents the uncertainty for each experi-

mental and/or back-calculation nuisance parameter ξj for data
point j; because it reflects the variable uncertainties for each data
type, the nuisance parameters are treated as a Gaussian random

variable as described previously9. Finally, p djjX; ξj; I
� �

models

the experimental data point dj given a set of conformers and
model for ξj for each data point j. Applying the maximum like-
lihood estimator, the total probability is the sum over all data
points.

A prototype EISD method was previously developed utilizing
only J-coupling (JC) and chemical shift (CS) data for both folded
proteins and IDPs9, whereas our current X-EISD method is now
balanced across not just local, but long-range contacts (smFRET,
PREs, and NOEs) and global size and shape information (SAXS
and Rh), to more fully utilize the experimental data types used to
characterize IDPs. The JC and CS data types illustrate two general
ways to formulate the probabilistic uncertainties for any
experimental observable each of which utilizes different models
for the back-calculation. These general forms are used to illustrate
how to treat other data types.

J-Couplings. The Karplus equation35,36 is used to back-calculate
the J scalar coupling

J ¼ A cos ϕ� ϕo
� �� �� �2þB cos ϕ� ϕo

� �� �þ C ð2Þ
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in which the N conformations provide an ensemble-averaged

value of cos ϕ� ϕo
� �� �2D E

and cos ϕ� ϕo
� �� �

with respect to a

reference state ϕo, and Eq. (2) is used to compare with the
experimentally determined value. In this case the AðμA; σAÞ,
BðμB; σBÞ, and CðμC; σCÞ are back-calculation ξj parameters
treated as Gaussian random variables for which the mean values
μj and standard deviation σj are provided in the work of Vuister
and Bax (μA= 6.51, σA= 0.14; μB=−1.76, σB= 0.03; μC= 1.60,
σC= 0.08)37. The deviation of the back-calculated J from the
given experimental DJ value, ϵJex

ϵJex 0; σJex
� � ¼ DJ � ðA cos ϕ� ϕo

� �� �2D E
þ B cos ϕ� ϕo

� �� �þ CÞ ð3Þ

is also treated as a Gaussian random variable drawn from a
distribution with mean 0 and standard deviation σJex that esti-
mates the experimental uncertainty of the J measurement; in this
work σJex= 0.5 Hz based on the J-coupling data for the drkN SH3
domain unfolded state27. Hence the X-EISD method optimizes
over all four sources of uncertainty

log p JjIð Þ ¼ log p AjμA; σA
� �þ log p BjμB; σB

� �
þ log p CjμC; σC

� �þ log p ϵJexj0; σJex
� � ð4Þ

Chemical shifts. The approach for chemical shifts, δ, is different,
because the common back-calculators, such as SHIFTX238 and
SPARTA+39, incorporate their own internal weighting for the
different components used to back-calculate δ for each atom type,
α, that precludes a simple mathematical form such as the Karplus
equation. For this reason, the chemical shift back-calculator is
treated as a black-box model that optimizes over qδα which is
treated as a Gaussian random variable with mean 0 and standard
deviation σqδα

. The chemical shift function ϵδαex .

ϵδαex 0; σδαex
� �

¼ Dδα
� qδα � δαh i ð5Þ

is the difference between the experimental chemical shift value
Dδα

and the average of the back-calculated shifts 〈δα〉 over the
ensemble, and accounting for the back-calculation error qδα . In
this work it is also treated as a Gaussian random variable drawn
from a distribution with mean 0 and standard deviation σδαex that
represents the experimental uncertainty of the chemical shift
measurement; we assume a standard value of σδαex = 0.3 ppm for
C, Cα, and Cβ and 0.03 ppm for H and Hα. In this work we use
SHIFTX238 as the back-calculation method for chemical shifts,
but utilizing the published root-mean-square deviation (RMSD)
we recently found for SHIFTX2 when applied to an independent
protein data set40 of σqδα

= 0.3–0.5 ppm for hydrogens and

σqδα
= 1.2–1.4 ppm for carbon atoms when the data is not curated

and the sequence homology is low, as is true for IDPs. Hence the
X-EISD method for chemical shifts optimizes over

log p δαjIð Þ ¼ log p qδα j0; σqδα
� �

þ log p ϵδαex j0; σδαex
� �

ð6Þ

One could determine that the joint likelihood is ultimately a
Gaussian with zero mean and standard deviation σqδα

þ σδαex .

While it would be convenient to combine the two errors for a
specific data type, this would hide the fact that the experimental
uncertainties of a given data type can vary from measurement to
measurement. Hence σδαex can be different for different
measurements of many chemical shifts, even though the
uncertainty of the back-calculation model to compare the

experimental data to simulated structures σqδα

� �
does not.

Separating the two errors can hopefully clarify this difference
depending on the experimental data provided.

Nuclear Overhauser effects. Characterization of NOEs for IDPs
is more complex than for folded proteins due to the decreased
ability to precisely assign peak values to specific nuclei due to
structural ensemble averaging effects41. Furthermore, back-
calculation of NOEs from simulation can be done to varying
degrees of rigor, depending on whether or not dynamical infor-
mation is available and incorporated16. When the conformational
ensemble is derived from molecular dynamics, it is possible to
fully incorporate the dynamical effects on NOEs as we have
shown previously16,21,22. These in turn are used to calculate per-
conformer estimates of the spectral density functions, allowing
fairly precise back-calculation of, for example, homonuclear 1H–
1H and heteronuclear 1H–15N NOEs, and R1 and R2 relaxation
times42. When using only static structures generated with statis-
tical coil models such as TraDES43 or Flexible-Meccano44, or any
other technique where no dynamical information is available,
direct back-calculation is less rigorous. In this case homonuclear
NOEs can be interpreted as providing information on the dis-
tance between two spins6,16,21, such as the hydrogen-hydrogen
distance for homonuclear 1H–1H NOEs to estimate the scaled,
ensemble-averaged values of the peak intensity.

Most standard NMR spectroscopy analysis packages45–47

convert NOE intensities to distance restraints of varying tightness
between a single pair of atoms, or pairs of atoms if the peak
assignment is ambiguous. For folded proteins distance restraints
are further binned into classes, such as strong restraints of <3.0 Å,
medium restraints <4 Å, and weak restraints <5 Å. The observa-
tion of an NOE in a disordered state is not as closely linked to
distance as in a folded state due to the dominance of dynamics
and the rapid exchange between conformers. Thus, a single,
generous restraint range is often given. In order to model the
normal distribution in this case, the X-EISD method adopts the
same approach to back-calculation as ENSEMBLE4,5,30,34,
calculating the ensemble-averaged distance D from the set of N
structures

D ¼
PN

i¼1 d
�6
i

N

 !�1=6* +
ð7Þ

and the deviation between experimental and back-calculation ϵex
is calculated as

ϵNOEex 0; σNOEexð Þ ¼ DNOE � qNOE � Dh i ð8Þ
in which qNOE and ϵNOEex are Gaussian random variables, with
mean 0 and standard deviations σqNOE and σNOEex , similar to that
used for chemical shifts. Hence X-EISD optimizes over

log p DNOEjIð Þ ¼ log p qNOEj0; σqNOE
� �

þ log p ϵNOEex j0; σNOEex
� �

ð9Þ
for every distant restraint. Each experimental NOE available for
the drkN SH3 domain unfolded state restrains the distance
between the pair of protons to <8 or 10 Å34. Note that these data
were derived from largely deuterated samples using long NOE
mixing times, in order to increase the likelihood of NOEs
representing contacts between residues far apart in sequence, and
leading to longer distance restraints than typical for standard
folded protein NOEs48,49.

Given that NOEs are formulated as distance ranges, we must
consider how to model DNOE and σNOEex . We use a Gaussian
model to define DNOE as the most probable distance, i.e., in the
middle of the range (i.e., DNOE= 4 or 5 Å for the drkN SH3
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domain unfolded state). We then tested multiple values of σNOEex
to represent the distance class, i.e by dividing the experimental
range of 8–10 Å by a factor of 2–5 as shown in Supplementary
Fig. 1. As σNOEex is further restricted, the model more closely
matches one intention of the restraint—to penalize observed
distances that are outside of the restraint range—however, it also
results in a large range of relative probabilities within the restraint
range, and might result in too strong of a bias toward an exact
distance. Conversely, larger values of σNOEex more closely match
the expectation that all distances within the restraint range should
be of roughly equal likelihood, but potentially do not sufficiently
penalize distances that are outside of the restraint range
(Supplementary Fig. 1). Ultimately we have found that the X-
EISD optimized outcome is not particularly sensitive to the
σNOEex value and have defined it by dividing the experimental
range of 8–10 Å by a factor of 2 (σNOEex = 4 or 5 Å). Because our
simple back-calculation is effectively just a comparison of
ensemble-averaged simulation distances to processed experimen-
tal distance restraints, we set the back-calculation error to a small
value of σqNOE = 0.0001 Å.

Paramagnetic relaxation enhancements. Similar to NOEs,
paramagnetic relaxation enhancements (PREs) report on
ensemble- and time-averaged distances with strong dynamical
contributions, but unlike NOEs the PRE signals can be measured
for a much larger range of distances25,50. To conduct PRE
experiments, a paramagnetic center must be introduced to the
protein, such as through covalent bonding of a spin label, com-
monly MTSL for IDPs. The experiment then reports differences
in the relaxation rates between the paramagnetic active sample
versus its diamagnetic analog, which are converted to estimates of
distances between the paramagnetic center and, most commonly,
the amide protons of each residue. Multiple constructs with the
tag at different locations on the protein may be used to provide
several sets of restraints. As with NOEs, PREs are often converted
to generic distance restraints: 25–100 Å for long distances and
<10 Å for short distance restraints, and a set of medium-range
distance restraints of 10–25 Å where the signal is strongest51. One
potential issue with PREs is whether the chemical modification of
the system induces different dynamics, or alters the weighting
and/or introduces new structural sub-populations in the IDP
ensemble24; at the same time, careful selection of the PRE tag and
its location can be used to minimize this potential for experi-
mental error. Hence we assume the same X-EISD model for PREs
as for NOEs, with σqPRE = 0.0001 Å, but using σPREex that divides
the experimentally-derived restraint range by 4, based on the data
provided for the drkN SH3 domain unfolded state. For this data
set, the medium distance PREs are centered around 12.0 Å, with
most of the experimental uncertainties determined to be σPREex =
4.0 although a few PREs have σPREex ~ 11 Å.

Residual dipolar couplings. Residual dipolar couplings (RDCs)
between pairs of spins can provide useful signals for predicting
local structure by inducing partial alignment of molecules in
solution with magnetic field25,26. For IDPs, RDCs resulting from
the alignment of the amide in the peptide bond are the most
commonly measured and reported. Back-calculation of RDCs
uses either a global alignment tensor of the static structures for
the entire protein as in PALES52, or locally using fragments of the
protein as in the local RDC calculator from the Forman-Kay
group26. Because local back-calculation of RDCs has been shown
to be able to better model experimental RDCs of disordered states
when using smaller ensembles of structures16, we use the local
RDC back-calculator from the Forman-Kay lab26 to get per-
conformation RDCs for the amide bond vector of each residue in

the target ensemble. For X-EISD scoring, we estimate the
uncertainty in back-calculation error σqRDC = 0.9 Hz based on
the standard deviation evaluated on the test set of peptides in
the local RDC publication26. We set σRDCex = 1.0 Hz given the
experimental data that was deposited in the Protein Ensemble
DataBank (pE-DB)53 for the drkN SH3 domain unfolded state27.

Hydrodynamic radius. The hydrodynamic radius (Rh) can be
experimentally determined by calculating the translational diffu-
sion coefficient of the macromolecule with techniques such as
pulsed field gradient NMR27, size exclusion chromatography54,55,
or dynamic light scattering56, and then using the Stokes–Einstein
relationship to calculate an ensemble-averaged estimate of the Rh.
We use the program HYDROPRO57 to calculate Rh, which takes
static structures and uses a bead-shell model to estimate hydro-
dynamic properties. For X-EISD scoring, we calculate the
ensemble-averaged back-calculated 〈Rh〉 over the set of candidate
structures, and set the experimental error to σRhex = 0.30 Å as
reported in the original work on the drkN SH3 domain27.
Because HYDROPRO is described to have +/−4% error in the
estimation of Rh, we assign the back-calculation error σqRh = 0.8
Å given the reported experimental value of 20.3 Å27.

Single-molecule fluorescence resonance energy transfer.
FRET31–33 reports on long-range distances between two cova-
lently bound dyes through a dipole–dipole non-radiative transfer
of energy from the excited-state donor fluorophore to the
ground-state acceptor fluorophore. The efficiency of energy
transfer, E, depends sharply on the inter-fluorophore distance,
rD�A, distance:

E ¼ 1þ rD�A=r0ð Þ6� ��1 ð10Þ
where r0 is the Förster radius of the donor–acceptor pair. For
single-molecule FRET (smFRET) measurements on IDPs and
unfolded proteins, the distribution of inter-fluorophore distances
is sampled much faster than the typical averaging time of the
experiment (~1 ms), such that only an average FRET efficiency,
〈E〉, is observed58. The 〈E〉 therefore restrains the distribution of
distances between two labeled residues. Multiple experiments
consisting of different FRET constructs—different pairs of dyes,
or dyes linked to different sites in the protein sequence—can be
used to produce multiple restraints. There is a possibility that,
depending on nature of the dye and the labeling site, they interact
with the system and perturb its conformational
landscape19,20,59,60, as has been seen for PREs24, but again can be
carefully selected to minimize artifacts.

The 〈E〉 can be back-calculated by taking the distance
measurements from static structures, calculating efficiencies,
and then averaging together. Often a model is needed to account
for the difference between the distance between the two residues
to which dyes would be attached, and the distance between the
dye centers themselves. The “scaling up” approach has been
previously used to account for the FRET tags, and uses a simple
polymer model to scale up the Cα–Cα distance of the native
protein61–63:

rD�A ¼ rCα�Cα
N þ Nlinker

N

� 	υ

ð11Þ

where rCα�Cα is the Cα–Cα distance, N is the number of residues
between the relevant residues, Nlinker is the number of estimated
additional amino acids, and υ is the Flory scaling exponent. To
estimate the back-calculation uncertainty σqFRET, we calculate the
variation in back-calculated FRET efficiency that results from
varying the parameters Nlinker, υ, and r0 as discussed by Gomes
and co-workers58 and further described in Supplementary Fig. 2.
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We arrive at a value of σqFRET = 0.007 Å, and we use a typical
estimate of the experimental uncertainty of 0.02 Å for σFRETex .

Small-angle X-ray scattering. Small-angle X-ray scattering
(SAXS) has been a powerful tool for categorization of IDPs in
their monomeric state as collapsed semi-ordered ensembles,
collapsed disordered ensembles, or extended disordered ensem-
bles64–67. The most well-known back-calculator from structure to
SAXS intensity curves is the CRYSOL software program28, and
for all members of the ensemble we calculate an intensity curve, I
(Q), as a function of momentum transfer Q, and then average to
obtain the SAXS observable. For X-EISD we have treated each
intensity point as an independent measurement, as done in other
Bayesian methods8,13, and scored according to the simple X-EISD
formulation like individual chemical shifts via Eq. (5). The back-
calculation uncertainty σqSAXS ¼ 0:006 is estimated by calculating
overall RMSDs of the intensity points along the curve for a set of
optimized ensembles. We use the experimental uncertainty esti-
mate σSAXS;ex = 0.0008–0.002, with the larger uncertainties
defined near Q= 0, and decreasing toward larger values of Q.

But the assumption of uncorrelated or independent errors is a
troublesome one for our assessment of experimental data types
for X-EISD. This is because SAXS data points might be highly
correlated, given close neighboring measurements in Q, and joint
optimization might overwhelm the influence of other data types
in which only one or a few observations are made, e.g., smFRET
and hydrodynamic radius. Instead we have evaluated the
information content in a SAXS curve based on Shannon’s
sampling theorem68–70; for a given maximum dimension of the
system Dmax, allows us to estimate the number of Shannon
channels, Ns

Ns ¼ Dmax qmax � qminð Þ=π ð12Þ

which for the drkN SH3 domain SAXS data yields Ns ~ 3.
Compared with the number of data points in the provided
experimental SAXS curve of Nq= 37, this represents substantial
oversampling70, and we have used the approach by Shevchuk and
Hub71,72 to revise the SAXS log-likelihood score

/ expð� eNs
Nq

� 	
1
2 χ

2ðXÞÞ, where χ accounts for the experimental

and back-calculation errors.

X-EISD applied to the unfolded state of the drkN SH3 domain.
In order to evaluate the different local and global data types using
the X-EISD Bayesian approach, we consider the unfolded state of
the drkN SH3 domain4,27,31. The drkN SH3 domain is in slow
exchange on the NMR timescale between folded and unfolded
states under typical buffer conditions that are neither denaturing
or stabilizing, and in this work we only consider the unfolded
state. For the chemical shift, J-coupling, NOE, PRE, RDC, and Rh
data, because of the distinct signals for the unfolded and folded
states of the drkN SH3 domain, we directly use only the unfolded
state NMR data. For SAXS, we use the procedure applied by
Forman-Kay and co-workers previously27 of taking the measured
experimental data for the exchanging equilibrium state, the
experimental data for the stabilized folded state, and the known
fraction of the folded state present at equilibrium and subtracting
out the effect of the folded state to obtain experimental data for
just the unfolded state of the domain. For smFRET, we ignore the
peak at 〈E〉= 1.0, representing the folded state, and score and
optimize only using the peak at 0.55, assuming that this popu-
lation represents the unfolded conformations. The total data set
includes 267 chemical shifts, 47 J-couplings, 93 homonuclear
NOE distance restraints, 68 PRE distance restraints, 28 RDCs, a

SAXS intensity curve with 37 Q data points, hydrodynamic
radius, Rh, and smFRET efficiency data31.

We rank and optimize three different starting pools of
structures for the unfolded state of the drkN SH3 domain. The
first is a collection of ~100,000 conformations consisting of a
random coil ensemble generated by gradually unfolding the
folded state structure of the drkN SH3 domain73 with a CNS
script74,75, including 100 folded structures and 999,900 increas-
ingly unfolded structures (called RANDOM). These were
unoptimized with respect to the experimental data. We also
consider an optimized ensemble generated with the ENSEMBLE
program that is comprised of 1700 conformations and is available
through the pE-DB53 (called ENSEMBLE). This set was generated
by 17 independent optimizations of 100 structures each starting
from large pools of generally random structures calculated using
the TraDES program43, including a subset that were biased to
sample the non-native helical structure evident in the unfolded
state based on chemical shift data. The optimization was for
consistency with all of the same NMR and SAXS data types as
described here, but not the smFRET efficiency data. The third
starting pool (called MIXED) is described below.

Figure 1 shows that the underlying structural picture is quite
different between the RANDOM and ENSEMBLE starting pool of
structures, such as the percentage of secondary structure type for
each residue averaged over the pool, and global characteristics
embodied in the distribution of the radius of gyration. In
particular, the ENSEMBLE pool includes conformers of the drkN
SH3 domain that were generated by TraDES with a bias for non-
native helical propensity, and these structures were preferentially
chosen by the optimization for consistency with the experimental
shifts, as well as other data. Therefore, the ENSEMBLE pool is
characterized by high helix propensity for residues 16–20, and
some helical content over residues 30–45 and 50–55, unlike the
featureless RANDOM ensemble dominated by bends and turns
but no population of helical or β-sheet structure. The RANDOM
starting pools exhibits a bimodal Rg distribution with 〈Rg〉 of
21.2 ± 0.8 Å, representing contributions of folded, compact, and
extended states sampled by the unfolding protocol, whereas the
ENSEMBLE shows a very tight unimodal distribution of 〈Rg〉 of
18.5 ± 0.3 Å.

Table 1 provides the X-EISD scores and RMSD error per
experimental data type for the unoptimized RANDOM and
ENSEMBLE starting pools of structures (see Methods), and
Supplementary Table 1 shows the scores and RMSD for the
complete 1700 conformer pool. Having already been refined against
the full set of experimental data (except for smFRET), the
ENSEMBLE starting pool appears to be a better ensemble when
compared with the initial RANDOM ensemble by X-EISD score
and RMSD for all data types. However, the experimental and back
calculations errors (σexp and σq, respectively) are larger than the
RMSDs given by the ENSEMBLE pool, indicating that it is
overfitted for all categories except for the smFRET data for which it
was never optimized. By contrast, the smaller σexp and σq compared
with the RMSDs for the RANDOM unoptimized ensemble indicate
that we can refine an ensemble with higher probability than the
original RANDOM structural pool, and possibly for the PREs and
smFRET score for the ENSEMBLE pool as well.

In Table 1 and Fig. 2, we also provide the results of a MCMC
maximization procedure using an X-EISD score defined as the
sum of the log p X; ξjD; Ið Þ for all of the data types

acc i ! jð Þ ¼ X-EISDj >X-EISDi ð13Þ

The optimized RANDOM pool is found to be positively
influenced by all data types, and performs better than the original
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unoptimized RANDOM pool or even the original ENSEMBLE
data as measured by global characteristics of the chains, i.e.,
NOEs and smFRET efficiency which shows greater compaction in
the Rg distribution with 〈Rg〉 of 17.9 ± 0.3 Å (Fig. 2). However, it
is more poorly scoring in regards local structure relative to the
optimized ENSEMBLE, as measured in particular by the J-
coupling score and to a lesser extent for the chemical shifts. The
optimized ENSEMBLE is better than the original ENSEMBLE
with respect to all global and local data type X-EISD scores, and
has a secondary assignment that favors greater amounts of helical
structure for residues 16–20, 30–45, and 50–55 and an 〈Rg〉 of
18.0 ± 0.1 Å.

Figure 2 also shows that the optimized RANDOM ensemble's
agreement with the SAXS intensity curve is not as good as that
averaged over the optimized ENSEMBLE conformers which
obtains a near perfect fit to the SAXS intensity that is within
experimental error. Similar conclusions are reached using a
standard MCMC procedure that allows uphill moves, acc(i→j)=
min[1, exp(β (X-EISDj− X-EISDi))], using a hyperparameter
β= 0.1 which yields ~50% acceptance rates (Supplementary
Figures 3 and 4). Although the final optimized ENSEMBLE
appears a better fit to the data than the optimized RANDOM
ensemble, and the structural ensemble is comprised of relatively
compact conformations with well-developed secondary structure
in parts of the sequence, we next consider how sensitive this result
is to the available conformers in the selection pool.

Therefore we created a MIXED starting pool, comprised of
50% each from the optimized RANDOM and ENSEMBLE

structural pool. Table 1 shows that the X-EISD scores of this
unoptimized pool are largely inferior to the two optimized parent
ensembles. However, after the same MCMC optimization
protocol with the X-EISD scoring function using Eq. (13), the
MIXED pool shifts its composition to 24% RANDOM and 76%
ENSEMBLE conformers, with better chemical shift scores that
counteract the small deterioration in J-coupling scores that are
permitted within uncertainty, relative to the optimized ENSEM-
BLE parent. What emerges from the optimization is a structural
picture of an ensemble with largely the same local secondary
structure features as the ENSEMBLE parent, but a marked
decrease in the percentage of α-helix for residues 16–20, 30–45,
and 50–55, and difference in global characteristics with a less
compact and broader radius of gyration distribution reflective of
the RANDOM pool, with an 〈Rg〉= 19.3 ± 0.5 Å and SAXS
intensity profile in excellent agreement with the experiment
(Fig. 3). This difference in optimized structural conformational
pools between MIXED and ENSEMBLE arises from the balance
among the relative changes allowed for the chemical shifts, J-
couplings, smFRET, and NOEs, given their mix of experimental
and back-calculation uncertainties. Hence, the MIXED optimized
ensemble is as probable as the optimized ENSEMBLE result, but
with different sub-populations of structural conformers. This
provides an excellent example in which data and data processing
uncertainties processed under a Bayesian formalism can yield
alternative structural hypotheses that can stimulate further
experiments, unlike methods that indiscriminately fit all of the
experimental data.

(a)

(b)

Fig. 1 Properties of unoptimized ensembles for unfolded drkN SH3 domain. The secondary structure propensities per residue (a) and radius of gyration
(b) of the drkN SH3 domain unfolded state for the unoptimized RANDOM and ENSEMBLE starting pools. Error bars are shown as ± one standard deviation
for 1000 random sampling ensembles of 100 conformers each from the two starting structural pools with no X-EISD score optimization applied.
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The X-EISD method can also provide guidance as to which
experimental data type is most valuable for ensemble optimiza-
tion. To show this we run the X-EISD optimization using Eq. (13)
for just a single data type when operating on the unoptimized
RANDOM, ENSEMBLE, and MIXED starting pools. Figures 4
and 5 show that single-mode optimization with one data type (the
diagonal entries) can influence the RMSDs of unoptimized data
types (off-diagonal entries) and offers interesting mutual support
or discord among the experimental data types. Starting with the
unoptimized RANDOM pool, the direct optimization of chemical
shifts indirectly optimizes J-couplings, RDCs, and smFRET, while
direct optimization of other local data such as J-couplings helps
support the specific contacts that define NOEs, PREs, and
smFRET (Fig. 4a). However, this is not a mutual relationship, i.e.,
the direct optimization of the long-ranged specific contact
restraints is insufficient for indirectly benefitting chemical shifts
and J-couplings. Hence chemical shift and J-coupling data are
very valuable in refining a structural ensemble by providing local
restrictions on how long-ranged NOEs, PREs, and smFRET
contacts are formed.

There is also an asymmetric operation at play when analyzing
specific long-ranged contacts such as NOEs, PREs, and smFRET,
and comparing them to global shape information such as SAXS
and Rh. In particular, the smFRET and PRE data most
significantly improve NOEs, SAXS, and Rh, likely because the
experimental PRE and smFRET restraints for the drkN SH3
domain unfolded state are much tighter than NOEs and more
specific than SAXS and Rh. A similar conclusion was reached in
recent work by Gomes and co-workers that smFRET and PRE
provide strong influence on IDP ensemble calculations performed
on the N-terminal region of the disordered Sic1 protein18. While
single-mode optimization with the global SAXS and Rh data offers

mutual benefit to each other, they offer little indirect benefit to
other localized or specific contact data types. In summary, no
single optimization data type is able to bring the RMSDs to within
known experimental or back-calculation uncertainties for any
other data type, and joint optimization is necessary for refining
the RANDOM ensemble.

The importance of mixing local information with long-ranged
specific contact data can be illustrated through a dual joint
optimization, which should stabilize and/or improve the RMSDs
for all the remaining data types which have not contributed to the
optimization. Given the single optimization results, joint
optimization of J-couplings and PREs through a maximization
procedure should improve the RMSDs, and aid the optimization
across all other data types to within their expected uncertainties, a
result that is supported in Fig. 4b for the RANDOM pool.

This joint optimization comes close to being statistically
optimal, but ultimately the underlying RANDOM conformers
are insufficient for refining the J-couplings to within their
uncertainty. In this case the addition of other local and long-
range contact data types is not useful for further refinement as
the underlying RANDOM structural ensemble is not
representative.

Next we consider the single and double optimization for the
MIXED ensemble. In this case the unoptimized MIXED pool is a
better starting point than is the RANDOM pool, and Fig. 5a
shows that single optimization with PREs is nearly sufficient for
generating an optimized ensemble that agrees with all experi-
mental and back-calculation uncertainties for all data types,
yielding an optimized 〈Rg〉= 19.1 ± 0.8 Å. In this case, the
starting MIXED ensemble is already in sufficient agreement with
the local data types, although most data types have RMSDs with
large standard deviations. Figure 5b shows that joint optimization

Table 1 Evaluation of unoptimized and optimized ensembles with experimental data.

Experimental data type UNOPTIMIZED OPTIMIZED

X-EISD Score RMSD X-EISD Score RMSD

RANDOM
267 CSs (ppm) 99.6 (0.8) 0.58 (0.01) 103.6 (0.7) 0.55 (0.01)
47 JCs (Hz) −82.2 (4.1) 0.91 (0.01) −25.7 (2.4) 0.70 (0.01)
28 RDCs (Hz) −59.7 (1.1) 1.23 (0.06) −55.4 (0.6) 0.98 (0.04)
93 NOEs (Å) 497.3 (5.4) 4.63 (0.23) 528.5 (1.5) 3.06 (0.10)
68 PREs (Å) −238.4 (186.3) 6.11 (0.74) 450.0 (4.4) 1.24 (0.12)
smFRET <E> −17.4 (13.4) 0.14 (0.04) 6.9 (0.1) 0.01 (0.00)
Rh (Å) −0.9 (0.3) 0.78 (0.30) −0.4 (0.0) 0.14 (0.10)
SAXS (Intensity) 448.9 (2.9) 0.004 (0.001) 456.3 (0.4) 0.002 (0.000)

ENSEMBLE
267 CSs (ppm) 108.7 (0.7) 0.52 (0.01) 110.1 (0.4) 0.51 (0.00)
47 JCs (Hz) 34.4 (1.8) 0.30 (0.02) 43.3 (0.5) 0.18 (0.01)
28 RDCs (Hz) −51.8 (0.6) 0.70 (0.05) −50.4 (0.2) 0.56 (0.03)
93 NOEs (Å) 517.7 (5.7) 3.80 (0.36) 539.0 (0.6) 2.33 (0.05)
68 PREs (Å) 0.55 (0.01) 3.33 (0.80) 458.7 (4.2) 0.92 (0.11)
smFRET <E> 0.70 (0.01) 0.07 (0.03) 7.0 (0.0) 0.00 (0.00)
Rh (Å) 0.98 (0.04) 0.30 (0.11) −0.8 (0.0) 0.71 (0.04)
SAXS (Intensity) 3.06 (0.10) 0.004 (0.001) 457.9 (0.2) 0.001 (0.000)

MIXED
267 CSs (ppm) 110.1 (0.9) 0.49 (0.01) 111.5 (0.5) 0.49 (0.01)
47 JCs (Hz) −6.1 (7.1) 0.60 (0.04) 41.4 (0.7) 0.21 (0.01)
28 RDCs (Hz) −54.7 (0.9) 0.93 (0.06) −50.7 (0.3) 0.60 (0.03)
93 NOEs (Å) 514.2 (4.7) 3.91 (0.25) 539.4 (0.7) 2.28 (0.07)
68 PREs (Å) 155.5 (142.8) 3.89 (0.77) 458.6 (4.3) 0.92 (0.11)
smFRET <E> −4.6 (8.3) 0.10 (0.04) 6.9 (0.0) 0.01 (0.00)
Rh (Å) −0.5 (0.1) 0.25 (0.18) −0.7 (0.0) 0.69 (0.05)
SAXS (Intensity) 451.9 (2.6) 0.004 (0.001) 458.0 (0.2) 0.001 (0.000)
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of PREs with smFRET is highly optimal for refining the MIXED
ensemble for the drkN SH3 domain unfolded state to within
uncertainties of all data types, again in line with that determined
by Gomes and co-workers for the intrinsically disordered Sic118.

In fact, the independent assessment of 〈Rg〉 and secondary
structure under the dual optimization scheme with PREs supports
a more collapsed ensemble with greater amounts of secondary
structure, and moves closer to the ENSEMBLE result (Fig. 6),
with an optimized 〈Rg〉= 18.2 ± 0.4 Å. Similar conclusions are
reached when optimizing on the ENSEMBLE pool of structures
(Supplementary Fig. 5).

Overall, the X-EISD method allows us to state that the
RANDOM structural pool is insufficient and outside the
uncertainties of the local experimental data such as chemical
shifts and J-coupling for the drkN SH3 domain unfolded state.

However, while the experimental data does support local
structural elements provided in the MIXED and ENSEMBLE
pools, the data does not support a precise percentage of helical
content, and instead ranges from 20 to 40% for the dominant
helical motif at residues 16–20. More importantly, the MIXED
pool supports a second population of unstructured conformers
that would, as a minimum, require additional collection of more
advanced NMR or smFRET experiments to probe this structural
difference between the ENSEMBLE and MIXED pools.

Discussion
We have developed a Bayesian scoring formalism for a large
variety of solution experimental data types, spanning those that
report on very local to very global structural information. The

(a) (b) (c)

Fig. 2 Properties of optimized ensembles for unfolded drkN SH3 domain. Results are for the optimized RANDOM and ENSEMBLE pools using all
experimental data. a Secondary structure propensities per residue after optimization. Error bars are shown as ± one standard deviation for the secondary
structure propensities among the 1000 independently drawn and optimized ensembles of 100 structures each. b Radius of gyration distribution after
optimization. c SAXS intensity curves for unoptimized and optimized ensembles compared with the experimental data with corresponding errors shown
with error bars.

(a) (b) (c)

Fig. 3 Properties of optimized MIXED pool for unfolded drkN SH3 domain. a Secondary structure propensities per residue, b radius of gyration
distribution, and c SAXS intensity curves of the drkN SH3 domain unfolded state for the optimized MIXED ensemble. Error bars are shown as ± one
standard deviation for the secondary structure propensities among the 1000 independently drawn and optimized ensembles of 100 structures each.
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X-EISD approach is able to account for varying levels of uncer-
tainty in both experiment and back-calculation for each data type,
and with the very good O(N) scaling with ensemble size facilitates
the high number of replicates we can perform, demonstrating the
cost-effectiveness of the algorithm. One of the primary results we
have demonstrated is that certain experimental data types provide
more value than others for influencing the most probable dis-
ordered state ensemble, which can only be understood through a
Bayesian formalism that recognizes their differences and under-
lying uncertainties.

Furthermore, we show how single and pairwise maximization
can assess the adequacy of the underlying structural pool. For
the RANDOM optimization we traced the IDP refinement to not
the need for more experimental data, but better representative
conformers instead. We find that dual optimization with
local data such as chemical shifts and J-couplings combined with

long-ranged restraint data such as PREs and smFRET can yield
ensembles that already agree more than adequately with RDCs,
NOEs, and Rh data, downplaying the need to include these data
for optimization, given their larger experimental and model
uncertainties. In the future, the X-EISD scoring can be utilized
within more sophisticated optimization approaches, as well as
operating on better designed structural ensembles, such as
Boltzmann weighted ensembles derived from state-of-the-art
force fields and sampling methods16,24,76–78.

We have shown that several equally probable disordered state
ensembles are both consistent with experimental and back-
calculation uncertainties for the drkN SH3 domain unfolded
state domain, but differ significantly in the nature of their under-
lying pool of structures. While there are variable percentages of
helical structure between alternate ensembles, a much stronger
difference is found due to the presence or absence of completely

(a) (b)

Fig. 4 Single and dual optimization for all experimental data types. Root-mean-square deviation (RMSDs) for all data types resulting from maximizing
the X-EISD score with only a single data type or b joint optimization with PREs (orange) when operating on the unoptimized RANDOM ensemble. Mean
average defined over 1000 ensembles of 100 structures; numbers in parentheses are standard deviations in score among the 1000 independently
optimized ensembles of each data type. The experimental and back calculations uncertainties are given in Table 1.

(a) (b)

Fig. 5 Single and dual optimization using the unoptimized MIXED ensemble. RMSDs for all data types resulting from maximizing the X-EISD score with
only a single data type or b joint optimization with PREs (orange). Mean average defined over 1000 ensembles of 100 structures; numbers in parentheses
are standard deviations in score among the 1000 independently optimized ensembles of each data type. The experimental and back calculations
uncertainties are given in Table 1.
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extended conformational states, generating new hypotheses about
function given their differences in weighting of distinct sub-
populations of conformational states. This suggests an interesting
hypothesis that there is a dynamical switching between structured
and unstructured conformations in local regions of the drkN SH3
domain unfolded state, which can only be addressed with new
experimental data types that are time resolved. For example, Head-
Gordon and co-workers have previously found that using a
relaxation description of NOEs as a dynamical constraint better
agrees with experimental data for intrinsically disordered amyloid-
β16,42, and is an important future direction for the X-EISD method
to account for dynamical information.

Methods
We examined the X-EISD scoring and RMSD for each data type to identify how
large an ensemble is needed for convergence to stable mean and to determine
standard deviations. We generated 1000 random sub-ensembles of sizes N= 2, 5,
10, 25, 50, and 100, and found that N= 100 is adequate for all data types and the
mean sufficiently converged to allow us to provide good estimates of standard
deviations without gross computational expense. We note that this is a conclusion
based on computational convergence and does not reflect physical considerations
of the best size of a disordered ensemble to represent reality or “maximum par-
simony” designed to determine a minimum ensemble size79. We allow the same
conformation to be selected for any number of times in any ensemble, to reflect the
appropriate energy weighting or sampling of different conformational states.
Supplementary Fig. 6 shows that the X-EISD score and RMSD and absolute
deviation stabilizes once ensembles reach 25–100 structures, regardless of data type,
and we have used the upper bound of this ensemble size.

To provide a better understanding of X-EISD scores, which will vary across all
data types, we also calculate a general RMSD that allows a more intuitive measure
between experimentally optimized ensembles

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1 Dcalc
i � Dexp

i

� �2
M

s* +
ð14Þ

where for any data type, we take the set of M experimental values Dexp
i and

compare them to the ensemble-averaged back-calculated values Dcalc
i . The exterior

brackets reflect averaging over the repeated 1000 random sub-ensembles. We note
that there is only one restraint each for 〈E〉 and Rh, so we will generally refer to an
absolute deviation from the restraint for these two data types rather than an RMSD.

We use X-EISD as a probabilistic score in a Markov Chain Monte Carlo
(MCMC) optimization. We use a simple direct maximization, performing 10,000
exchange attempts to replace one conformation with another from the total pool of
N= 100 starting structures, accepting an exchange if the new ensemble has a
higher probabilistic X-EISD score than the previous. For every set of optimization
conditions presented, this procedure is repeated to generate 1000 independently

optimized ensembles. We perform the optimization using either a single experi-
mental data type at a time, pairs of data types, or all data types together. Finally, we
calculate properties from the optimized ensemble such as the root-mean-square Rg
distribution and secondary structure content using the implementation of the
DSSP algorithm80 within the AmberTools program cpptraj81.

Data availability
Data that support the development of X-EISD have been deposited at https://github.com/
THGLab/X-EISD.

Code availability
The code and a command-line interface are available at https://github.com/THGLab/X-
EISD for the reproducibility of reported results and user accessibility for future studies.
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