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N-Heterocyclic carbene-catalyzed enantioselective
hetero-[10+ 2] annulation
Qiupeng Peng1, Shi-Jun Li2, Bei Zhang1, Donghui Guo1, Yu Lan 2,3✉ & Jian Wang 1✉

Higher-order cycloadditions are a powerful strategy for the construction of polycycles in one

step. However, an efficient and concise version for the induction of asymmetry is lacking.

N-heterocyclic carbenes are widely used organocatalysts for asymmetric synthesis and could

be an ideal choice for enantioselective higher-order cycloadditions. Here, we report an

enantioselective [10+ 2] annulation between catalytically formed aza-benzofulvene inter-

mediates and trifluoromethyl ketone derivatives. This protocol exhibits a wide scope, high

yields, and good ee values, reflecting a robust and efficient higher-order cycloaddition.

Density functional theory calculations provide an accurate prediction of the reaction enan-

tioselectivity, and in-depth insight to the origins of stereocontrol.
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In the past few decades, the use of chiral N-heterocyclic car-
benes (NHCs) as asymmetric organocatalysts1–10, with the
associated advantages of their easy operation and of carrying

out enantioselective transformations in a benign environment
and under mild reaction conditions, has led to impressive and
continuous growth in their use. Specifically, the NHC-catalyzed
asymmetric cycloaddition for the assembly of chiral mono- or
polycyclic molecules has received broad attention, driven by the
predominance of these chiral cyclic structures in natural products
and pharmaceuticals11,12. In this context, normal order cycload-
ditions (cycloaddition that involves <6π-electron components)
have been investigated in NHC catalysis in terms of in situ
generated active enolate13,14 or dienolate intermediates15

(Fig. 1a). These pioneer works include [2+ 2]16–20, [2+ 3]21–23,
[2+ 4]24–29, [4+ 2]30–35, etc.36,37. In 2008, Zhang et al.18 and
Duguet et al.16 simultaneously realized an NHC-catalyzed [2+ 2]
cycloaddition of enolates with imines, yielding versatile chiral β-
lactams. The enantioselective [2+ 3] cycloaddition of enolates
with oxaziridines or nitrovinylindoles has been reported by Shao
et al.21 and Ni et al.22 groups, using NHC organocatalysis,
independently. Asymmetric carbene-catalyzed [2+ 4] reaction of
enolates with azadienes was also disclosed by He et al.24 to

furnish chiral dihydropyridinones. In addition to enolates,
NHC-bounded dienolates have also been successfully studied in
[4+ 2]30 or [4+ 3]38 cycloadditions to generate six- or seven-
membered heterocycles, respectively.

Although the above-mentioned normal order cycloaddition
reactions are widely explored, the higher-order cycloaddition
(≥6π-electrons) has received a high level of attention and is
somehow used to concisely construct polycycles in one step
fashion. Significant progress of highly stereoselective higher-order
cycloadditions has been made in recent years39–41. Elegant rele-
vant works in this direction involve Feng’s Ni-catalyzed [8+ 2]
cycloaddition of azaheptafulvenes with alkylidene malonates42,43.
The Jørgensen group enriched this field by developing a series of
highly enantioselective cycloaddition reactions (e.g., [8+ 2]44,45,
[6+ 4]46, and [10+ 4]47) promoted via enamine catalysis.
However, to a certain extent48–51, this class of higher-order
cycloadditions suffers from some drawbacks (i.e., difficult ste-
reocontrol and lack of periselectivity), thus resulting in slower
growth than normal order cycloaddition. Despite the difficulties
ahead, some encouraging progress was still achieved in the
direction of NHC catalysis52–55. Janssen-Muller56 and Chen and
Rovis57 reported a [8+ 2] cycloaddition of NHC-bounded o-
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Fig. 1 NHC-catalyzed normal and higher-order cycloaddition. a NHC-catalyzed normal order cycloaddition. b NHC-catalyzed high order cycloaddition.
c NHC-catalyzed higher-order cycloaddition (this work).
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quinodimethane intermediates (8π-electron) with ketones,
respectively (Fig. 1b)58,59. A recent Chen et al.60 work indicated
that salicylaldehydes could be oxidized to generate NHC-
bounded o-quinone methide intermediates (8π-electron), which
participated in a [8+ 2] cycloaddition with electrophile tri-
fluoromethyl ketones. Besides the above accomplishments, Lee
et al.61 then successfully found that the NHC-bounded aza-o-
quinone methide intermediates (8π-electron), first generated
from decarboxylation of N-methylisatoic anhydrides, could react
with trifluoromethyl ketones to deliver enantioenriched
dihydrobenzoxazin-4-ones via a [8+ 2] cycloaddition strategy.

In brief, NHC-catalyzed cycloadditions ranged from [2+ 2] to
[8+ 2] have been extensively investigated over the past few years,
but there is a remarkable lack of higher-order cycloadditions (e.g.,
[10+ 2]62,63 and [14+ 2]). Although the intricately competitive
pathways make the reaction-control difficult, these higher-order
cycloadditions can provide a direct way to efficiently build
polycyclic scaffolds.

Herein, we report a hetero-[10+ 2] higher-order cycloaddition
of indole-2-carbaldehydes with trifluoromethyl ketone deriva-
tives, proceeding via an NHC-bounded aza-benzofulvene inter-
mediate (Fig. 1c). This discovery represents the initial use of
NHC-bounded aza-arylfulvene intermediates in catalytic and
enantioselective [10+ 2] or [14+ 2] reaction. In addition, in
medicinal chemistry, the incorporation of “F”-containing frag-
ments normally provides an effective route to enhance the
metabolic stability, as well as other chemical or physical prop-
erties, of target molecules64–66. Based on the importance of
polycyclic structures and incorporated “F”-containing fragments,

the potential of these synthesized molecules in drug discovery is
worth our expectation.

Results
Reaction optimization. We commenced our studies by investi-
gating the reaction of indole-2-carbaldehyde 1a and 2,2,2-tri-
fluoroacetophenone 2a as the model substrates, K2CO3 as the
base, DQ as the oxidant, tetrahydrofuran as the solvent, and the
results are briefly summarized in Table 1. When L-phenylalanine-
derived triazolium NHC precatalyst A was exploited, the expected
cycloadduct 3a was not observed. Replacing the mesitylene group
with pentafluorophenyl group triazolium NHC precatalyst B gave
desired product 3a in 40% yield and 0% ee, whereas the use of
precatalyst C and D resulted in almost no reaction. To our
delight, when indanol-derived triazolium catalyst E was tested,
the [10+ 2] cycloadduct 3a was successfully formed in 61% yield
with 35% ee and implies that this highly enantioselective [10+ 2]
annulation can be achieved in the presence of ideal conditions.
The catalytic performance could be further improved by changing
the X group of precatalyst E from H to NO2 (entry 6). After
evaluating bases and solvents, we found that a combination of
PhCO2Na as the base and hexane as the solvent gave the product
3a in 80% yield and 88% ee (entry 10). Improvements in yield and
enantioselectivity were found when thiourea was used as the
additive to form 3a (entry 12, 85% yield, 91% ee).

Substrate scope. With the optimal catalytic system in hand, we
moved our attention to exploring the generality of this asym-
metric higher order [10+ 2] annulation. As illustrated in Fig. 2,

Table 1 Optimization of the reaction conditionsa.
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Entry NHC cat. Solvent Base Additive Yield (%)b ee (%)c

1 A THF K2CO3 / trace –
2 B THF K2CO3 / 40 0
3 C THF K2CO3 / trace –
4 D THF K2CO3 / trace –
5 E THF K2CO3 / 61 35
6 F THF K2CO3 / 70 51
7 F DCM K2CO3 / 53 59
8 F Toluene K2CO3 / 40 42
9 F Hexane Et3N / 42 68
10 F Hexane PhCO2Na / 80 88
11 F Hexane PhCO2Na G 93 88
12 F Hexane PhCO2Na H 85 91
13d F Hexane PhCO2Na H 74 91

aConditions: 1a (0.1 mmol), 2a (0.12 mmol), catalyst (15 mol%), base (0.10mmol) and DQ (0.11 mmol), solvent (1.0 mL), room temperature, 4 Å MS (30mg), Ar, 48 h.
bIsolated yield after flash column chromatography.
cEnantiomeric excess (ee) determined via chiral-phase HPLC analysis.
dcat. F (10 mol%) was used, 72 h.
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by reacting with indole-2-carbaldehyde 1a, an array of aryl tri-
fluoromethyl ketones 2 was examined first. In the reactions to
generate the [10+ 2] cycloadducts 3, yields and enantioselec-
tivities were found to be independent of the electronic properties
of the substituents on the aryl group in 2 (3b−i). When the
heteroaryl trifluoromethyl ketones were reacted with indole-2-
carbaldehyde 1a under optimal conditions, an [10+ 2] annula-
tion was efficiently realized in all cases (3j−n). Reactions
attempted using the alkyl trifluoromethyl ketones gave their
corresponding [10+ 2] cycloadducts in good yields with high ee

values (3o and 3p). Whereas the alkenyl trifluoromethyl ketone
2q was reacted with 1a, product 3q was also obtained in a good
yield (73%) but with a slightly diminished enantioselectivity (72%
ee). Switching the fluorinated substituent from CF3 to CF2H,
ClCF2, or C2F5 in ketones, synthetic useful yields, and high to
excellent enantioselectivities were still obtained under current
conditions (3r−t).

Next, we turned our focus to investigate the scope of substrate
1 (Fig. 3). Different substituents and substitution patterns on the
indole skeleton were examined comprehensively. Electron-
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withdrawing substituents such as halo (4a and 4b) units on the
phenyl ring of the aldehyde substrates were well tolerated.
Electron-releasing groups such as methyl (4c, 4e, 4f, and 4g) and
methoxyl unit (4d) could also be installed on the indole scaffold

of the aldehyde substrates. It is worth to note that this [10+ 2]
protocol could be extended to a higher-order [14+ 2] cycloaddi-
tion, affording their corresponding cycloadducts (4h and 4i) in
good enentioselectivities albeit with acceptable but dropped

Fig. 5 Plot of initial rates vs catalyst and substrates. a Plot of initial rates vs. catalyst concentrations. b Plot of initial rates vs. 1a concentrations. c Plot of
initial rates vs. 2a concentrations. d Plot of initial rates vs. DQ concentrations.
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yields under the current standard conditions. The absolute
configuration of 3e (CCDC 1961662) was determined by single-
crystal X-ray analysis and other products were assigned by
analogy.

Postulated mechanism. A postulated catalytic mechanism of [10
+ 2] annulation is summarized in Fig. 4. Deprotonation of NHC
precatalyst F gives the corresponding NHC, which adds to alde-
hyde 1 to give the corresponding tetrahedral intermediate,67,68

Fig. 6 The DFT investigation on the enantioselectivity of the [10+ 2] annulation. a The two transition states of TS(II–III)R and TS(II–III)S Gibbs free
energy barriers and distortion energies comparing. b NCI analysis of the TS(II–III)R and TS(II–III)S. c The IRC of transition state TS(II)R.
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with further deprotonation giving the Breslow intermediate I.
Intermediate I is subsequently oxidized to the key NHC-bounded
aza-benzofulvene intermediate II. A mass correlating to inter-
mediate II was observed via high-resolution mass spectrometry
(See Supplementary information (SI) Supplementary Table 1 for
details). This critical intermediate II can promote a concerted [10
+ 2] pathway or a stepwise Michael addition–acylation to form
intermediate III, which undergoes N-acylation to release the
NHC catalyst F for the next catalytic cycle. Kinetic experiments
were conducted to gain a better insight into the mechanistic
details. The initial rate constants of the reaction were determined
in situ 1H-nuclear magnetic resonance (NMR) and 19F-NMR
spectroscopy. The results show that the reaction appeared to have
a nearly first-order dependence on NHC catalyst F (Fig. 5a), and
zero-order dependence on substrates 1a (Figs. 5b), 2a (Fig. 5c),
and DQ (Fig. 5d).

To further reveal the enantioselectivity of this [10+ 2]
annulation, density functional theory (DFT) calculation was
performed to study the key step of nucleophilic attack of
intermediate II onto trifluoroacetophenone. As shown in Fig. 6a,
two transition states named TS(II–III)R and TS(II–III)S was
located, where the re- or si-face of trifluoroacetophenone was
attacked, respectively. The calculated relative free energy of
transition state TS(III–IV)R is 5.0 kcal/mol lower than that of TS
(II–III)S, which predicts that the generation of R-configuration
product 4a is favorable. The calculated results overestimate the
level of enantioinduction in this reaction process but are
consistent with predicting the observed experimental product
configuration. The geometry of those two transition states is also
given in Fig. 6b. After the absorption of indole reactant onto the
NHC catalyst, a strong π–π stacking between indolyl moiety and
the aryl in the NHC catalyst can significantly stabilize the
deprotonated indolyl moiety. The π–π attraction is clearly shown
in calculated noncovalent interaction (NCI) maps. In addition,
kinetic experiments revealed that electron-rich indoles or
electron-deficient aryl ketones reacted more quickly, which
partially elucidated the potential π−π interaction. When the
nucleophilic attack occurs, trifluoromethyl of trifluoroacetophe-
none appears at the more bulky inner side in transition state TS
(II–III)R. It is more favorable than the case in transition state TS
(II–III)S that the phenyl group is set to the inner side. The NCI
map of transition state TS(II–III)R clearly reveals that the
repulsion between phenyl group of trifluoroacetophenone and the
NHC catalyst leads to instability of transition state TS(III–IV)S,
while this repulsion is absent in transition state TS(II–III)R.

In order to figure out whether the process from II to III would
be concerted or stepwise, the intrinsic reaction coordinate
calculation (IRC) of transition state TS(II)R has been performed
(Fig. 6c). The result clearly shows the C1 of trifluoroacetophe-
none and N1 of indole would form the covalent bond firstly.
Along with the decreasing distance of C1–N1, the bond of oxygen
atom O1–C2 gradually formed until the intermediate III
generate. Hence, we speculate that the process tends to be a
concerted asynchronous process59,69.

Synthetic transformations and applications. Our protocol is
amenable to large-scale preparation. For example, the use of
standard conditions was sufficient to produce 4d (1.29 g) in 92%
yield and with 90% ee (Fig. 7a). A facile Pd-catalyzed Suzuki
coupling of 3d with 4-methoxyphenylboronic acid 5 led to pro-
duct 6 in a 72% yield and with a remained enantioselectivity
(Fig. 7b).

In summary, a unique NHC-catalyzed enantioselective hetero-
[10+ 2] annulation of indole-2-carbaldehydes with trifluoro-
methyl ketone derivatives has been developed. This process
generates a new NHC-bounded aza-benzofulvene as a key
intermediate. This new protocol allows the rapid assembly of
enantioenriched polycycles from readily available starting materi-
als under mild conditions. DFT calculations elucidated the origins
of the [10+ 2] process. Further investigations on new NHC-
bounded aza-arylfulvene as an active intermediate in asymmetric
synthesis are currently ongoing in our laboratory.

Methods
Synthesis of 3/4. To a flame-dried Schlenk reaction tube equipped with a mag-
netic stir bar, was added the precatalyst F (15.4 mg, 0.03 mmol), DQ (90.0 mg, 0.22
mmol), additive H (5.0 mg, 0.01 mmol), PhCO2Na (28.8 mg, 0.20 mmol), 1 (0.20
mmol) and 4 Å MS (60 mg). The Schlenk tube was closed with a septum, evac-
uated, and refilled with an argon atmosphere. Hexane (2.0 mL) and 2 (0.24 mmol)
was added. The mixture was then stirred at 25 °C and monitored by TLC until 1
was consumed. The mixture was concentrated under reduced pressure and purified
by column chromatography on silica gel (hexane/EtOAc= 100:1) to afford the
desired product 3 or 4. Full experimental details can be found in the Supplemen-
tary Methods.

Data availability
For 1H NMR, 13C NMR, and 19F NMR spectra see Supplementary Figs. 1–93 and high-
performance liquid chromatography spectra see Supplementary Figs. 94–153. The
supplementary crystallographic data (Supplementary Data 1) for this paper could be
obtained free of charge from The Cambridge Crystallographic Data Centre (3e: CCDC
1961662) via www.ccdc.cam.ac.uk/data_request/cif. The coordinates for the
corresponding structures and IRC of transition state TS(II)R in Supplementary Data 2.
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