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Dynamic covalent chemistry steers synchronizing
nanoparticle self-assembly with interfacial
polymerization
Fenghua Zhang1, Zhijie Yang1,2*, Jinjie Hao1, Kaixuan Zhao1, Mingming Hua1,2, Yanzhao Yang1* & Jingjing Wei1*

Precise organization of matter across multiple length scales is of particular interest because

of its great potential with advanced functions and properties. Here we demonstrate a simple

yet versatile strategy that enables the organization of hydrophobic nanoparticles within

the covalent organic framework (COF) in an emulsion droplet. The interfacial polymerization

takes place upon the addition of Lewis acid in the aqueous phase, which allows the formation

of COF after a crystallization process. Meanwhile, the interaction between nanoparticles and

COF is realized by the use of amine-aldehyde reactions in the nearest loci of the nano-

particles. Importantly, the competition between the nanoparticle self-assembly and interfacial

polymerization allows control over the spatial distribution of nanoparticles within COF. As a

general strategy, a wide variety of COF-wrapped nanoparticle assemblies can be synthesized

and these hybridized nanomaterials could find applications in optoelectronics, heterogeneous

catalysis and energy chemistry.
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Supramolecular self-assembly is the process by which the
building blocks arrange themselves into an ordered struc-
ture, offering a means to control structural features from the

sub-nanometer molecular to the nanometer colloidal level1–5. The
ability to assemble nanoscale building blocks into ordered
materials depends crucially on the ability to govern the inter-
particle interactions6. Because self-assembly usually requires that
the building blocks equilibrate between the aggregated and non-
aggregated states7, weak noncovalent forces (e.g., van der Waals,
hydrogen bonding, hydrophobic, electrostatic) are favored in the
formation of self-assembled structures including DNA8, pro-
teins9, nanoparticle superlattices10–12, block copolymer melts13,
and lipid vesicles14. In other words, the strong covalent bond is
undesirable because the components stick together irreversibly
when they collide covalently, forming a glassy aggregate rather
than an ordered structure. Nevertheless, recent development of
dynamic covalent chemistry enables the cooperative self-assembly
of molecular materials and colloidal nanoparticles into hier-
archical structures15.

Covalent organic frameworks (COFs) are a new class of porous
polymers constructed by organic molecules with predictable
dynamic covalent bonding in two or three dimensions, flexible
molecular structures, and high specific surface areas16–24. The
defined nanoscale channels and pores within COFs represent an
ideal environment for molecular storage, release, separation, and
catalysis25–33. Besides, COFs materials are potentially attractive in
electrochemical energy storage and optoelectronic conversion by
tethering functional moieties into the organic linkers34–38.
Another strategy for imparting functionalities into COFs is to
hybridize COFs with other functional materials, such as nano-
particles, polymers, and metal-organic frameworks39–42. One of
the major challenges to integrating COFs with other materials is
that COFs are typically formed as insoluble microcrystalline
powders, which are difficult to process or not compatible with
other materials. Recently, a two-step strategy that enables the
encapsulation of nanoparticles into imine-based COF spheres has
been reported43,44. This relies on the encapsulation of nano-
particles into amorphous imine-based spheres, followed by the
crystallization of imine-based polymers under acidic conditions.
Another method for integrating COFs with other materials is to
use amine functionalized materials that enables the condensation
reaction between amine and aldehyde, which ultimately results in
the overgrowth of COFs on the amine functionalized materials
with a core–shell structure44.

Although some progress has been made on nanoparticles/
COFs hybrids, several significant challenges still need to be
addressed. (1) Nanoparticles are protected by a layer of surface-
bound molecules (ligands) that endows its colloidal stability.
While the surface chemistry of nanoparticles varies from one to
another, thus surface modification or surface ligand exchange is
indispensable for the compatibility between nanoparticles and
COFs. In this regard, a generalized method that enables the
intimate contact between nanoparticles and COFs is yet not well
developed. (2) An ensemble of colloidal nanoparticles can be
allowed to self-assemble into a periodic superlattice, which pro-
vides these materials with novel electronic, optical, and catalytic
functionalities for nanotechnological applications. Hence the
ability to control the position, orientation, and chemical com-
position of nanoparticles within the COFs is highly desirable and
offers a compelling platform to explore high-performance mate-
rials. (3) Synthesis of COFs relies on reversible covalent-bond-
forming reactions, and it seems that only the reversible reactions
are appropriate for the self-assembly of COFs. Meanwhile, self-
assembly of nanoparticles involves noncovalent or weak interac-
tions between nanoparticles, and requires that these nanoparticles
be mobile45–48. Although both synthesis of COFs with periodic

structures and self-assembly of nanoparticles into superlattices
involve systems that at global or local equilibrium, it remains a
significant challenge to correlate the COFs syntheses with nano-
particles’ self-assembly.

Here, we report a general approach towards regulating the
spatial distribution of colloidal nanoparticles within COFs. This
strategy mainly relies on the synchronization of nanoparticle self-
assembly with imine bond formation between the organic sub-
units in a confined medium. We utilize oil-in-water (O/W)
emulsion technique for the synthesis of nanoparticles/COFs
hybrids. Initially, nanoparticles and the organic subunits for
COFs are dissolved in nonpolar solvent. Self-assembly of nano-
particles within the emulsion droplet is triggered by the eva-
poration of the carrier solvent, whereas the polymerization (imine
bond formation) takes place upon the addition of Lewis acid in
the aqueous phase. Importantly, the surface of the nanoparticles
is capped with oleylamine, which enables the imine bond for-
mation between the oleylamine and the aldehyde in the nearest
loci because of the dynamic ligand adsorption/desorption kinetics
(Fig. 1). The competition between the self-assembly and poly-
merization allows control over the spatial distribution of nano-
particles within COFs by adjusting the reaction temperature. The
as-prepared nanoparticles/COFs exhibit distinct sensing proper-
ties, exemplified by using Au nanoparticles as probes for surface-
enhanced Raman spectroscopy (SERS).

Results
Synthesis of colloidal COFs. We utilize O/W emulsion technique
for the synthesis of colloidal COFs in a confined space, which
requires that the organic subunits are initially dissolved in the oil
phase, whereas the catalyst promoting the interfacial poly-
merization is dissolved in the aqueous phase. In a proof of con-
cept, we choose an imine-linked COF (TAPB-PDA) from 1,3,5-
tris(4-aminophenyl)benzene (TAPB) and terephthaldehyde
(PDA), which combines the merits of both the solubility of
organic subunits and the triggered interfacial polymerization by a
Lewis acid, scandium triflates (Sc(OTf)3)49,50. In a typical
experiment, 1 mL of tetrahydrofuran (THF) containing TAPB
and PDA molecules is added to 4 mL of aqueous solution con-
taining of dodecyltrimethylammonium bromide (DTAB) and Sc
(OTf)3, followed by emulsification by a vortex. The resulting
emulsion is then heated at 70 °C for 30 min to evaporate the inner
phase. The resulting colloidal particles can be collected by cen-
trifugation, the scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM) images reveal that these
colloidal particles are spheres with a size of 206.8 ± 30.0 nm in
diameter (Fig. 2b–g, Supplementary Fig. 4). Fourier transform
infrared (FTIR) spectra confirms the formation of imine bond at
1617 cm−1, which corresponds to the –C=N stretching (Sup-
plementary Fig. 1). We found that this reaction can be probed by
the UV–Vis spectroscopy, which relies on the fact that the
absorption of the particles at 420 nm increases linearly with the
increase of the concentration of particles (Supplementary Fig. 2),
following the Beer–Lambert’s law. The time-dependent UV–Vis
absorption measurements reveal that the polymerization termi-
nates after ~4 min (Supplementary Fig. 3). The rate of the poly-
merization can be controlled by the temperature. For example,
when the temperature is decreased to 30 and 15 °C, respectively,
the polymerization process takes 6 and 8 min. Importantly,
slowing down the polymerization rate can result in a hollow
structure (at 15 °C), which can be clearly identified from the
contrast difference between the pale center and the dark edge in
the TEM images (Fig. 2h, i). This hollow structure is also proved
by the SEM image (Fig. 2j, k). We believe that these hollow
spheres are derived from the emulsion droplet templates.51,52 The
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formation of TAPB–PDA polymer is initialized on the surface of
the emulsion droplet, and the reaction is suppressed with the
formation a polymer shell, which hampers the diffusion of
monomer (TAPB or PDA) through polymer shell and produces
hollow interior. We note that this rate control of the poly-
merization plays a pivotal role during the synthesis nanoparticles/
COFs hybrids, which will be discussed later.

Small angle X-ray scattering (SAXS) measurement indicates
that these colloidal particles are amorphous (denoted as Amor-
TAPB–PDA) (Fig. 2m). The amorphous structure of Amor-
TAPB–PDA is also confirmed by the calculation of the apparent
Brunauer–Emmet–Teller (BET) area from N2 sorption experi-
ments performed at 77 K, showing a low BET surface area
(Fig. 2n, ABET= 54.5 m2 g−1).

Crystallization of Amor-TAPB–PDA colloidal particles takes
place in the presence acetic acid at 70 °C (denoted as COF-
TAPB–PDA), and the samples are analyzed by SEM, N2 sorption,
and SAXS. SEM images (Fig. 2e, f and Supplementary Fig. 6b, d)
show that the size of the colloidal particles is retained after
crystallization. However, a magnified image reveals that the surface
of the particles is rougher compared to that of Amor-TAPB–PDA.
SAXS of COF-TAPB–PDA displays two peaks at q= 1.9 and
3.6 nm−1, corresponding to the (100) and (110) crystal planes of the
particles. COF-TAPB–PDA exhibits reversible type IV isotherm,
which is one of the main characteristics of mesoporous materials.
The BET surface area of COF-TAPB–PDA is calculated to be
~649m2 g−1, which is significantly improved compared to that of
Amor-TAPB–PDA (see Supplementary Fig. 5).

This emulsion template synthesis of colloidal COFs can be also
extended to other imine-based COF materials. When the amine
and aldehyde organic subunits are replaced by tetrakis(4-
aminophenyl)methane (TAPM) and bis(octyloxy)terephthalalde-
hyde (OTP), respectively, crystalline COF-TAPM–PDA and
COF-TAPB–OTP colloidal particles can be successfully prepared
(see Supplementary Figs. 8, 9 and 10).

Synchronization of nanoparticle self-assembly with imine bond
formation in a drying droplet. The synthesis of nanoparticles/
COFs hybrids is demonstrated initially with 4.5 nm Au nano-
particles capped with oleylamine (Au@OAM) (Supplementary
Fig. 13a) and TAPB-PDA COFs. Au nanoparticles are synthesized
according to the reported literature and their surfaces are capped
with oleylamine (Fig. 3)53. In a typical experiment, TAPB and
PDA are added to 1 mL of THF containing 1 mg of Au@OAM.
The solution is well mixed by sonication at room temperature.
Note that the surface plasmon resonance (SPR) band of the
Au@OAM in THF does not shift after the addition of the TAPB
and PDA, which indicates that these Au nanoparticles remain in
isolation and do not aggregate (Supplementary Fig. 11). With the
emulsification of 4 mL of 20 mgmL−1 DTAB solution and the
1 mL of THF solution, the organic subunits and the Au@OAM
nanoparticles are evenly distributed within the emulsion droplets,
and these Au@OAM nanoparticles tend to adsorb on the droplet
interface, which is driven by the minimization of interfacial
energy47.

The polymerization of TAPB–PDA is triggered when the
catalyst Sc(OTf)3 is added into the emulsion49,50. After the
addition of Sc(OTf)3 at 15 °C for 2 min, the emulsion is heated to
70 °C and kept at this temperature for 30 min to evaporate the
inner THF phase. The resulting Amor-TAPB–PDA–Au hybrids
are washed twice with methanol and dispersed in deionized water
to form stable colloids with a gray color (Fig. 3d). TEM images in
Fig. 3a–c reveal that these particles have a core/shell morphology
with a dark center and a pale periphery, indicating the formation
of Au/(Amor-TAPB–PDA) core/shell structures. The average
diameter, determined by counting more than 500 particles, is
275.8 nm. A magnified TEM image in Fig. 3c further shows that
Au nanoparticles are self-assembled into three-dimensional
superlattices. The core/shell structure is further confirmed by
high annular dark field scanning TEM (HAADF-STEM) image
and X-ray energy dispersive spectroscopy (STEM-EDS) (Fig. 3e).
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Fig. 1 Design concept for hybridization of nanoparticles with COF. a Chemical reactions within the system. (1) Schematic representation of dynamic
adsorption/desorption equilibrium of ligands on nanoparticles. (2) Formation of dynamic covalent bond (imine bond) between two molecules bearing
aldehyde and amine groups, respectively. (3) Formation of dynamic covalent bond between aldehyde and ligands for nanoparticle surface coating.
b Synchronization of nanoparticle self-assembly and polymerization leads to the formation of core/shell structure, followed by the crystallization of shell
materials into porous covalent organic frameworks
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The nanoparticle ordering of the ensembles is further probed
by SAXS, and two main peaks can be observed at q= 0.18 and
0.79 nm−1, corresponding to face-centered-cubic (fcc) packing of
the Au nanoparticles within the Amor-TAPB–PDA. In addition,
the near field coupling effect within the Au nanoparticle

assemblies is expected, which can be observed in the nontrivial
red shift of the SPR band compared to the isolated Au
nanoparticles (Fig. 3f). The above results clearly show that Au
nanoparticle superlattices are successfully encapsulated in the
Amor-TAPB–PDA. A similar mild annealing process as described

a

b c d

e f g

h i

j k

l

m n

d = 3.3 ÅI.Polymerization

II.Crystallization

2000

1.5 2.0 2.5 3.0 3.5
q (nm–1) P /P0

4.0 4.5 5.0 0.0 0.2 0.4 0.6 0.8 1.0

6000

8000

COF-TAPB-PDA

Amor-TAPB-PDA

In
te

n
si

ty
 (

a.
u

)

V
o

lu
m

e 
(c

c/
g

)10,000

12,000
400

320

240

160

80

0

4000

N

N

N

N

N

N

N
N

N

N

N

N

N

NN

N

N

N

H2N

NH2

NH2

O

O

(1
00

)

(1
10

)

COF-TAPB-PDA

Amor-TAPB-PDA

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0222-4

4 COMMUNICATIONS CHEMISTRY |           (2019) 2:123 | https://doi.org/10.1038/s42004-019-0222-4 | www.nature.com/commschem

www.nature.com/commschem


Fig. 2 Controlled polymerization by emulsion droplets. a Reaction scheme of COF-TAPB–PDA from 1,3,5-Tris(4-aminophenyl)benzene (TAPB) and P-
phthalaldehyde (PDA). b, c SEM images of Amor-TAPB–PDA colloidal particles produced under the polymerization temperature of 70 °C; d TEM image of
Amor-TAPB–PDA colloidal particles produced under the polymerization temperature of 70 °C; e, f SEM images and TEM image (g) of COF-TAPB–PDA
spheres after crystallization process. h, i TEM images of Amor-TAPB–PDA (h) and COF-TAPB–PDA (i) hollow spheres, respectively. j, k SEM image of
Amor-TAPB–PDA (j) and COF-TAPB–PDA (k) hollow spheres, respectively. l The schematic reprsentation of COF-TAPB–PDA. m One-dimensional SAXS
profile of Amor-TAPB–PDA and COF-TAPB–PDA colloidal particles produced under the polymerization temperature of 70 °C. Curve of COF-TAPB–PDA
shows the d= 2π/q= 3.3 nm at 1.9 nm−1. n N2 adsorption–desorption isotherms of Amor-TAPB–PDA and COF-TAPB–PDA produced under the
polymerization temperature of 70 °C. The BET surface areas of the corresponding COF-TAPB–PDA and Amor-TAPB–PDA are calculated to be 649.0 and
54.5 m2/g, respectively. Scale bar: b, e, h, i, j 500 nm; c, d, f, k 100 nm; g 50 nm
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polymerization. g One-dimensional SAXS file of Au/(Amor-TAPB–PDA) suspension. h, i TEM images of Au/(COF-TAPB–PDA); j SEM image of Au/(COF-
TAPB–PDA); k optical image of suspension of Au/(COF-TAPB–PDA) particles. Scale bar: a 2 μm; b 200 nm; c, e 100 nm; h, j 50 nm; i 20 nm
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above is carried out, resulting in phase transition of TAPB–PDA
from amorphous to crystalline structure. After crystallization,
both the core/shell morphology and the nanoparticle ordering
retain, suggesting the formation of Au/(COF-TAPB–PDA) core/
shell hybrids (Fig. 3h, i).

We emphasize that the amine-containing capping ligand on
the nanoparticles is of particular importance to the interactions
between nanoparticles and organic subunits (see Fig. 1). The
amine capping ligands on nanoparticles undergo dynamic ligand
adsorption/desorption on the nanoparticle surface when those
nanoparticles are dispersed in a good solvent (Fig. 1a). Hence the
bonding between nanoparticles and capping ligand can be
described by its adsorption and desorption equilibrium constant,
K, and the adsorption and desorption kinetic constants, ka and kd,
respectively. The detached amine ligands can react with aldehyde
in the nearest loci of the nanoparticles to form the imine bond,
which is confirmed by the FTIR result from a control experiment
in the presence of Au@OAM, PDA and Sc(OTf)3 (Supplementary
Fig. 12). This is nontrivial in the formation of Au/(Amor-
TAPB–PDA) core/shell structures. In a control experiment, when
Au nanoparticles are capped with dodecanethiol (Au@DDT), we
cannot produce the Au/(Amor-TAPB–PDA) core/shell struc-
tures, instead is the exclusion of Au@DDT nanoparticles from
Amor-TAPB–PDA (Supplementary Fig. 14). We note that the
surface ligands of the nanoparticles are of particular importance
to the integration of COF with nanoparticles. As reported
previously47, the emulsification can result in the adsorption of
these hydrophobic nanoparticles on the droplet surface. This
process is spontaneous and is driven by the sum of interfacial
energy and the van der Waals interactions between the aliphatic
chain of the surface ligands capped on nanoparticles and the
hydrophobic tails of the surfactants (i.e. DTAB). Such nanopar-
ticle monolayer adsorbed at the oil/water interface can signifi-
cantly influence the interfacial polymerization because the
catalyst in the water phase have limited access to the monomers
(TAPB/PDA). When the surface ligands of the nanoparticles are
amines, these amines can also react with PDA in the presence of
catalyst (shown in Fig. 1). However, when the surface ligands of
the nanoparticles are not amines, indicating that these nanopar-
ticles are inertia layer during the interfacial polymerization
process. As a consequence, these “inertia” nanoparticles (such as
DDT-coated Au nanoparticles) are weakly attached to the surface
of the polymer particles (shown in Supplementary Figs. 14b, c
and 17b, c). These Au nanoparticles can be easily detached from
TAPB–PDA polymer because the interaction between Au@DDT
and TAPB–PDA polymer is the bond-free van der Waals
interactions.

Hence this method can be generalized and can be applied to
other nanoparticles capped with OAM either during or after
synthesis, such as Pt@OAM, Pd@OAM, and Fe3O4 capped with
mixed ligands of OAM and oleic acid (Fe3O4@OAM/OA)
(Supplementary Figs. 15 and 16). Furthermore, the formation
nanoparticles/COFs core/shell structure is also valid for other
nonspherical nanoparticles, such as MnO nanocubes and
Gd2O3 nanoplatelets (Supplementary Fig. 17). In addition,
the formation core/shell structure is also valid for other
materials, such as MOF (UiO-66) and SiO2 (Supplementary
Figs. 18 and 19).

Modulation of spatial distribution of nanoparticles within
COFs. Next, we demonstrate that self-assembly of nanoparticles
within COFs can be controlled by the temperature. As already
described, the polymerization rate of TAPB–PDA is accelerated
with the increase of temperature. We systematically tune the
polymerization from 0 to 70 °C, while keeping other synthetic

parameters constant. TEM images show that when the poly-
merization temperature is low (0, 15, and 20 °C), Au/(Amor-
TAPB–PDA) core/shell structures can be produced with the
formation of Au nanoparticle superlattices (Supplementary
Fig. 20a–c). However, when the polymerization temperature is
increased to 30 °C, the morphology of the particles drastically
changes. TEM image in Fig. 4b, c shows that Au nanoparticles are
sparsely distributed within the Amor-TAPB–PDA particles,
instead of the close packing observed in a lower temperature (0,
15, and 20 °C). This result is also confirmed by HAADF-STEM
and EDS-STEM characterization (Fig. 4f, g). EDS mapping
reveals that C, N, and Au elements are all distributed homo-
geneously over the entire particles, indicating that Au nano-
particles are randomly trapped in the Amor-TAPB–PDA. When
the polymerization is triggered at 50 or 70 °C, we find that Au/
(Amor-TAPB–PDA) core/shell structures can be produced
(Fig. 4i, j). Note that the shell thickness of the Amor-TAPB–PDA
is nontrivially increased compared to that of a shell produced at
15 °C.

SERS properties of nanoparticles/COFs hybrids. The integra-
tion of Au nanoparticles and COF-TAPB–PDA into hybridized
structures might generate many new functionalities. The fully
encapsulated Au nanoparticles within COFs give a promising
opportunity to exploit the SERS capabilities of the Au nano-
particles and their assemblies as embedded probes for detection of
molecular species diffusing inside the COFs. Raman scattering of
the molecules extremely close to surfaces of plasmonic materials
is markedly enhanced, which is generally understood as the
localized surface plasmon modes. This SERS signal can be further
nontrivially enhanced by the interparticle plasmonic coupling
enabled by the self-assembly of metal nanoparticles54–56.

The SERS measurements of both Au/(Amor-TAPB–PDA) and
Au/(COF-TAPB–PDA) samples obtained at different tempera-
tures (15 and 30 °C) are carried out by using Rhodamine 6G
(R6G) as a Raman probe molecule (Fig. 5). The Raman bands at
1165, 1561, 1589 cm−1 are originated from TAPB–PDA.
The bands at 1311 cm−1 are the most intense assigned to R6G
and selected as featured band to study Raman signal enhance-
ment57–59. First of all, let us compare the peak intensities for Au/
(Amor-TAPB–PDA) at 15 and 30 °C, which are denoted as Au30/
(Amor-TAPB–PDA) and Au15/(Amor-TAPB–PDA), respec-
tively. Figure 5c shows that Au15/(Amor-TAPB–PDA) has a
much lower enhancement factor (EF) than that of Au30/(Amor-
TAPB–PDA), which indicates that the access of R6G molecules to
the surface of plasmonic Au nanoparticle is hampered for Au15/
(Amor-TAPB–PDA). However, when the shell of TAPB–PDA
crystallize into rigid porous structures (Au15/(COF-TAPB–PDA)
and Au30/(COF-TAPB–PDA)), the results drastically change.
The Au15/(COF-TAPB–PDA) has a ~20 fold increase in the peak
intensity compared to that of Au15/(Amor-TAPB–PDA), which
can be attributed to the gating effect from the porous structure.
Note that there is no apparent increase in the peak intensity when
comparing Au30/(Amor-TAPB–PDA) with Au30/(COF-
TAPB–PDA). This indicates that the molecular diffusion here is
not the key factor that determines the enhanced factor. The
sparsely distributed Au nanoparticles underneath the
TAPB–PDA shell can detect the probe molecules on the surface
of TAPB–PDA shell. Besides, the peak intensity for Au15/(COF-
TAPB–PDA) is much larger than that of Au30/(COF-
TAPB–PDA), which can be understood by the interparticle
plasmonic coupling enabled by the self-assembly of Au
nanoparticles. Moreover, the self-assembled Au nanoparticles
wrapped with COFs shows the sensitive detecting of R6G
molecules at a low concentration of 10−7 M (Fig. 5d).
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Discussion
In summary, we have developed a simple, yet robust approach
to encapsulate nanoparticles into COF colloids by using
dynamic covalent reactions. The polymerization rate of organic
subunits on the surface of emulsion droplets can be well con-
trolled by adjusting the temperature. A lower temperature
results in the formation of hollow structure, whereas a higher
temperature leads to the formation of a dense structure. This
feature couples the nanoparticle surface chemistry and imine-
bond-based polymer. By controlling nanoparticle surface
ligands that favorably interact with the organic subunits of
polymers, nanoparticle–polymer interactions can be tailored.
The dynamic adsorption/desorption of amine ligand on nano-
particle surface enables the construction of dynamic covalent
bond between amine of the ligand and the aldehyde. In this
manner, control over the spatial distribution of the nano-
particles within the COF colloids has been achieved. Therefore,
the local environment and spatial arrangement of the nano-
particles can be tailored, opening further routes to engineer the
collective physical properties of these hierarchically ordered
nanoparticle assemblies. Another possible application of these
nanoparticles/COF hybrid materials is in biomedicine. The

porous structure of the shell can be used as reservoir to store
bioactive molecules, and the Au nanoparticles can be respon-
sive to the external stimuli, such as light. Plasmonic Au
nanoparticles within the COF can generate photothermal effect
upon the irradiation of light. Such photothermal effect can
induce the increase of the temperature near the surface of Au
nanoparticles. Hence the controlled release of these stored
bioactive molecules can be realized when the specific interac-
tions between the bioactive molecules and the COF is
modulated.

Methods
Polymerization and crystallization of COF-TAPB–PDA. The COF-TAPB–PDA
was prepared through a modified reaction. A solution of the monomers in THF
was prepared according to the following procedure: TAPB (11 mg) and PDA (6
mg) were combined in a scintillation vial with 1 mL of THF and the resulting
suspension was sonicated at room temperature until the monomers were fully
dissolved. The aqueous solution of Sc(OTf)3 (1 mM, 4 mL) containing 80 mg of
DTAB was added to the above solution. The resulting emulsion was severely
agitated by a vortex for 3 min. The emulsion was then heated to 70 °C and kept at
this temperature for 30 min to evaporate the inner oil phase. The suspension was
then allowed to cool to room temperature. The Amor-TAPB–PDA were washed
twice with methanol. The Amor-TAPB–PDA (10 mg) was added to a bottle with
dioxane/mesitylene solution (4:1 v/v, 2 mL). Distilled H2O (0.43 mL) was added to
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C N
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Fig. 4 Control over the spatial distribution of nanoparticles within COFs. a–g Assembly of Au nanoparticles in TAPB–PDA at 30 °C. h–n Assembly of Au
nanoparticles in TAPB–PDA at 70 °C; a, h Cartoon illustration of hybrids of Au nanoparticles and TAPB–PDA polymer prepared at 30 °C (a) and 70 °C (h).
TEM images of Au/(Amor-TAPB–PDA) hybrids prepared at 30 °C (b–e) and 70 °C (i–l). The insets are corresponding photographs in b, i; HAADF-STEM
images and EDS-STEM of Au/(Amor-TAPB–PDA) sphere prepared at 30 °C (f, g) and 70 °C (m, n). Scale bar: c 300 nm; b, i, d, j, k 200 nm; f, g, m, n
100 nm; e, l 50 nm
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the above solution, followed by CH3CO2H (0.63 mL). The resulting suspension was
heated to 70 °C for 48 h. The COF-TAPB–PDA solid was isolated by centrifugation
5000 rpm, 2 min), rinsed with methanol, and subsequently dried under vacuum,
yielding a yellow powder.

Polymerization and crystallization of COF-TAPB–OTP. A solution of the
monomers in THF was prepared according to the following procedure: TAPB
(11 mg) and OTP (17.4 mg) were combined in a scintillation vial with 1 mL of THF
and the resulting suspension was sonicated at room temperature until the mono-
mers were fully dissolved. The other steps are the same as the synthesis of COF-
TAPB–PDA.

Polymerization and crystallization of COF-TAPM–PDA. A solution of the
monomers in THF was prepared according to the following procedure: TAPM
(8.9 mg) and PDA (6 mg) were combined in a scintillation vial with 1 mL of THF
and the resulting suspension was sonicated at room temperature until the mono-
mers were fully dissolved. The other steps are the same as the synthesis of COF-
TAPB–PDA.

Assembly of Au@OAM/(COF-TAPB–PDA) microsphere. The 5.5 mg of TAPB,
3 mg of PDA, and 1 mg of Au@OAM were combined in a scintillation vial with 1
mL THF and the resulting suspension was sonicated at room temperature until the
monomers were fully dissolved. 4 mL aqueous solution of DTAB (20 mg/mL) was
added to the above solution and the resulting emulsion was severely agitated by a
vortex for 3 min. The resulting suspension was stirred at specified temperature.
Then, an aqueous solution of Sc(OTf)3 (1 mM, 4 mL) was dropwise added into the
resulting suspension slowly. Then, the emulsion was heated to 70 °C and kept at
this temperature for 30 min to evaporate the inner oil phase. The suspension was

then allowed to cool to room temperature. The resulting Au@OAM/(Amor-
TAPB–PDA) was washed twice with methanol. The resulting suspension was
added to a bottle with dioxane/mesitylene solution (4:1 v/v, 2 mL). Distilled H2O
(0.43 mL) and CH3CO2H (0.63 mL) was added to the solution. Then, the resulting
suspension was heated to 70 °C for 48 h. The Au@OAM/(COF-TAPB–PDA) solid
was isolated by centrifugation (8000 rpm, 3 min), rinsed with methanol, and sub-
sequently dried under vacuum, yielding a green powder.

Synthesis of Au@OAM nanoparticle. The Au@OAM was prepared through a
modified reaction. In a typical synthesis of Au@OAM, an orange precursor solu-
tion of toluene (10 mL), oleylamine (10 mL), and HAuCl4·3H2O (0.1 g) was pre-
pared in air at room temperature and magnetically stirred under N2 flow for
10 min. A solution containing 0.5 mmol of TBAB (0.0435 g), toluene (1 mL), and
oleylamine (1 mL) was mixed by sonication and injected into the precursor solu-
tion. The reduction was instantaneously initiated and the solution changed to a
deep purple color within 5 s. The mixture was allowed to react at 35 °C for 1 h
before acetone (60 mL) was added to precipitate the Au@OAM. The production
was collected by centrifugation (8000 rpm, 3 min), washed with acetone and
redispersed in chloroform.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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