
ARTICLE

Instantaneous generation of protein hydration
properties from static structures
Ahmadreza Ghanbarpour 1, Amr H. Mahmoud1,2 & Markus A. Lill 1,2✉

Complex molecular simulation methods are typically required to calculate the thermo-

dynamic properties of biochemical systems. One example thereof is the thermodynamic

profiling of (de)solvation of proteins, which is an essential driving force for protein-ligand and

protein-protein binding. The thermodynamic state of water molecules depends on its

enthalpic and entropic components; the latter is governed by dynamic properties of the

molecule. Here, we developed, to the best of our knowledge, two novel machine learning

methods based on deep neural networks that are able to generate the converged thermo-

dynamic state of dynamic water molecules in the heterogeneous protein environment based

solely on the information of the static protein structure. The applicability of our machine

learning methods to predict the hydration information is demonstrated in two different

studies, the qualitative analysis and quantitative prediction of structure-activity relationships,

and the prediction of protein-ligand binding modes.
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The prediction of thermodynamic properties of biochemical
systems such as Gibbs free energies is critical in under-
standing and quantifying essential biological processes,

such as protein folding, protein–ligand and protein–protein
binding. Resource intensive molecular simulations are routinely
used to sample atomistic configurations of the dynamic bio-
chemical system in order to calculate thermodynamic properties.
Recently, machine learning methods have been explored to
accelerate and improve configurational sampling of protein sys-
tems in comparison to molecular dynamics (MD) simulations1–8.
This acceleration is achieved by machine learning concepts that
learn collective variables from MD trajectories3,4,7,8 or that gen-
erate new atomistic configurations in a statistically independent
manner1,5,6. The focus of these methods lies in the thermo-
dynamic characterization for structural studies of proteins.
Application of these machine learning approaches to investigate
the thermodynamic properties of biochemical processes such as
protein–ligand or protein–protein binding is still to be explored.

(De)Solvation of protein and ligand is typically a driving force
for such association processes. The thermodynamic properties of
water molecules around protein moieties depend strongly on the
formation and dynamics of hydrogen-bond networks in a het-
erogeneous protein environment. Several methods9 have been
devised to identify water molecules adjacent to proteins’ surfaces
which includes knowledge-based methods such as WaterScore10 or
AcquaAlta11, statistical and molecular mechanics approaches such
as 3D-RISM12 or SZMAP13, Monte-Carlo methods such as grand-
canonical Monte-Carlo (GCMC) simulations14, and MD methods
such as WATCLUST15, WaterMap16,17, or WATsite18–20. GCMC-
and MD-based hydration-site prediction is accurate and widely
accepted as gold-standard to compute the likely water positions in
the binding sites of proteins, and the enthalpy and entropy
contribution of a replaced water molecule to binding free ener-
gies. This statement was confirmed in a recent analysis on the
structure-activity relationships for different target systems which

demonstrated the superiority of simulation-based water predic-
tion compared to other commercial methods such as SZMAP,
WaterFLAP, and 3D-RISM21.

Hydration information can be used to estimate the desolvation
free energy contributions to a ligand’s binding affinity or the
potential for water-mediated interactions17,22,23. Grid-based
adaptations of the inhomogeneous solvation theory (IST)24, for
example GIST25, have been developed for direct inclusion of the
hydration information in docking algorithms.

In addition to water replacement and reorganization, ligand
binding typically also involves conformational changes of the
protein26. Recently, we demonstrated the influence of con-
formational changes of the protein on hydration-site positions
and thermodynamics27,28. These studies concluded that
hydration-site prediction on flexible proteins needs to be per-
formed on alternative protein states. Furthermore, we recently
demonstrated the general importance of water networks around
the bound ligand for forming enthalpically favorable complexes29.
Thus, it is indispensable to re-calculate hydration information in
an efficient manner for each bound ligand or even binding pose
during docking.

Hydration-site prediction based on GCMC- and MD simula-
tions is accurate but also rather time-consuming. Utilization of
these concepts in a real-world compound-design project on
flexible proteins and large sets of ligands with alternative binding
poses is therefore difficult to attain with current computer
hardware and therefore currently impractical. A significantly
more efficient method for hydration profiling is necessary, that
would allow its incorporation in virtual screening to dynamic and
flexible protein entities. In this study, we provide evidence that
modern machine learning approaches may present a realistic
solution for obtaining thermodynamic hydration information in
an efficient manner; we present the first deep learning methods
that instantaneously predict the thermodynamics of hydration
data (Fig. 1).

Fig. 1 Overall idea of WATsiteOnTheFly. A neural network is trained to generate thermodynamic hydration data based on static protein structure. This
allows efficient calculation of (de)solvation data without performing MD simulations.
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First, we demonstrate that simple machine learning methods
based on local descriptors that characterize the direct interaction
between protein and a potential water molecule at a specific
position in the binding site are insufficient to predict hydration
information. The reason for this observation is that interactions
among water molecules are critical for stabilizing the hydration
pattern in binding sites, forming energetically favorable water
networks (Fig. 2). The importance of multi-body effects for the
prediction of thermodynamic properties of hydration was also
emphasized in previous studies30. To correctly model and predict
hydration data, more complex machine learning methods need to
be designed that include potential water interactions. We have
designed two different machine learning concepts based on deep

neural networks that include those multi-body effects which are
critical to determine the positions and thermodynamic properties
of water networks (Fig. 3).

Based on convolutional neutral networks (CNN), the first
approach aims to predict hydration information of all grid points
in the binding site in a single calculation. First, interactions are
computed between protein and multiple atomistic probes placed
on a 3D grid encompassing the binding site. Those interaction
grids, called molecular interaction fingerprints (MIF), are then
used as input to the CNN to predict hydration occupancy. Due to
the use of spatial kernels in CNN, correlations between neigh-
boring grid points are incorporated. This allows to implicitly
include water–water interactions in the machine learning model.

Fig. 2 Network of water molecules in binding sites. Example of crystallographic water molecules in the binding site of the apo structure of HSP90 (PDB
(Protein Data Bank)-id: 1uyl). As water molecules in the binding site are stabilized by hydrogen-bond interactions to nearby water molecules, models that
rely purely on protein–water interactions fail to represent the thermodynamic state and therefore to predict position, enthalpy and entropy of water
molecules.

Fig. 3 Overall procedure of prediction of WATsite data using neural networks. a WATsite simulations are used to generate hydration data. Data is used
as output layer for training of neural networks. b Direct prediction of complete 3D hydration image using U-Net approach. c Point-wise prediction using
simple fully connected neural network.
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In contrast, the second model predicts hydration information
for each grid point separately using spherical-harmonics local
descriptors. Again, interactions between protein and atomistic
probes are mapped on a 3D grid. Spherical-harmonics expansions
of those interaction maps around each grid point then encode the
local environment of a potential water molecule which includes
protein–water and water–water interactions.

Both models are trained on a large data set of thousands of
protein structures. For each protein structure, MD simulation is
performed. Subsequent WATsite analysis predicts hydration
density and thermodynamic profiles on a 3D grid. This hydration
data on the grid functions as ground truth throughout the
training and validation of the neural-network (NN) models. After
the model has been trained it can be applied to any static protein
structure without the need to prepare and run any MD
simulations.

Results
Neural network for semantic segmentation
Performance in prediction of water-occupancy grids. To incor-
porate the context of a grid point in the neural network, we
utilized CNNs based on the computed MIFs. This approach
predicts the water occupancy on a grid point by incorporating
spatial context from surrounding grid points during the con-
volutional feature abstraction process. The CNN network
architecture (Supplementary Fig. 3) down-samples the input
layer identifying features important for the prediction of water
occupancy. The final layers up-sample the grid to the desired
occupancy grid. Similar architectures have been used for many
applications such as semantic segmentation and generative
models. More specifically, we use U-Net as the network archi-
tecture. U-Nets are commonly used for semantic segmentation
tasks. For image segmentation tasks, a U-Net can rapidly learn
to pass critical information such as the outlines of an object,
which is similar between input and output layers. This process
makes the learning more efficient. Similarly, for the task of
water prediction, the surface of the protein is quickly captured
by the U-Net from the input data. Our tests showed that
without skip-connections, it would be difficult for the network
to capture the protein surface, or the solvent accessible surface
with the same efficiency.

Initially, we attempted to generate regression models that
aimed to predict the actual occupancy value of each pixel or grid
point. The resulting models showed poor prediction performance,
which can be largely attributed to the highly imbalanced nature of
the water grids, i.e., most grid points in a water grid have low or
zero occupancy. Alternatively, the water prediction task using 3D
CNNs can be tackled as a segmentation problem, detecting dense
areas where water is more likely to have high occupancy. We have
formulated the problem of predicting water occupancy as a multi-
class segmentation problem allowing to identify regions with
different levels of water occupancy, here predicting occupancy
levels with threshold values of 0, 0.02, 0.03, 0.045, 0.06, and 0.07
(see Supplementary Methods section for details on calculation of
occupancy values). The threshold of >0 classifies regions that are
generally accessible to water molecules. The threshold of 0.02
represents approximately bulk water density. Occupancy values
above this threshold represent regions with increased water
density (=hydration sites). Most hydration sites are formed by
densities with values between 0.045 and 0.06. Values above 0.07
are rather rare.

To evaluate the neural network’s performance, 5-fold cross-
validation was used. The set of proteins was first divided into five
groups (Supplementary Data 1). Then, the network was trained
on four groups and tested on the one group left out, generating a

set of five models. Given the similarity among the proteins in the
refined set, we chose not to use random assignment to the five
groups. For proper validation of the procedure, we instead
minimized the similarity among the different groups by clustering
the whole set of proteins based on binding site similarity. This
guarantees that during cross-validation, the test set is always the
least similar to the training set. To equalize the size of the clusters,
samples were removed from larger clusters, resulting in 223
protein systems contained in each cluster. The similarity was
calculated using the FuzCav program31 and the structures were
clustered using the k-modes clustering algorithm32,33 on the
feature vector generated by FuzCav. For the purpose of data
augmentation, the training samples were rotated randomly on-
the-fly along the coordinate axes.

Figure 4 shows visualization of the predicted water occupancy
for two example proteins at different isovalues representing
different thresholds of occupancy. At low thresholds, the quality
of predicting occupancies is excellent; predicted and reference
occupancy grids largely overlap. As the threshold is increased, the
prediction quality drops due to the sparsity of the grid points with
high occupancy, demonstrating that even with generalized form
of the Dice loss (GDL; see “Methods” for details)34 the problem of
imbalance in the data set was not completely resolved. We further
observed that the network fails to correctly predict the regions
close to the boundaries of the grid. A possible explanation for this
problem is that for these grid points the network does not receive
the full context (MIFs of surrounding grid points) as those
neighboring grid points would lie beyond the boundary of the
grid box. This failure to correctly predict the occupancy of
boundary grid point, however, does not create a serious issue for
the purpose of predicting hydration information in the binding
site, as the grid points on the boundary of the box lie outside of
the binding pocket volume. A mitigation for this problem is to
remove the prediction in the boundary regions of the grid box
after model generation. Therefore, we focused our analysis on the
relevant region in the vicinity of the bound ligand, i.e., all grid
points with a maximum distance of 5Å around the co-crystalized
ligand.

Tables 1 and 2 show different metrics for the prediction
quality of the model obtained from the cross-validation. Only
data for the left-out systems are used in the statistical analysis. In
Table 1, we used smoothed Dice overlap35 to measure the overlap
between the reference and the predicted grids. In this metric the
confidence of prediction of a label is included. For each metric,
both the quality of the full grid and for the area within 5Å from
the ligand is displayed. Table 2 displays precision and recall
values for the water occupancy in the area within 5Å from the
ligand.

Figure 5 shows an overlay of reference and predicted water
occupancies within 5Å of the co-crystalized ligand to demon-
strate the prediction quality in the proximity of the ligand.
For applications of the model to drug design, we are interested
in this particular region to identify how hydration might
enhance, diminish, or interfere with ligand binding at the binding
site.

Importance of probes. We further analyzed which input MIF grids
contributed most to the prediction performance. To compute the
feature importance, we used the Mean Decrease Accuracy (MDA)
or permutation importance method36. This method measures
how the absence of a feature decreases the performance of a
trained estimator. This method can be directly applied to the
validation set without the need of retraining for each feature
removal. A feature is replaced with random noise with the same
distribution as the original input. One simple way is to shuffle the
values of a grid randomly, so that it no longer contains useful
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information. As expected, the probes which are most influential
for the prediction quality were either water probes (OH2) or
probes which mediate hydrogen bonding. It should be noted that
although water probes from Flap are designed to indicate the
water affine areas, they do not linearly correlate with WATsite
occupancy, namely, the Pearson correlation coefficient between
those MIFs and WATsite occupancy is close to zero. Table 3
shows the performance drop with shuffling of each input grid on
the validation sets (sorted by importance of probe).

Neural networks for point-wise prediction using spherical-
harmonics expansion
Classification model. In contrast to the segmentation model, in
the point-wise model each individual grid point represents a
sample that can be used for training and testing of the model.
Thus, the size of the data set is significantly increased and allows
to design a more aggressive testing protocol compared to the
segmentation method. For the point-wise prediction, the same 5-
fold splitting procedure of the data set was used. In contrast to the

Fig. 4 Accuracy of U-Net method. Visual comparison between ground truth (red) and neural-network predicted (blue) water occupancy for adipocyte
lipid-binding protein (PDB-code: 1adl) and HIV-1 protease (4a6b). Predictions were performed using U-Net. Isosurfaces at four different threshold values
(0.0, 0.02, 0.045, and 0.07) are shown. The task of predicting areas with higher occupancy becomes challenging for the network due to the sparsity of
those points (at thresholds 0.045 and 0.07). The regions closer to the corners of the grid are more difficult to predict as information of the context of those
grid points is missing.
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segmentation model, only one-fifth was used for training and
four-fifth for testing.

For the classification model, i.e., separating grid points between
those with and without water occupancy, the normalized
confusion matrix over the test set was computed (Fig. 6).
Ninety-four percent of occupied grid points and 96% of
unoccupied grid points were correctly classified. The precision
values of 0.97/0.92 and recall values of 0.96/0.94 for occupied/
unoccupied data signifies the accuracy of the classification model
in identifying moieties in the binding site that have been observed
to be occupied by water molecules throughout WATsite
simulations.

Regression model. Whereas the classification model allows to
identify regions with likely water occupancy with high accuracy, a
rather small occupancy threshold of 10−5 was used. In practice, it
is desirable to identify regions in the binding site with high water
densities and occupancy peaks that resemble hydration sites.
Therefore, a regression model was designed to identify this high
density among low-density regions. Using descriptors encoding
only the direct interactions with the protein at the specific grid
point location (no inclusion of nearby grid points), a mediocre
correlation between predicted and ground truth water occupancy
was identified (r= 0.52) (Fig. 7). Using only the radial distribu-
tion of interaction profiles of nearby grid points (l= 0) increases
the regression coefficient to r= 0.82. Increasing the depth of the
spherical harmonics (l= 1) only slightly increases the regression
coefficient further to r= 0.85. Further addition of angular func-
tions to represent the environmental grid points (l= 2) does not
further improve the regression between ground truth and pre-
dicted occupancy values. Consequently, we used the regression
model with l= 1 for subsequent analysis (see below).

The same trend, although weaker in magnitude, was observed
in the regression outcome for the free energy of desolvation at the
grid points with occupancy. A maximum r value of 0.83 was
achieved.

For further evaluation of the neural-network performance, 5-
fold cross-validation was used. Again, only a fifth of the data set
was used for training in each cross-validation step and four-fifth
were used for testing the model. All five models exhibited very
similar test set performance. For occupancy the r values ranged

between 0.85 and 0.86 (standard deviation of 0.004), for free
energy it ranged between 0.83 and 0.84 (standard deviation of
0.0044). This highlights the robustness of the model, independent
of the specific protein systems used for training.

Figure 8 shows the comparison of predicted and ground truth
water occupancy at isolevels of 10−4, 0.02, 0.045, and 0.07 for two
different protein systems. Excellent overlap between predicted
water occupancy and ground truth was observed with slight
deterioration in accuracy for the highest density maps at 0.07.
This visual observation can be quantified by measuring the
precision and recall values at different classification threshold
values of 0.02, 0.03, 0.045, 0.06, and 0.07 (Table 4). Relatively
unchanged precision and recall values were observed up to an
occupancy threshold of 0.045. Lower accuracy was observed for
occupancy values of 0.06 and 0.07. This observation is consistent
with previously discussed imbalance between large number of
low-occupancy and small number of high-occupancy grid points.

Similar trends were observed for the prediction of free energy
values (Fig. 9). Here infrequent negative desolvation values were
less accurately predicted compared to positive values. Even
regions containing high positive desolvation values were
predicted with relatively high quality.

Comparison with other machine learning approaches
Failure of machine learning methods on protein density descrip-
tors. Protein densities distributed on a 3D grid have been used as
input descriptors for docking applications37. Here, we tested if a
similar approach could be used to predict hydration information
in the binding site. In detail, an atom is distributed on a 3D grid
according to its atom type using a Gaussian distribution function
centered on the atom center. Using this Gaussian smearing
reduces the sparsity of the input data which would result in poor
learning in neural networks since the gradients propagated
throughout the network will be sparse as well38. Furthermore,
Gaussian smearing better represents the spatial extension of the
protein and therefore local accessibility of water to the protein
surface.

Whereas these input data show good performance for binding
pose prediction of chemicals binding to proteins37, no significant
learning was observed in the context of water-occupancy
prediction (data not shown). This failure can be interpreted by
the lack of modeling of long-range protein–water interactions and
water–water interactions. CNNs based on protein density would
allow modeling of local correlation between protein shape/
properties and adjacent water occupancy. The stability of water
molecules in protein binding sites, however, is strongly influenced
by long-range electrostatic interactions and by the formation of
hydrogen-bonding water networks39,40. Both contributions are
difficult to model using localized features extracted by the layers
of the CNN.

Failure of point-to-point correlations using MIFs. In an another
alternative approach, we represented the protein indirectly using

Table 1 Performance of different U-Net architectures.

Network Distance from ligand Generalized dice loss Dice overlap (smoothed)

Baseline U-Net Full grid 0.44 ± 0.08 0.40 ± 0.20
<5Å from center 0.35 ± 0.06 0.51 ± 0.17

Inception+Residual U-Net Full grid 0.29 ± 0.04 0.79 ± 0.04
<5Å from center 0.24 ± 0.02 0.84 ± 0.02

Various metrics for the performance of a baseline U-Net and a U-Net using Inception and Residual blocks. Performance on the validation sets are displayed (shown as mean ± standard deviation of cross-
validation trials). Metrics are shown for the grids covering the whole binding site and for the sub-grids focusing on the area within 5Å of the ligand center. The results show that the Inception+Residual
U-Net surpasses the baseline model’s performance.

Table 2 Precision and recall of convolutional neural network.

Occupancy threshold Precision Recall

0.02 0.86 ± 0.03 0.87 ± 0.03
0.03 0.79 ± 0.02 0.81 ± 0.03
0.045 0.73 ± 0.01 0.62 ± 0.03
0.06 0.72 ± 0.01 0.56 ± 0.01
0.07 0.70 ± 0.01 0.54 ± 0.00

Precision and recall values for prediction of WATsite occupancy using fully convolutional neural
network (Inception+Residual U-Net) at five different levels of occupancy threshold values.
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molecular interaction fields (MIFs) data41. MIFs were generated
as described previously. As described in the subsection Probe
selection of “Methods”, 12 probes were selected to generate 12
different channels for the input layer. Neural networks were
designed for simple point-to-point correlations, where the dif-
ferent MIF input channels were correlated with WATsite occu-
pancy. In our tests, however, neural networks or other machine
learning algorithms were unsuccessful in finding any significant
point-to-point correlations. From this observation, we concluded
that even the MIFs generated with a water probe differ sig-
nificantly from the WATsite predictions. This can be explained
by the fact that the MIFs only represent direct protein–probe
interactions and therefore lack the incorporation of water–water
interactions. Thus, the interaction value with a probe at a given
point does not provide enough information for a network to infer
water occupancy. For example, a grid point in an occluded space
buried deep inside a protein may have a similar interaction profile
with the protein in context of the MIFs to another grid point in a
solvent-exposed area. The former point, however, may have lower
occupancy due to the lack of stabilizing water–water interactions.

WATsite in contrast includes water–water network interac-
tions explicitly. Furthermore, it explicitly includes entropic
contributions, as the water distribution is sampled from a
canonical statistical ensemble during the MD simulation. To
predict water occupancy at a certain location, the neural network
requires not only the interaction information on the correspond-
ing grid point, but also the context of the grid point, i.e.,
interaction with other water molecules. Those interactions can be
represented either by directly including information of neighbor-
ing grid points or by the explicit design of input descriptors that
include environmental information. The latter approach was
described in the section “Neural networks for point-wise
prediction using spherical harmonics expansion”, the former
was discussed in the section “Neural network for semantic
segmentation”.

Applications. The two NN approaches for the generation of
hydration information were applied to three different topics, i.e.,
the prediction of hydration-site locations in X-ray structures, the
qualitative and quantitative analysis of structure-activity rela-
tionships (SAR) data, and the improvement of CNN-based pose
ranking in docking applications.

Prediction of hydration-site locations. In the first application, we
tested the potential of both NN approaches to reproduce the
position of crystallographic water molecules in the binding site of
four protein systems: Acetylcholinesterase (1ea5), heat shock
protein 90-alpha (1uyl), trypsin I (1s0q), and fatty acid-binding
protein adipocyte (3q6l) (Fig. 10). Both of our methods were
compared to WATsite18 and GAsol (3D-RISM)42. It should be
noted that WATsite had been previously tested to reproduce X-
ray water molecules18,20,27. We show the prediction performance
of finding hydration sites within 1.0, 1.5, and 2.0Å distance to the
corresponding X-ray water location. Hydration sites with dis-
tances >2Å to the corresponding X-ray water locations are
considered as failed predictions. WATsite is the most accurate of
all methods (Fig. 10), in particular considering small spatial
deviations. Both neural networks-based methods either perform
equally well or better than GAsol (3D-RISM) and approximate
WATsite performance for most systems at a deviation of 1.5 or
2Å.

Fig. 5 Accuracy of U-Net method focused on binding site. Visual comparison between group truth (red) and neural-network predicted (blue) water
occupancy for adipocyte lipid-binding protein (PDB-code: 1adl) and HIV-1 protease (4a6b) within 5Å of the co-crystallized ligand. Note that the ligands
were not included either in the water simulations to produce the ground truth or in the generation of input MIF grids. They were added for visualization
purpose only. Predictions were performed using Inception+Residual U-net. Isosurfaces at a threshold value of 0.045 are shown.

Table 3 Importance of probe grids.

Probe Dice overlap Dice overlap (<5Å from
ligand)

C1= 0.56 ± 0.06 0.58 ± 0.04
OH2 0.51 ± 0.04 0.56 ± 0.03
CRY 0.62 ± 0.04 0.67 ± 0.04
I 0.63 ± 0.12 0.64 ± 0.09
O− 0.71 ± 0.04 0.73 ± 0.02
DRY 0.71 ± 0.07 0.79 ± 0.05
N+ 0.77 ± 0.04 0.83 ± 0.02
H 0.75 ± 0.06 0.79 ± 0.02
F3 0.78 ± 0.05 0.83 ± 0.03
OC2 0.79 ± 0.05 0.84 ± 0.02
I-H 0.78 ± 0.05 0.81 ± 0.02
NA+ 0.75 ± 0.03 0.81 ± 0.03

Dice overlap value for the cross-validation sets after shuffling of grid point values for each of the
12 MIF grids. The larger the change in value, the more important the probe grid is for the
prediction. Important probe grids are displayed in bold. The un-shuffled dice overlap values are
shown in Table 1 for all grid points and grid points around ligand.
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It should be noted that a comparison between X-ray water
molecules and hydration sites has overall its limitations: First, fit
of water positions into electron density obtained from X-ray
experiments is not free of errors. Second, X-ray structures are
typically resolved at low temperatures underestimating entropic
effects. Third, crystal effects may have an influence on water
networks, in particular if the binding site is partially or fully
solvent exposed. Fourth, the identified hydration sites depend on
cluster algorithm and settings, thus adding additional inaccura-
cies to the grid-based prediction of hydration density. In light of
those arguments, we believe the hydration-site predictions using
both NN are reasonably accurate, considering their significanty
higher efficiency compared to running MD simulations.

Structure-activity relationships guided by hydration analysis.
Hydration-site prediction using MD-based methods such as
WaterMAP or WATsite have been utilized in many recent
medicinal chemistry projects to understand ligand binding and
structure-activity relationships (SAR), as well as for the guidance
of lead optimization. Recently, Bucher et al. demonstrated the
superiority of simulation-based water prediction using Water-
MAP compared to other commercial methods SZMAP, Water-
FLAP, and 3D-RISM21 for the analysis of the structure-activity
relationships of lead series of different target systems. To
demonstrate that the instantaneous prediction of thermodynamic
hydration information based on our neural networks can be used
with similar confidence in lead optimization projects, we per-
formed three retrospective SAR analyses on heat shock protein 90

(HSP90), beta-secretase 1 (BACE-1), and major urinary
protein (MUP).

In a study of Kung et al.43, a series of HSP90 inhibitors were
synthesized and tested (Fig. 11). The design of the molecules was
guided by replacing water molecules resolved in the X-ray
structure of HSP90. We performed hydration profiling on the X-
ray structure 3rlp of HSP90 with the co-crystallized ligand
removed using the point-wise neural-network model. Water
density with high positive (unfavorable) desolvation free energy
(Fig. 11c, red surface, isolevel for ΔG= 7.5 kcal mol−1) is located
around the phenyl ring of compound A (Fig. 11b). Subsequent
substitution of hydrophobic groups on the phenyl ring at
positions R1, R2, and R3 increases the affinity of the compound
from 22 to 0.14 μM by replacing an increasing number of
energetically unfavorable water molecules. Additional water
density with unfavorable free energy is located adjacent to the
pyrimidine ring of the initial scaffold. Extending the pyrimidine
scaffold to a pyrrolo-pyrimidine group and adding substituent
at Q1 and Q2 position replaces those additional unfavorable
water molecules which increases the affinity by almost 10-fold to
15 nM.

Quantitative regression analysis was performed with the aim to
correlate desolvation free energy obtained from the point-wise
NN with experimental binding affinities. For each ligand atom,
the desolvation free energy is computed by trilinear interpolation
based on the hydration free energies on the eight grid points that
surround the atom. All atomistic desolvation free energies are
summed up. Linear regression between desolvation and binding
free energy yielded a regression coefficient of r2= 0.70 (Fig. 11e).

A similar retrospective analysis was performed on BACE-1
(Fig. 12). Focusing on the R-group of the terminal phenyl ring
(Fig. 12b), density with unfavorable free energy is found adjacent
to the R-group (Fig. 12a, red surface on the right). Methoxy
substitution (compound 2) is not able to replace the water
density, highlighted by a decrease in affinity. Elongated
substituents such as O-ethyl (3) and O-isopropyl (4) spatially
overlap with the unfavorable water density, replacing those water
molecules. This results in significant affinity increase from 21 to
1.3 μM. For BACE-1, two regions with favorable water enthalpy
were observed (Fig. 12d, blue surface) that coincides with X-ray
water molecules (Fig. 12c) which mediate interactions between
protein and ligand. Replacement of those water molecules should
be considered with great care, as it may lead to a decrease in
binding affinity.

Quantitative regression analysis between desolvation and
binding free energy was performed for a congeneric series of
eight ligands (Fig. 12e). An excellent correlation was obtained
with a regression coefficient of r2= 0.78. A similar linear
regression study on the exact same data set was previously
performed using MD-simulation-based hydration-site analysis

Fig. 6 Confusion matrix for classification model. Normalized confusion
matrix for classifying grid points with and without water occupancy using
neural-network model.

Fig. 7 Accuracy of regression model. Regression coefficient r for correlating occupancy and free energy values of neural-network predictions with original
WATsite data.
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with WaterMap44. This analysis achieved an r2 value of 0.82. This
demonstrates that our NN-based efficient thermodynamic
profiling of desolvation is able to generate thermodynamic
profiles for hydration comparable to the time-consuming
hydration analysis based on MD simulations.

Retrospective analysis was performed on major urinary protein
(MUP) (Fig. 13)45,46. The series consists of twelve compounds
with three different scaffolds. Figure 13a shows compound 5 in its
X-ray structure 1i06. The two terminal methyl groups of the

sec–butyl substituent overlaps with water density with highly
unfavorable hydration free energy. Increasingly smaller substi-
tuents display decreasing overlap with positive desolvation free
energy grids in agreement with reduced binding affinity.
Figures 13c and d display compounds 11 and 12 in their
corresponding X-ray structures 1qy2 and 1qy1, respectively.
Compound 12 has larger overlap with water density with the
most positive desolvation free energy. This results in higher
binding free energy compared to compound 11.

Interestingly, quantitative regression analysis between desolva-
tion and binding free energy revealed that not only an excellent
regression within a congeneric series (black spheres: compounds
1–5; red diamonds: compounds 6–10; blue triangles: compounds
11 and 12) could be obtained but also among all 12 compounds
that contain three different scaffolds (Fig. 13e). An excellent
correlation was obtained with a regression coefficient of r2= 0.77.
A similar linear regression study on the exact same data set was
previously performed using MD-simulation-based hydration-site
analysis with WATsite20. This analysis achieved an r2 value of
0.63. This analysis also demonstrates that our NN-based efficient
thermodynamic profiling of desolvation is able to generate
thermodynamic profiles for hydration similar to the time-
consuming hydration analysis based on MD simulations.

Fig. 8 Accuracy of regression model. Visual comparison between group truth (red) and neural-network predicted (blue) water occupancy for adipocyte
lipid-binding protein (PDB-code: 1adl) and endothiapepsin (1epo). Predictions were performed using regression neural network. Isosurfaces at four different
occupancy values (10−4, 0.02, 0.045, and 0.07) are shown.

Table 4 Precision and recall of regression neural network.

Occupancy threshold Precision Recall

0.02 0.79 ± 0.03 0.79 ± 0.06
0.03 0.79 ± 0.04 0.77 ± 0.06
0.045 0.78 ± 0.04 0.76 ± 0.06
0.06 0.75 ± 0.04 0.66 ± 0.06
0.07 0.75 ± 0.04 0.66 ± 0.06

Precision and recall values for prediction of WATsite occupancy using regression neural
network at five different levels of occupancy threshold values.
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These three examples highlight the potential of our neural-
network approach to guide SAR-series expansion by incorporat-
ing critical desolvation information including the replacement of
unfavorable water molecules and enthalpically favorable mole-
cules which mediate critical protein–ligand interactions.

Improved CNN-based pose prediction. In the second application
we investigated if the hydration data instantaneously generated by
the U-Net neural-network model can be utilized to guide ligand
pose prediction. It has been shown previously, that solvent site
information generated from MD simulations can assist in
detecting protein–ligand interactions and improve docking47.
Built on these findings, the method AutoDock Bias uses such
information to modify and bias the energy terms in order to
achieve better performance in docking48. Similarly, in our pre-
vious study29 we showed significant improvement in pose pre-
diction accuracy by adding WATsite occupancy grids as
additional input layers to a classification CNN model based on
Gnina software37. The major issue with this approach is that
generating water-occupancy grids for a large data set of protein
systems using WATsite or any MD-based water prediction pro-
gram is computationally expensive. Here, the idea was to inves-
tigate if water grids generated via our CNN model can replace the
data produced by WATsite to enhance the performance of Gnina.

In Gnina, protein and ligand density are distributed on a 3D
grid that encompasses the binding site. For this distribution, a
Gaussian distribution function centered on each heavy atom
centroid is used. For each atomic element, a separate distribution
is computed for protein and ligand. This ensemble of occupancy
grids is used as different channels of the input layer of a CNN that
classifies native-like poses (RMSD <2Å) from decoy poses
(RMSD >4Å). Water-occupancy grids predicted by our CNN
model were used as an additional input channel to the
Gnina CNN.

To provide water-occupancy data for Gnina, we retrained the
water predictor network using 2288 and 1133 PDBs for training
and test set, respectively. The training and test sets were based on
the reduced set from Ragoza et al.37. However, we increased the
number of bad poses for a more realistic scenario. For each target
protein, only one native-like pose with RMSD <2Å was selected.
Since we aimed to utilize the Gnina CNN with and without
hydration information for pose reranking, systems with no good
poses were removed. The final data set consists of 1394 and 593
protein targets for training and test, respectively. The training was
performed for 10,000 iterations. We used the default parameters
and the reference model for pose prediction which is made
available on Gnina’s Github page (https://github.com/gnina/
gnina).

Fig. 9 Accuracy of regression model. Visual comparison between group truth (red) and neural-network predicted (blue) desolvation free energy for
adipocyte lipid-binding protein (PDB-code: 1adl) and endothiapepsin (1epo). Predictions were performed using regression neural network. Isosurfaces at
three different free energy values (−1, 2, and 5 kcal mol−1) are shown.
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Here, we evaluated the performance of Gnina+water against
Gnina alone and Vina/Smina. The results for Vina were obtained
from Ragoza et al.37.

As it can be seen in Fig. 14, inclusion of hydration occupancy
from our neural-network model into Gnina significantly
increased the performance of Gnina on the test set.

Conclusion. Hydration is a key player for biochemical association
processes such as protein–ligand and protein–protein binding.
The binding partners and the association process itself influence
hydration patterns and thermodynamic properties. In order
to accurately model hydration in tasks such as flexible
protein–ligand or protein–protein docking, the hydration data
needs to be computed in an efficient manner without performing
time-consuming simulations. In this paper, we demonstrate that
instantaneous prediction of thermodynamic properties of bio-
chemical systems is possible due to the development of machine
learning algorithms and due to our ability to generate large
amount of thermodynamic data. Here, we present the very first
deep learning methods to instantaneously predict thermodynamic
hydration data, thus providing an efficient alternative to time-
consuming MD simulations for the calculation of those
properties.

We have developed two alternative deep learning approaches.
One method predicts the complete binding site hydration
information in a single network calculation in form of U-Net
neural networks. The second method relies on descriptors that
include potential protein–water and water–water interactions
calculated on each grid point. The networks were able to generate
precise hydration occupancy and, in case of the point-wise model,
also thermodynamics data.

Application of the predicted hydration information to SAR
analysis and binding-mode prediction demonstrated the potential
of these methods for structure-based ligand design. Future
applications include the marriage of protein flexibility and
desolvation data in ensemble docking. Due to the efficiency of
the methods, precise hydration data could be computed for
alternative protein structures, different ligands, and their binding
poses in modest computation time, which has been an unfeasible
task until now. The routine inclusion of explicit desolvation,
water-mediated interactions, and enthalpically stable hydration
networks around the protein–ligand complex29 may become
possible in structure-based ligand design in the near future.

Methods
Water prediction on proteins. Here, hydration-site data were generated for
several thousand protein systems using WATsite (Fig. 15). The recently published

Fig. 10 Reproducing hydration sites observed in X-ray crystal structures. Comparison among Inception+U-Net, deep neural network (DNN) based on
spherical-harmonics expansion, GAsol/3D-RISM, and WATsite. “Not detected” means no hydration site within 2Å of X-ray water molecule.
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protocol combining 3D-RISM, GAsol, and WATsite (Fig. 15) was used to achieve
convergence for hydration-site occupancy and thermodynamics predictions for
solvent-exposed and occluded binding sites20. Using 3D-RISM site-distribution
function49–51 and GAsol42 for initial placement of water molecules, WATsite then
performs explicit water MD simulations of each protein. Finally, explicit water
occupancy and free energy profiles of each hydration site (i.e., high water-
occupancy spot) in the binding site are computed. This hydration data is

distributed on a 3D grid that encompasses the binding site and is used as output
layers for the neural networks to be trained on. Details on WATsite simulations
and analysis can be found in the Supplementary Methods section.

Neural networks for WATsite prediction. Two different types of neural networks
have been designed to predict hydration information (Fig. 3a). In both approaches,

Fig. 11 SAR of HSP90 inhibitors. SAR of HSP90 inhibitors guided by gain in desolvation free energy based on point-wise neural-network model. a Co-
crystalized compound 5 in PDB structure with ID 3rlp. b SAR table of 15 inhibitors with substituents replacing water density with unfavorable free energy
(c/d: isolevel: 7.5 kcal mol−1). d Compound 8 from X-ray structure 3rlr. e Linear regression between predicted desolvation and experimental binding free
energy for SAR series (r2= 0.70).
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input descriptors were generated for each grid point representing the spatial and
physicochemical environment of that potential water location. In the first
approach, the complete 3D input grid was translated into a 3D output grid
representing the hydration information using a semantic segmentation approach
(Fig. 3b). In the second approach, the hydration information of each individual
point is predicted based on input descriptors (Fig. 3c).

Neural networks for semantic segmentation. In the first approach, to predict
hydration data, we adapted deep neural-network concepts commonly used in
semantic image segmentation. Semantic image segmentation is the task to identify
the pixels in an image that belong to a specific class or category, for example, a
specific object in an image. The great advantage of such networks is that they are
able to be trained end-to-end by creating a mapping from the input layers to the
output images. The resulting output is an image or a grid with the same dimensions
as the input layers. Among the various architectures used for this task, U-Net has
been demonstrated to often produce superior segmentation performance with
smaller training sets compared to other methods52. Here, we used different forms

of U-Nets but extended the segmentation task to multi-class segmentation. The
multiple classes represent the occupancy of water molecules above various
threshold values in different moieties along the protein surface.

Generation of descriptors. We used the “refined set v.2016” from the PDBind
database53,54 consisting of 4057 protein–ligand complexes. Hydration-site data was
generated using WATsite as described in ref. 29 (see also Supplementary Methods).
The ligands were removed from their binding site for WATsite calculations but
used to define the center of the hydration grids where the center of the grid is
aligned to the ligand centroids in the X-ray structure.

All PDB files were processed by removing ions, water molecules, ligands, and
other heteroatoms. No proteins with cofactors in the binding site were used in this
study. Preparation scripts available in WATsite’s docker image bundle were used to
further process the proteins: PROPKA55,56 was used for protonation state
prediction and LEAP (part of the Ambertools package57) for assignment of
Amber14 force-field parameters. The prepared protein was used as input for
WATsite and for the fully connected network (to generate features with spherical-
harmonics expansion method).

Fig. 12 SAR of BACE-1 inhibitors. SAR of BACE-1 inhibitors guided by gain in desolvation free energy based on point-wise neural-network model. a Co-
crystalized compound 4 in PDB structure with ID 4fm8. b SAR table of eight inhibitors with substituents replacing water density with unfavorable free
energy (a: isolevel: 7.5 kcal mol−1). c Water-mediated protein–ligand interactions overlap with water density with favorable enthalpy (d: isolevel: −3 kcal
mol−1). e Linear regression between predicted desolvation and experimental binding free energy for SAR series (r2= 0.78).
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For the CNN-based approach, molecular interaction fields (MIF) with different
atomistic probes distributed on a 3D grid are used as input. MIFs are generated by
first placing a fictitious probe molecule on each point of a 3D grid that
encompasses the binding site. The interaction value between probe and protein is
calculated at each grid point under the assumption of a rigid protein structure.
Instead of providing an image of the protein, this approach rather generates a
negative image of it and provides data for the binding site regions of the protein
unoccupied by protein atoms but accessible to water molecules.

Molecular interaction fields (MIF) with different atomistic probes distributed
on a 3D grid are computed using FLAP58,59 and are fed as input descriptors for the
CNN. FLAP uses the GRID force field and its own atom types. The internal
program GRIN60,61 is used to preprocess the protein. Additional details can be
found in the Supplementary Methods section. The descriptor grids were
aligned and interpolated to the WATsite grids by use of the MDAnalysis
package62,63. The process for selecting relevant chemical probes for FLAP is
further explained in section “Probe selection”. FLAP occasionally failed to generate

output for one or two probes for some proteins due to an internal program issue.
As this is a commercial software, it was not possible to correct this error. PDB files
for which FLAP failed to generate an output were removed. Finally, 3421 PDBs
were used for training and testing of the neural-network models (Supplementary
Data 2 and 3).

Probe selection. In FLAP, MIFs between protein and 78 different chemical
probes are generated. To reduce the number of input layers for the CNN model, we
performed k-means clustering of the FLAP grids of three randomly selected protein
systems. The distance matrix used during clustering was based on Pearson
correlation coefficients between the interaction values on the 3D FLAP grids of a
pair of probes. In detail, the distance between two interaction probe types was
defined as one minus the Pearson correlation coefficient. The number of clusters
was chosen to be 12. One representative probe type from each cluster was used to
finally generate a set of 12 representative probes with largest diversity between their
interaction grids, i.e., smallest Pearson correlation coefficient. These grids represent
12 input channels to the neural network. Increasing the number of channels (probe

Fig. 13 SAR of MUP inhibitors. SAR of MUP inhibitors guided by gain in desolvation free energy based on point-wise neural-network model. a Co-
crystalized compound 5 in PDB structure with ID 1i06 with water density with unfavorable free energy (isolevel: 8 kcal mol−1). b SAR table of 12 inhibitors
with three different scaffolds and substituents replacing water density with unfavorable free energy. c Compound 11 from X-ray structure 1qy2.
d Compound 12 from X-ray structure 1qy1. e Linear regression between predicted desolvation and experimental binding free energy for SAR series (r2=
0.77). Compounds 1–5 are displayed as black spheres, compounds 6–10 as red diamonds, and compounds 11 and 12 as blue triangles.
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types) did not lead to significant improvement of the network and only increased
the training time.

Processing of hydration occupancy data. Initially, the generated neural-network
models were designed to generate regression models to predict continuous
occupancy values. These models, however, failed due to significant imbalance
between low and high-occupancy values (Supplementary Fig. 1). Alternatively, we
proceeded with a multi-class segmentation model with six output channels. Each of
those channels represents the water occupancy above a chosen threshold. In detail,
WATsite occupancy values were transformed into labels based on the threshold
values that were selected for the network. The threshold values were 0, 0.02, 0.03,

0.045, 0.06, and 0.07. Input data grids from FLAP were clipped at −20 and 20 kcal
mol−1 and scaled to be within −1 and 1, to remove the rare, extreme values. This
range covers more than 99% of all points (Supplementary Fig. 2).

Network architecture and model building. Our neural-network architecture was
based on the work in ref. 64, with the difference that in our implementation, the
network contained six output channels. In detail, a modified version of a U-Net
neural network was used which contains Residual connections and Inception
blocks. Residual connections were first introduced in ResNets65. They have the
advantage of preserving the gradient throughout a deep neural network addressing
the vanishing gradient problem of those networks.

Fig. 14 Ranking of docking poses. Percentage of protein systems with native pose (RMSD; <2Å) in the test set within the top-1, top-3, and top-5 ranked
poses using different scoring functions: Vina (blue), CNN with protein and ligand information (orange), and CNN with protein, ligand, and WATsite
occupancy information generated by U-Net model (gray).

Fig. 15 Overall procedure of WATsite. Overall procedure of WATsite combining a initial placement of water molecules using 3D-RISM and GAsol, and b
subsequent MD simulation with explicit water molecules and WATsite analysis to generate water occupancy, enthalpy, and entropy grids (adapted from
ref. 29).
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Another issue is the optimization of the kernel size of the convolutional filters.
Sub-optimal kernel sizes can lead to overfitting or underfitting of the network.
Inception blocks have been designed to overcome this issue, whereby the Inception
blocks contain convolutional layers with different kernel sizes running in parallel.
Throughout the training process, the network learns to use the layers with
convolutional kernel size that best fits the input data which results in better training
process66.

The U-Net that we used as a baseline model for our experiments consists of 6
encoder and 5 decoder layers (Fig. 16a and Supplementary Fig. 3a). Each layer has
a 3D convolutional layer with kernel size 2, stride size of 2, and zero padding. The
number of filters for layers 1–6 is 32, 64, 128, 256, 512, and 512, respectively. Each
convolutional layer was followed by a Batch Normalization layer, a Dropout layer,
and LeakyReLU activation. Each decoding layer consists of an Upsampling3D layer
with size 2 followed by a convolutional layer, Batch Normalization layer, Dropout,
and concatenation layer (which provided the skip-connections in the U-Net) and
ReLU activation. The number of filters for layers 7–10 is 512, 256, 128, and 64,
respectively. The last layer consists of six filters (for the classification of 6
thresholds).

The Inception+Residual U-Net that we used resembles a U-Net, with the
exception that each convolutional layer is replaced by an Inception block and the
skip-connections contain a Residual block (Fig. 16b and Supplementary Fig. 3b).
Inception and Residual blocks and convolutional layers are followed by ReLU
activation. The network has 5 encoder layers and 4 decoder layers. All Inception
blocks are followed by a Dropout layer. Each decoder layer has an Upsampling3D
layer prior to the Inception block. The last layer is a convolutional layer with filter
number of 6 and kernel size 1.

As discussed above, regions in the grid with high water occupancy are sparse by
nature, resembling a significant imbalance between the number of low-occupancy
and high-occupancy grid points. This makes the prediction of higher occupancy
grid points difficult, as commonly used loss functions such as mean squared error
will not work properly for such imbalanced data. The sparsity of the dense regions
causes the network to predict low or zero values for all grid points even for high-
occupancy points. This problem also occurs in image segmentation tasks, where the
object of interest is small compared to the whole image being analyzed, for example
in the detection of small tumors in brain images34. One of the loss functions that
has been designed to train such imbalanced data is the Dice loss, which is a
modified, differentiable form of the Dice coefficient35. We used the generalized
form of the Dice loss (GDL)34 which assigns higher weights to the sparser points:

GDL ¼ 1� 2

P6
l¼1wl

P
n rlnplnP6

l¼1wl

P
n ðrln þ plnÞ

with label weights wl ¼ 1=ðPN
n¼1 rlnÞ

2
proportional to the inverse of their

populations squared. rln and pln are the reference and predicted label (l) values at a
grid point n, respectively67. This loss function will strongly penalize sparse grid
points, enforcing the learning algorithm to more precisely predict those values in
addition to the large number of low-occupancy grid points.

Adam optimizer68 with learning rate of 0.001 and a batch size of 16 was used
for training the model. Learning was performed for 100 epochs using Keras69 with
Tensorflow70 back-end. Once trained, the six output channels of the network are
combined to obtain a grid with a range of values which represent the likeliness of
hydration.

Neural networks for point-wise prediction using spherical-harmonics expansion. In
the second approach, the hydration information of each individual point is pre-
dicted based on the input descriptors specifying water–protein interactions at this
location and the environment of this water location. The approach consists of two

subsequent models, a classifier to separate grid point with water occupancy from
those without, and a second regression model only for grid points classified as
“with occupancy” in the first model. In this regression model occupancy values and
free energies of desolvation are computed. In classification and regression model,
parameters for the protein atoms such as van der Waals radius and partial charge
are directly taken from the coordinate and topology file prepared for WATsite
simulations.

Classification model to identify grid points with water occupancy. For each grid
point, the spatial environment and flexibility of surrounding atoms are computed.
In detail, the distance from grid point k to all atoms i in the neighborhood of the
grid point are computed and the van der Waals radius of the protein atom σi is
subtracted:

erik ¼ jRi � rkj � σ i: ð1Þ
All erik values up to 6Å are distributed onto a continuous 25-dimensional vector
using the Gaussian distribution function, where the value at bin i is

pk;i ¼ exp � erik � i � w� 1Að Þð Þ2=ð2 � w2Þ� � ð2Þ
with w= 7Å/25. All values are finally scaled using tanhðpk;i=5Þ to limit values to
the range [0;1].

Separate vectors are computed in the same manner for hydrogen-bond donor
and acceptor atoms. The motivation for these additional descriptors is that shorter
distances between water and hydrogen-bonding groups are observed compared to
hydrophobic contacts.

Despite the applied harmonic restraints, dynamic fluctuations of the protein
atoms are observed throughout the WATsite MD simulations. These fluctuations
can have impact on the accessibility of water molecules to different locations in the
binding site. To incorporate those atomic fluctuations in the neural-network
predictions of occupancy, we designed a simple flexibility descriptor for the side-
chain atoms (backbone atoms are considered rigid in this analysis). The shortest
topological distance ti of a side-chain atom i to the corresponding Cα atom is
translated using f i ¼ 2 � tanhðti=4Þ. The distance between this atom and grid point
k is then distributed to an additional 25-dimensional vector using a modified
Gaussian distribution

qk;i ¼ f i � exp � erik � i � w� 1Að Þð Þ2=ð2 � w2Þ� � ð3Þ
Subtracting this vector qk,i from the unmodified vector pk,i generates a vector that
measures the flexibility of the environmental atoms around grid point k.

All four vectors are concatenated which generates a 100-dimensional input
vector to the neural network for classification.

In addition to the input layer, the neural-network architecture consists of a fully
connected hidden layer with 1024 nodes with leaky-ReLU activation and dropout
layer with dropout probability of 0.5, followed by a second fully connected hidden
layer with 512 nodes with leaky-ReLU activation and a final output layer with
sigmoid activation to classify each grid point as either occupied (1) or unoccupied
(0). A threshold occupancy value of 10−5 in the input was used to separate
occupied from unoccupied grid points.

Adam optimizer68 with learning rate of 0.001 and a batch size of 250 was used
to train the model. Learning was performed for 50 epochs using Tensorflow70.

Regression model. For each grid point, first the direct interactions between water
probe and protein atoms are computed. In detail, electrostatic fields of the protein
atoms i at location Ri with partial charge Qi are computed on each grid point rk

Eelst
k ¼

X
i

Qi

jRi � rkj
: ð4Þ

Steric contacts of water probe with protein atoms i at location Ri with van der

Fig. 16 Network architectures. a Baseline U-Net and b Inception+Residual U-Net architecture used for multi-classification model for hydration density
prediction.
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Waals radius σi and well-depth ϵi is computed using a soft alternative of the van der
Waals equation

Esterics
k ¼

X
i

ffiffiffiffiffiffiffiffi
ϵiϵp

p σip
jRi � rkj
� �4

� σ ip
jRi � rkj
� �2

 !
: ð5Þ

with σip= σi+ σp (probe σp= 1.6Å) and well-depth of probe ϵp= 0.012 kcalmol−1.
Protein parameters from the Amber14 force field are used.

Hydrophobic contacts are computed71 using

Ehphob
k ¼

X
i

1 if s ≤ � 1

0:25 � s3 � 0:75 � sþ 0:5 if � 1<1

0 if 1≤ s:

8><
>: ð6Þ

with

s ¼ 2:0 � jRi � rkj � σ ip � 2:0
� �

=3:0: ð7Þ
Hydrogen-bond interactions between water probe and protein acceptor/donor

heavy atoms i are computed using

EHBond�Acc
k ¼

X
i

exp �jRi � rk � R0j2� �
ð8Þ

and

EHBond�Don
k ¼

X
i

� exp �jRi � rk � R0j2� � � cos αiHkð Þ if cos αiHkð Þ<0
0 if cos αiHkð Þ≥ 0

(
; ð9Þ

respectively (R0= 1.94Å).
Each interaction term is then scaled and transformed by a hyperbolic tangent

function to the range [0; 1]

eEproperty
k ¼ tanhðEproperty

k Þ ð10Þ
with the exception of the electrostatic interaction term which is scaled to be within
[−1; 1] (small negative van der Waals interaction values are clipped off at zero).
Each scaled interaction term is finally transformed into a continuous vector of size
20 using Gaussian distribution functions, where the value at each bin i is
determined by

ppropertyk;i ¼ exp � eEproperty
k � i � wð þmin eEproperty

� �� �2
=ð2 � w2Þ

� �
ð11Þ

(bin width of w= 2/20 and w= 1/20 for electrostatic interactions and all other
interactions, respectively). The five 20-dimensional vectors are concatenated to
generate a 100-dimensional input vector to the neural network.

The stability of water molecules not only depends on the protein environment
but also on the surrounding network of additional water molecules. Thus, the
environment of the water probe needs to be quantified as well. Here, we use a

spherical-harmonics expansion of the interaction fields on surrounding grid point
as additional descriptors. In detail, seven spherical shells with increasing radius are
defined to identify neighboring grid points with increasing distance to probe
location: [−ϵ; 1Å+ ϵ], [0.5Å− ϵ; 1.5Å+ ϵ], …, [3Å− ϵ; 4Å+ ϵ] (ϵ is small
value to include grid points with distance at the boundary of interval) (Fig. 17). The
grid points in each shell are projected onto a unit sphere and the interaction values
of those grid points are used to compute the coefficient of the spherical harmonics
up to a certain order lmax:

eEproperty
neighborsof kðθ; ϕÞ �

Xlmax

l¼0

Xl
m¼�l

aml Y
m
l ðθ; ϕÞ ð12Þ

The sum over the degrees of the L2-norm of the coefficients

eal ¼ Xl
m¼�l

jjaml jj ð13Þ

is computed, transformed using tanhðealÞ and distributed onto continuous 5-
dimensional vectors by a Gaussian distribution function (Eq. (11)). The vectors of
direct interactions (Eq. (11)) are finally concatenated with the different coefficient
vectors for the different l and different interaction types to generate the final input
vector to the neural network.

The neural-network architecture consists in addition to the input layer a fully
connected hidden layer with 2048 nodes with leaky-ReLU activation and dropout
layer with dropout probability of 0.5, followed by a second fully connected hidden
layer with 1024 nodes with leaky-ReLU activation and a final output layer with
occupancy and free energy values.

Adam optimizer68 with learning rate of 0.001 and a batch size of 250 was used
for training the model. Learning was performed for 125 epochs using Tensorflow70.

Hydration-site prediction
Clustering of occupancy grids to identify hydration sites. To compare hydration
occupancy predictions with crystallographic water data and other hydration-site
prediction methods, occupancy grids obtained from the two neural-network
methods were clustered to predict hydration sites. Two different clustering
methods were selected for this purpose. For the Inception+U-Net model, a
modified DBSCAN clustering method was utilized (see Supplementary Algo-
rithm 1). For the point-wise prediction model using spherical harmonics, quality
threshold (QT) clustering algorithm was used with the following parameters:
Maximum cluster diameter: 1.9Å; minimum number of grid points in a cluster: 5.

Evaluation of prediction performance: comparison with experimental data and other
hydration-site prediction methods. To evaluate and compare the ability of our
methods to reproduce water locations in X-ray data, we chose four apo systems
from data from Rudling et al.72: Acetylcholinesterase, heat shock protein 90-alpha,
trypsin I, and fatty acid-binding protein adipocyte with PDB-ids 1ea5, 1uyl, 1s0q,

Fig. 17 Input of neural network. Generation of input vector for neural network for point-wise prediction of hydration data. a For each grid point, the
interaction fields from the protein are computed. Nearby grid points within a spherical shell around the grid point are identified. b The interaction field
distribution of those grid points is represented by spherical-harmonics expansion. c The moments of this expansion generate an environment vector. d The
environment vectors of spherical shells with increasing radius are concatenated together with the direct interaction fields at this grid point. This final vector
is used as input for the neural network.
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and 3q6l. All four systems are not part of our training set. The binding site center
was defined by superposing the holo form of the same proteins (with ligand pre-
sent) onto the apo form and using the centroid of the aligned ligand as the center of
the grids. We compared the performance of our method with two other methods:
WATsite18 (MD-based method) and hydration-site prediction generated from
GAsol’s clustering method on 3D-RISM grids42 (grid-based method). All crystal-
lographic water molecules and ions were removed as part of the protein pre-
paration process. The proteins were prepared automatically by the scripts available
in the WATsite 3.0 package for 3D-RISM and WATsite. Both methods were run
using their default parameters. The spatial deviation of predicted hydration sites
from crystallographic water locations observed in the PDB files was measured. The
distance of each crystallographic water molecule to the closest predicted hydration
site was measured. Only X-ray water molecules within 5Å of any ligand and
protein atom were considered.

Data availability
All data used in this study is based on publicly available protein structure data stored at
the PDB database. Cross-validation, training, and test sets are provided as Supplementary
Data 1, 2, and 3.

Code availability
Models, example files and analysis scripts for both neural-network approaches can be
found at https://github.com/aghanbar/Watsite_on-the-fly and https://pharma.unibas.ch/
de/research/research-groups/computational-pharmacy-2155/research/software.
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