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Computational discovery of molecular C60
encapsulants with an evolutionary algorithm
Marcin Miklitz1, Lukas Turcani 1, Rebecca L. Greenaway2 & Kim E. Jelfs 1*

Computation is playing an increasing role in the discovery of materials, including supramo-

lecular materials such as encapsulants. In this work, a function-led computational discovery

using an evolutionary algorithm is used to find potential fullerene (C60) encapsulants within

the chemical space of porous organic cages. We find that the promising host cages for C60

evolve over the simulations towards systems that share features such as the correct cavity

size to host C60, planar tri-topic aldehyde building blocks with a small number of rotational

bonds, di-topic amine linkers with functionality on adjacent carbon atoms, high structural

symmetry, and strong complex binding affinity towards C60. The proposed cages are che-

mically feasible and similar to cages already present in the literature, helping to increase the

likelihood of the future synthetic realisation of these predictions. The presented approach is

generalisable and can be tailored to target a wide range of properties in molecular material

systems.
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Arguably, the majority of cases of the discovery of new
materials are dependent upon small changes to known
systems based on chemical knowledge or are a result of a

serendipitous discovery. However, computation is playing an
increasing role in the rational design and discovery of new
advanced materials1. For example, the high-throughput compu-
tational screening of existing and hypothetical compounds can
facilitate identification of materials with optimal properties or
help formulate structure-property relationships for future rational
materials discovery2,3. High-throughput screens can be used to
perform brute force searches of a large number of possible
materials, accelerated by increasing computational power or
machine learning, and covering much larger regions of phase
space than can be reasonably accessed experimentally, even with
automation.

Porous molecular materials are distinct from porous network
materials such as zeolites, metal-organic frameworks (MOFs) and
polymers, in that they are made up of discrete molecular units
rather than having three-dimensional extended bonding4,5.
Molecules can be porous in the solid-state through either
extrinsic porosity, where the molecules are unable to pack effi-
ciently to remove void space, or through intrinsic porosity, where
the molecule itself has a persistent internal cavity. Examples of
intrinsically porous molecules include calixarenes, cucubiturils
and organic cages, and these systems are investigated for appli-
cations in molecular separation, encapsulation, catalysis, sensing,
and as porous liquids4. Porous organic cages (POCs) are poly-
cyclic molecules that have three-dimensional structures with
three or more molecular windows4.

The discovery of new POCs consists of many challenges; first,
after the successful synthesis of the required precursors for the
systems, they must be combined to form the cage species, which
is typically done via a one-pot reaction using dynamic covalent
chemistry (DCC). The most common type of DCC reaction used
to form cages is imine condensation. During this process, not
every reaction will successfully form a cage, for example, in a
recent high-throughput screening study only 42% of the reactions
were successful6. Furthermore, not only does one need a suc-
cessful reaction, but the reaction needs to form the molecule in
the desired topology and for the molecule to be shape persistent if
desired, retaining an internal cavity in the absence of solvent. The
topology formed can be hard to predict a priori7, and, further, we
recently found that of 63,472 hypothetical cages, built from a
library of precursors with shape persistence in mind, only 28%
were actually shape persistent8.

Computation can help guide the discovery of POCs, with cal-
culations considering the thermodynamics and kinetic pathways
of the assembly process able to help identify the expected
topology of a given reaction6,9,10, and whether or not it is shape
persistent8,11. We have also recently applied supervised machine
learning to accelerate the prediction of shape persistence of a
hypothetical cage assembly, making this accessible to the
experimental community8. With a molecular structure, crystal
structure prediction techniques can be used to unveil the most
energetically favourable crystal packings12. While <200 POCs
have so far been experimentally realised, in theory the search
space for these systems is vast if all possible combinations of
organic precursors for DCC reactions are considered. Of course,
not all molecules are suitable building blocks for POCs, nor are
the majority likely to be synthetically accessible, but this just
creates an additional challenge in the sensible selection of pre-
cursors if one wants to truly consider a diverse range of possi-
bilities, outside of what would be immediately available for
synthetic screening.

It is not computationally feasible to analyse all combinations of
organic building blocks as POCs for a given application. Recently,

we developed open-source python-based software, called the
supramolecular toolkit (stk), that allows the automated con-
struction of different types of materials from precursor data-
bases13. We recently showed that an extension of stk to include an
evolutionary algorithm (EA) could be used to target specific
structural features of POCs, such as high symmetry or a specific
pore size, identifying not only promising targets, but also more
general design rules to obtain a specific feature14. This has already
led to the synthetic realisation of promising identified POCs15.
EAs mimic evolutionary processes to solve global minimisation
problems, with the evolutionary pressure for ‘survival of the fit-
test’ in our case being targeted towards a desired set of features in
a molecular material. After calculating the quality of each of the
candidates of a generation, the population is ‘evolved’ by per-
forming modifications that mimic crossover and mutation in
nature. EAs are used as efficient ways to sample chemical space
for drug discovery16, and computational materials discovery17,
including for porous network materials18. Here, rather than
focusing on optimising a structural feature of the POCs, we focus
for the first time on targeting a specific application of the cages, in
this case the encapsulation of C60 within a cage when in solution.
Through screening hundreds of possibilities and seeking to
optimise the function of the cage, this differs to an approach for
designing metal-organic cages to encapsulate materials by
designing complementary geometries of the host19.

The application of fullerenes span over biomedicine20 and
materials science21, for example in organic photovoltaic devices
and superconductive materials22,23. A lot of effort has been
applied to research into the selective binding of different species
of fullerenes for the purification process24,25. The immobilisation
of fullerenes in complexes enables controlled property tuning and
selective formation of fullerene adducts26,27. Fullerenes can also
act as templates and drive macrocycle formation towards desired
supramolecular architectures28. The common mechanism of
fullerene encapsulation is to maximise the non-specific van der
Waals interactions between the host molecule that “wraps” itself
around the fullerene, as in the “buckycatcher”29. There
are multiple examples of bowl-shaped molecules binding with
fullerene30–32, and some examples of metal-organic cage
encapsulation24,33. POCs, however, have been mostly absent
in fullerene host-guest supramolecular chemistry. The only
two examples that have been proposed as possible fullerene hosts
to our knowledge are a sandwich-like cage and a porphyrin cage
(COP-5)34,35.

Here, our EA-based screening for POCs that are potential C60

encapsulants reveals specific cage targets that have common
features such as a cavity diameter of ~10Å and similar sized
building blocks. We explore how to parameterise the EA and
discuss how the approach could be applied to larger databases of
potential cage building blocks, or targeted at other encapsulants
or molecular materials with desired properties in the future.

Results
The database of assembled cages. A small custom database of
precursors, 43 tri-topic (Tri) aldehydes and 90 di-topic (Di)
amines (see Supplementary Figs. 1–4), was used to reduce the vast
chemical space of possible precursors. This precursor database,
when combined in every possible combination in a single
topology, corresponds to 3870 imine cages. Here, we only con-
sider cages assembled in a [4+ 6] reaction of four aldehydes and
six diamines into a Tri4Di6 topology that relates to a tetrahedron,
using the nomenclature introduced by Santolini et al.9. The
trialdehydes are hereafter referred to as ‘nodes’ and diamines as
‘linkers’, based on their positioning on the template geometry in
the cage assembly process (trialdehydes on the vertices and
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diamines on the edges). These precursors were either selected
from previously reported organic cages, or are molecules that we
deemed synthetically viable and reasonable precursors for cage
synthesis, but have not been previously reported. The same set of
precursors was used in our previous study using machine learning
to predict shape persistence8. This database is intentionally lim-
ited in size to allow quick screening for the purpose of the fitness
function (FF) parameterisation. To simplify the description of the
derived POCs and C60@POC complexes, a generated POC is
simply referenced to as the “cage” and the corresponding
C60@POC complex as the “complex”. The final population of
cages were assigned code names of type CX, where X is a number
in ascending order and C1 is a cage of highest fitness value.
Lastly, “CX complex” corresponds to the C60@CX complex.

An overview of the assembly and property calculation process
for a cage is shown in Fig. 1a. The calculated properties of the
geometry optimised cages and their corresponding complexes are
shown in Fig. 2 and Supplementary Figs. 5–8. The pairs of POCs
and their complexes were divided into three groups: the complexes
that have C60 binding energies greater than 0 kJmol−1 (repulsive
interaction); complexes with binding energies within the range of
−404 and 0 kJmol−1; and complexes with binding energies well
below −404 kJ mol−1. The last set, coloured red in the graphs, was
notable as these forcefield binding energies seemed unreasonable.
Grimme et al. reported binding energies of −770 and −606 kJ
mol−1 for a hypothetical multi-shell “hyperfullerene” complex
(C60@C240), where these values can be seen as a physical limit of
the C60 interactions with a potential host36. We note that these
simulated binding energies will be of considerably greater
magnitude than any experimentally measured values due to the
absence of solvent in our simulations. However, in the set of
complexes coloured red, the binding energies are in the range of a
few thousands of −kJ mol−1. Additionally, these seem to aggregate
around certain values and are observed for POCs containing larger
cavities, in the region of 20–30Å (the C60 diameter is ~10Å).
These were inspected and determined to have unreasonable
geometries with the POC structures ‘stuck’ in chemically infeasible
geometries, for example with an unusual orientation of hydrogens.
It is believed this is a systematic error (as there is a similarity of
binding energy values between groups of cages) and a false result,
thus these POCs were disregarded.

Those complexes with attractive binding energies between
0 and −404 kJ mol−1 in Fig. 2 have a particular focus around
cavity sizes of ~10Å, more so in fact than in the isolated POC
molecules. This is the approximate size of the C60 molecule and
reflects the fact that many of the POCs have expanded their
intrinsic cavity to form one of the correct size for hosting C60.
This is the reason for a large set of complexes with positive
binding energies (blue points); the energy penalty of adapting to
fit C60 is far greater than the benefits of the C60 presence. The
green set of cages with favourable binding energies is the target
group of complexes for the EA.

FF parameterisation. The FF is used to calculate the performance
of a cage as a C60 encapsulant during a run in our EA. The FF
parameterisation was first performed on the database of all
assembled cages and their complexes. For the purpose of the FF
parameterisation, the complete database of 3870 cages and their
C60 complexes were generated and the C60 binding energy in
the complex at the forcefield level (Ebinding) and the asymmetry of
the cage extracted from the complex (Acomplex) were calculated.
The geometry optimisation process is the bottleneck of the EA
calculations in this work, and the database of pre-assembled and
geometry optimised cages resulting from all combinations of
precursors allowed for a quick screening of a range of constants

and powers for the FF to find the right parameters. The FF had
the form:

FF ¼ ðaEb
binding þ cAd

complexÞ
�1 ð1Þ

and a and c constants were screened for values between 1 and 5,
in increments of 1, for all combinations. The b and d exponents
for all combinations of values in the range of 0–5 were considered
in increments of 0.25.

During the FF calculation, collapsed cages that have lost their
internal cavity are discarded, allowing us to focus on shape-
persistent, symmetric molecules as potential C60 encapsulants. It
is facile to identify these systems, as these will not have windows
whose diameter can be determined by pywindow. We found that
37% of the POCs were discarded because either the empty cage,
complex, or both, failed the asymmetry criteria, with the majority
of collapsed cases coming from the empty systems (21%). If we
then factor in wanting to have a favourable interaction energy,
then 44% of cages fit that criteria. For all 2432 of these cages, the
FF was calculated with the full set of parameters, equating to 9261
different setups, 21 different ratios of constants a and c and for
each of these, a heat map was generated with 441 combinations of
exponents b and d. For each a, b, c, d parameter combination, the
R10 score was calculated with Eq. (4) for the set of ten cages with
the highest fitness value. The R10 score gives the relative quality of
the set of ten best cages in respect to other sets of parameters for
the FF. The results presented in Fig. 3 are for the set of constants
a:c for 1:1 (middle), 5:1 (left) and 1:5 (right) ratios, which show
the general trend observed for combinations of a and c. The
lowest R10 score corresponds to the optimal set of parameters.
The lowest R10 value was 1.480 and was identified for 126
different sets of parameters. The simplest set of parameters, where
the sum of a, c, b and d was smallest, was then considered.
The identified set of parameters was a= 1, b= 3.25, c= 1 and
d= 4.25.

We can learn lessons from this parameterisation procedure
that can be used in other studies in the future that seek an
optimal set of weightings for an EA FF to search large databases
for molecular materials. Firstly, a rigorous approach would
involve generating a random subset of all potential solutions,
and then a parameterisation performed as we have done here,
before applying that parameterisation to a search of the full
database. However, we can also see that if you already have
components in the FF, then the setup can be generalised to add
additional related components, for example cage and complex
asymmetry here. What we learnt from our extensive parameter-
isation, was that in the end the weightings of the components
essentially matched what we would have expected from
chemical intuition. Thus, for a system where there is familiarity
with the importance of the components, the parameterisation
step could be skipped. Finally, while the exponent values of 3.25
and 4.25 were found to give the best rankings in this case, we
would suggest that it would also be sufficient, and simpler, to use
exponents of 1 in future studies.

The evolutionary algorithm calculations. A flowchart sum-
marising the key steps in the EA is shown in Fig. 1b. With the FF
parameterised, five separate EA calculations were performed on
the database of precursors presented. The final goal was to find
excellent POC candidates for C60 encapsulation and the FF had
the final form:

FF ¼ ðE3:25
binding þ 0:5A4:25

complex þ 0:5A4:25
cageÞ�1 ð2Þ

At this point we introduced the new feature of Acage, the asym-
metry of the isolated cage. While we simplified the initial para-
meterisation to only have two components (Ebinding and Acomplex)
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to make it manageable, we added this additional feature here as
discussion with synthetic chemists had suggested that higher
symmetry isolated cage molecules should have a higher likelihood
of being synthesised. To weight the binding energy equally to the

asymmetry consideration, the asymmetry-related parameters
were given half weights (constants of 0.5), so that the sum of the
constants equals that of the binding energy. Each EA calculation
was run for 100 generations, with a population size of 20.

Fig. 2 The properties of the assembled POCs and C60 complexes. The complexes were divided into three sets: those with binding energies >0 kJ mol−1

(blue), those with binding energies between −404 and 0 kJ mol−1 (green), and those with binding energies well below −404 kJ mol−1 (red).

Fig. 1 An overview of the computational workflow. a A summary of the cage assembly and property assessment process; b Overall workflow for the
evolutionary algorithm.
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The evolution of the FF in each run is shown in Fig. 4. We can
see that in all cases, the mean fitness value quickly increases and
then converges. In most cases, convergence occurs relatively
quickly, after ~25 generations. Supplementary Fig. 9 shows the
breakdown of the absolute values of the three components of the
FF; the binding energy, complex asymmetry and cage asymmetry.
These show that although the binding energy converges quickly,
with essentially no change after 20 generations, the asymmetry
values fluctuate more, with an overall trend to lower mean values
for the asymmetry (i.e. more symmetric structures), which is
generally converged by about 50 generations. This suggests that
finding high binding energy complexes is easier than finding
symmetric cages and assemblies. As more symmetric cage
systems stand a greater likelihood of being synthetically realised,
it is important to use the longer runs to fine tune these features.
These findings emphasise a common feature in computational
materials discovery programs—that it is comparatively easy to
find materials with good property performance, but harder for the
materials to also be experimentally viable.

To rank the cages from all five EA calculations, the results
were combined and reweighted with respect to the same FF from
Eq. (2). The combined results consisted of 53 unique cages
(duplicates were discarded) and their complexes. Figure 5 shows
how the top scoring cage evolves over the generations for run 1
and Supplementary Figs. 10–13 show the same for the other runs.
While each run is different, and obviously seeing only the top
candidate only provides so much information, it can be seen that

the cages typically start with a cavity that is too small or too large
for C60, alternative sizes are then trialled, but once there is a top
candidate with approximately the correct size for C60, the cavity
size of the top candidate essentially no longer changes, but rather
there are only changes to the exact chemical composition of
the components of the cage, as the EA seeks to maximise the FF.
We note that the top couple of cages can swap, with a specific
candidate no longer being ranked top before returning to top; this
is due to the precise ranking depending on the composition of the
entire population in our normalisation process.

To examine how chemically diverse the building blocks of the
cages were, and how this evolved over the course of the EA, we
calculated the mean Dice similarity of Morgan fingerprints of
radius 2 between all unique pairs within each generation.
As shown in Supplementary Fig. 19, the mean Dice similarity
across random building blocks at initialisation is approximately
0.34. In all runs, the mean Dice similarity increases to between
0.4 and 0.5 over the course of the run. This makes sense as, for
example, some of the building blocks that are too large or too
small to form the correct size pore are not selected, resulting in
populations that occupy a smaller region of chemical space as the
EA continues. However, as features such as external functiona-
lisation of the cage are not under evolutionary pressure, there
could be significant differences in those regions of the cage
building blocks. The (small) range of different values across the
five runs also indicates that different final populations are found,
even if many of the top candidates are the same.

Fig. 3 The heat maps of the fitness function parameterisation process. The plots from left to right are for the a and c constants of 5:1, 1:1 and 1:5,
respectively. The x and y axes correspond to the screened b and c exponents. The heat map scale shows the R10 score for the ten cages with highest fitness.
The lower the R10 score, the higher quality of the set. The a, c, b, d parameter combination (1, 1, 3.25 and 4.25, respectively) that gave the lowest R10 score
of 1.480 is marked with a star.

Fig. 4 The evolution of the fitness values in the five EA calculations. The lowest (blue), highest (green) and average (orange) fitness function in each
generation of 20 members is shown for runs 1–5 (a–e). The fitness value is with respect to a given population, therefore the scales on each of the graphs
have different magnitude and can not be compared between separate EA calculations.
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We further carried out a structural analysis of the cages over
each of the EA runs, calculating the average percentage of double
bonds and rotatable bonds in the cages at each generation (see
Supplementary Figs. 14–18). We found that the runs typically
converge to cages having an average of 5–15% of their bonds
being classed as rotatable, with the linker typically having a
greater degree of rotatable bonds, and just below 10% double
bonds in the molecule for the linker and almost 30% double
bonds for the node. These features can be considered as design
rules for molecules that encapsulate C60. To aid analysis of
convergence in the future, tools which identify the salient features
of building blocks with regard to the pore, and compare those
only, would provide a more accurate picture of convergence.

The 20 cages with the best fitness values are presented in Fig. 6.
In Fig. 7, the nodes and linkers that the 20 cages were assembled
from are listed. In addition, each EA run that identified a given
cage is marked with a tick sign. The fact that many of these cages
were identified multiple times shows the effectiveness of the
constructed FF and that the screening of the databases is quick
and broad.

The nodes in the 20 best cages share similar features. They are
planar, have a small number of rotatable bonds, and have a high
number of aromatic rings. They are also very similar in size. The
node38 has a spherical diameter of 16.1 Å, and node15 and
node13 have diameters of 16.8 and 17.0Å, whereas node17
and node16 are slightly smaller and have diameters of 14.1 and
14.4Å, respectively. The linker38 in C1 is the most distinct from
the set of linkers, as the separation of the nitrogens between
neighbouring imine bonds is 6.9 Å. All the other linkers have the
amine functionality on neighbouring carbons, resulting in the
spacing between nitrogens in imine bond pairs in a range of
3.0–3.4Å. While the linker in C1 is comparatively larger, this
does not result in a larger cavity diameter in comparison with the
rest of the cages.

In Table 1, the re-scaled fitness values for the combined results
of the five EA calculations and the unscaled parameters are
presented. The cages have relatively high magnitude binding
energies, between −160 and −270 kJ mol−1. The asymmetry for
both the empty cage and the cage complex are also in the lower
range of values present in the database, so the final assemblies and

their corresponding POCs are all very symmetrical. The POCs
have cavity diameters between 9.7 and 10.6 Å, all close in size to
the C60 diameter (~10Å). This is despite the fact that the cavity
diameter of the POC and of the POC in the complex were not
part of the FF. This shows how the binding energy was a good
choice for a parameter that would also affect other features such
as the cavity size.

In Fig. 8 and Supplementary Figs. 20–23, we show where the
top results are located in terms of properties relative to the entire
database. The identified solutions are highly localised, especially
for the features that were part of the FF. This is somewhat
equivalent to finding the global minimum on the chemical
hyperspace, although here we do not aim at a global minimum,
rather finding good solutions for POC C60 encapsulants. The
results are especially promising as some of the building blocks that
repeatedly occur in the top candidates have been previously used
to synthesise cages. For example, Ding et al. synthesised a
[4+ 6] triazine cage with cyclohexylediamine in 201537; the
triazine building block used in this example is similar to node15
that occurs in POCs C3, C4, C5 and C14, differing only in the
number of nitrogen substitutions in the central heteroatomic
benzene ring. Further, node16 in C17 was previously used to
synthesise a [4+ 6] POC called CC5 when combined with
cyclopentyldiamine38, and in our prediction, linker33 is a
substituted cyclopentyldiamine. Most recently, truxene building
blocks, structurally similar to node38 in C1 and nine other cages,
have been used to synthesise [4+ 6] POCs with ethylenedia-
mine39 and cyclohexyldiamine40. However, it has been reported
that a [2+ 3] capsule is actually formed with cyclohexyldiamine
when using a truxene containing the same trialdehyde substitution
pattern as in C1 and the other examples40, rather than the targeted
[4+ 6] cages here. Although this does not mean that the [4+ 6]
complexes would not necessarily be formed in the presence of C60

instead if a templating effect was to occur, rather than relying on
diffusion of the C60 into a pre-formed cage cavity.

Design principles for POC encapsulants of C60. In addition to
the set of specific target cages for POC encapsulation of C60 and
the development of a FF that can be applied to search much larger

Fig. 5 The evolution of a high performing C60 cage encapsulant. The top performing candidates from run 1 at different stages of the evolution. The
generation number where each structure becomes the top performing is labelled.
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databases of building blocks, we can identify the ideal features of
any POC for that task. Firstly, the optimal cavity size is in the
range of 9.3–11.6Å. If considering a [4+ 6] imine cage, the tri-
topic aldehyde should be roughly ~16Å in diameter, and the di-
topic amine should have the amine functionality on neighbouring
carbon atoms. Many of the precursors used here could be sim-
plified towards alternatives that were successfully used to syn-
thesise cages in the past. However, the best molecule, C1, has the
amine functionality in greater separation (not on neighbouring
carbon atoms), thus larger aldehydes should be considered
for combination with this diamine. To our knowledge, there
are currently no studies in the literature of C60 encapsulation in
[4+ 6] imine cages. However, the experimental examples of
cages, listed in the previous section, are structurally similar to the
presented set of cages here.

Discussion
We have shown a computational approach using our developed
evolutionary algorithm for the discovery of POCs as potential C60

fullerene encapsulants. The whole process from the choice of the

database of precursors, FF construction, the assembly of a data-
base for parameterisation, and the analysis of the results provided
insights into each of these steps. The presented methodology can
be used in place of experimental serendipitous discovery, or for
the opposite, to facilitate and improve rational design of new
functional materials by providing insightful structure-property
relationships. The EA and the constructed FF were found to
efficiently identify promising candidates for experimental con-
sideration to find new C60 encapsulants. More importantly, the
same setup could be used for larger databases of building blocks,
for any encapsulations, and the discussed parameterisation
approaches conducted for extension to other properties and/or
molecular material systems.

Design principles can be formulated from the results. The
aldehyde building blocks should be fairly planar, with a circular
diameter in the range of 14.1–17.0Å. The amine linkers with
amine functional groups on the neighbouring carbons result in
the most promising cages. However, larger linkers such as 1,10-
phenanthroline-2,9-diamine, which is in our top candidate (C1),
should also be considered. In all cases, the building blocks have a
small number of rotatable bonds, and a high number of aromatic

Fig. 6 The 20 best cages found for C60 encapsulation. The 20 cages with the best fitness values from the combined results of the five EA calculations
sorted from best (C1) to worst (C20). The geometry optimised structures of the empty POCs are presented.
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rings. The combination of the building block and linker should
result in a cavity size of ~10Å in diameter.

If we consider a hypothetical database of 30,000 di-topic linkers
and 10,000 tri-topic nodes, and if we extend the possible topol-
ogies ([2+ 3], [4+ 6], [8+ 12]), the resulting combination of all
possibilities would reach 900 million imine cages. Extending our
dynamic covalent reaction chemistries to include reactions
beyond imine condensation, and to precursors with different
numbers of reactive end groups, would quickly result in billions
of possibilities. The use of an effectively parameterised EA, as we
have presented here based on a parameterisation using just
3870 cages, a tiny fraction of the potential search space, to
effectively explore this search space is therefore necessary, as it is
not possible to conduct a brute force search of billions of possible
POCs. Our approach can also be easily modified to target other
properties of molecular materials, such as the likelihood of guest
diffusion through a pore window, the size and shape of the host
molecule, but also other properties, such as optoelectronic
properties in organic electronics.

Methods
Cage assembly. The POCs were assembled with our stk software by placing the
nodes on the vertices and linkers on the edges of a template tetrahedral geometry13.
Through the selection of high symmetry precursors and this symmetrical topology,
we are targeting symmetrical assemblies, which can be anticipated to help increase
the chance of synthetic realisation and simplify the number of structural possibi-
lities. The assembly process of the related C60 complex uses a new function in stk,
where the C60 is placed at the centre of the template tetrahedral geometry at the
very beginning of the assembly process before any geometry optimisation of the
POCs. The following procedure for finding the lowest energy POC conformer was

performed on the empty cages and their complexes using the OPLS3 force field41 in
Schrödinger LLC’s MacroModel (Release 2016-2). We have previously found that
OPLS3 reproduces well the structure and energetics of porous imine cages7,9.
Firstly, a geometry optimisation was performed with a convergence criterion of a
gradient change smaller than 0.05 with all bonds, apart from those created during
the assembly step (imine bonds), restricted during the geometry optimisation. This
is followed by a Molecular Dynamics (MD) run at 700 K and timestep of 1 fs to
explore the conformational landscape for the molecule. A 10 ps equilibration is
followed by a 200 ps production run that is sampled every 10 ps, with each sampled
structure being fully geometry optimised. The configuration with the lowest energy
at this stage is selected and evaluated with the FF.

FF parameterisation. The cavity diameter (D) and the window diameters used to
calculate the asymmetry of a cage (Acomplex) and its complex (Acage) were obtained
with pywindow (implemented as a part of the stk software). The asymmetry (A) is
defined as the difference between all the window diameters in a cage. First, the
window diameters are calculated. Then, the asymmetry is calculated as a sum of the
differences in all window diameters. The more comparable the window diameters
are, the lower the asymmetry of a cage. We have previously found low asymmetry
scores to be a good indication of the high structural symmetry observed in shape-
persistent and non-collapsed cages of a tetrahedral topology, built from high
symmetry precursors14. Tri-topic nodes that are usually at least C3v symmetry are
likely to form highly symmetric assemblies when connected into a tetrahedral
topology, unless the assembly is strained. Avoiding highly strained assemblies
should ideally increase the likelihood that the hypothetical cages predicted can be
realised in the laboratory. The binding energy is calculated with the formula:

Ebinding ¼ Ecomplex � Ecage � EC60
ð3Þ

where the total energy (EC60
) of an isolated C60 molecule is obtained through

finding their lowest energy conformers.
In Eq. (1), Ebinding and Acomplex have their values normalised to ensure that all

the parameters are positive, as for example the Ebinding can be positive or negative.
For each parameter, the lowest value in the population is found and then this value
is added to this parameter of the entire population, ensuring all the values are
greater than zero. Then, all the values are normalised by dividing them with the
mean value of a given parameter within the population. Each parameter can then
be multiplied by a constant or raised to some power. The final FF is the sum of all
the parameters raised to the power of −1.

In the EA calculation, the FF is being minimised, so a set of 10 candidates with
the lowest fitness value was taken for each parameter set up and the solutions rated.
A total rating of the top 10 candidates (R10) was calculated with a new equation
based on the sum of unscaled properties for Ebinding and Acomplex for each member
(i) of the set:

R10 ¼
X10

i¼1

RðEbindingÞi þ RðAcomplexÞi
2

ð4Þ

where RðEbindingÞi for ith complex was calculated using the following formula:

RðEbindingÞi ¼
1; if Ebinding > 0 kJ mol�1

1; if Ebinding <�404 kJ mol�1

1� Ebinding

�404 mol�1 ; otherwise

8
>><

>>:
ð5Þ

A positive binding energy, i.e., a lack of binding affinity, is penalised by adding 1
to the R10 value. At the same time, binding energies lower than −404 kJ mol−1 also
result in a penalty of 1. The reason for this is explained in the analysis of the results
of the assembled cages and relates to the fact that some forcefield binding energies
are unreasonable. The strongest binding energy among the assembled complexes,
with the exception of the unreasonable values, was calculated to be ~−404 kJ mol−1.
Therefore, the complexes with Ebinding between −404 and 0 kJ mol−1 are assigned a
value from 0 to 1, depending on how strong the binding affinity is, resulting in a
decreasing penalty for binding energies up to −404 kJmol−1. In our case here,
because we had pre-run our small database, we knew that −404 kJmol−1 was the
lower limit on acceptable binding energies. When moving this study to a larger
search space, with unknown binding energies, we would suggest a lower limit of
−780 kJmol−1, which is just below the theoretical limit for a C60 complex binding
energy reported by Grimme et al.36.

The RðAcomplexÞi is calculated with the following formula:

RðAcomplexÞi ¼
Acomplex

11:864Å
ð6Þ

where the lower the asymmetry of the cage in the complex, the lower the penalty.
The asymmetry parameter is treated here as a proxy for low-strained structures
that are more chemically feasible. The value of 11.864 is the highest (worst)
asymmetry value in the whole database of 3870 cages. The results were then used to
generate 2D heat-maps that allowed us to find the parameters a, b, c and d that
yield the set of ten best candidates out of the population most effectively.

Evolutionary algorithm calculations. Overall, the implementation, for example of
initialisation, mutation and crossover is as described in our previous work14.

Fig. 7 The aldehyde nodes and amine linkers used to assemble the final
population of cages. The node and linker index numbers correspond to
Supplementary Figs. 1–4. The specific EA calculations in which each cage
was a member of the 100th generation are marked with a tick sign.
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The selection function used to choose members for the next generation was a
roulette wheel, where the probability of selecting a member is proportional to its
fitness value. The EA steps are as follows:

1. First the initial population of 20 diverse cages is generated. Random nodes
and linkers are chosen and the cages and the corresponding C60 complexes
generated. This way a set of 20 random cages is generated. In each of the 5
EA runs, a different random initial population was generated.

2. The crossover operation is then applied to a random pair of cages,
exchanging building blocks between the pair to result in two offspring
molecules. The crossover operation was performed 7 times in each
generation.

3. The mutation operation is applied 10 times in each generation, with the
fittest population member always undergoing a mutation. The remaining
9 mutation candidates were chosen using roulette wheel probability. A cage
is chosen at random and then its’ fitness is compared to a randomly

generated value between 0 and 1. If the fitness of the candidate is greater
than the randomly generated number, then the cage undergoes one of the
mutation functions. This is repeated until 9 cages are mutated. There were
four mutations applied with equal probability; exchange of the linker to a
similar one (the linker with the closest Dice similarity to that being
exchanged), the exchange of the node to a similar one (the node with the
closest Dice similarity to that being exchanged), the exchange of the linker
to a random one, and the exchange of the node to a random one. This
provides an excellent balance between small and large steps across the
chemical search space14.

4. This results in a total of 44 cages, 20 coming from the current generation,
14 from crossover and 10 from mutation. From these, 20 are chosen using
the roulette wheel, to create the next generation. The fittest candidate always
proceeds to the next generation unchanged, equivalent to elitism.

5. The whole process is repeated for 100 generations.

The five EA calculations resulted in five final populations of 20 candidates each.
These were then combined into a single population and the duplicates were
removed. The resulting population consisted of 53 unique members. The fitness of
the members of the final population was re-evaluated with the FF from Eq. (2) and
the candidates ranked in ascending order.

Data availability
Datasets analysed are available at https://doi.org/10.14469/hpc/6054 and any further data
is available on reasonable request from the corresponding author.

Code availability
The software used here is a development of stk, which is available on github at github.
com/JelfsMaterialsGroup/stk. For additional features of the software, contact the
corresponding author.
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