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Micro-Raman imaging of isomeric segregation in
small-molecule organic semiconductors
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Charge transport in organic semiconductors is highly sensitive to film heterogeneity and

intermolecular interactions, but probing these properties on the length scales of disorder is

often difficult. Here we use micro-Raman spectroscopy to assign vibrational modes of iso-

merically pure syn and anti 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-

TES ADT) by comparing to density functional theory calculations. With polarization-

dependent measurements, we determine the orientation of crystallites in pure isomers. In

mixed-isomer samples, we observe narrow linewidths and superposition spectra, indicating

coexistence of isomerically pure sub-domains on length scales smaller than the probe area.

Using the ring breathing modes close to 1300 cm−1 as indicators of the pure isomer crys-

talline sub-domains, we image their spatial distribution with 200-nm resolution. These

results demonstrate the power of micro-Raman spectroscopy for investigating spatial het-

erogeneities and clarifying the origin of the reduced charge carrier mobility displayed in

mixed-isomer diF-TES ADT.
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Organic π-conjugated systems are appealing for ultrathin,
flexible, and low-cost electronic devices applications.
Organic thin-film transistors (OTFTs), for example, can

be incorporated in flat-panel displays, radio-frequency identifi-
cation tags, conformable sensor arrays, memory devices, and
health monitoring systems when their performance reaches the
levels required by such applications1–4. The charge carrier
mobility, and thereby device performance in OTFTs, is very
sensitive to the molecular structure of the organic semiconductor,
as well as its solid state packing and microstructure, which are
highly dependent on processing conditions5–12. Control of
microstructure and determination of its spatial variation is diffi-
cult, especially in the presence of multiple isomers or structures,
complicating optimization of performance.

Anthradithiophene (ADT) is a small-molecule organic semi-
conductor that showed good electronic performance but limited
solubility, which precludes its compatibility with flexible and
bendable substrates13,14. Solution processability was achieved by
adding side groups to the molecular backbone, as for example in
5,11-triethylsilylethynyl anthradithiophene (TES-ADTs). Unfor-
tunately, in the absence of complicated post-processing treat-
ments, TES ADT typically forms amorphous films with
insufficient order to support high-performance OTFTs, or poly-
morphs that vary greatly in electrical properties15,16. Fluorinated
analogs, in contrast, benefit from F–H and F–S interactions
between adjacent molecules and demonstrate improved crystal-
linity17. The fluorinated ADT 2,8-difluoro-5,11-bis(triethylsily-
lethynyl)anthradithiophene (diF-TES ADT) is among the most
promising molecules for incorporation in OTFTs (Fig. 1a) with a
charge carrier mobility as high as 6 cm2V−1 s−1 reported in vapor
grown single crystals of this material18. In solution-deposited
OTFTs, the mobility varies from 10–2 to 5.4 cm2V−1 s−1

depending on the deposition method, chemical modifications

of the surface prior to film deposition, and the dielectric19–23. diF-
TES ADT films deposited on Au substrates modified with
fluorinated self-assembled monolayers (SAMs) such as penta-
fluorobenzenethiol (PFBT), 4-(trifluoromethyl)-benzenethiol
(TFBT), or 2,3,5,6-tetrafluoro-4-(trifluoromethyl)-benzenethiol
(TTFP) exhibit a high degree of crystallinity, with the conjugated
backbone of the molecules perpendicular to the surface substrate,
as illustrated in Fig. 1b20,22. The vertical orientation was induced
by selective F–H and F–S interactions between the molecule and
the fluorine in the SAM surface24, an orientation that is favorable
for in-plane π-orbital overlap and that can improve charge
mobility by a factor of ten19.

With a few exceptions25–27, most studies on diF-TES ADT
have looked at isomeric mixtures, due to the fact that under
standard synthesis procedures, diF-TES ADT is prepared as an
inseparable mixture of syn and anti isomers17. The process of
separating the isomers is intensive and expensive26. Performance
in as-deposited mixed-isomer molecules is lower than devices
fabricated from isomerically pure molecules26,27, with the
decreased mobility attributed to molecular disorder from the
mixed isomers19.

Here we use micro-Raman spectroscopy to investigate the
degree of crystalline order and isomeric segregation in diF-TES
ADT films. We report on thin films prepared by solvent-assisted
crystallization (SAC) on PFBT-treated Au electrodes, yielding
improved film quality with highly ordered microstructure in the
diF-TES ADT films20,28,29. Raman spectroscopy is sensitive to
conjugated molecular systems, with a large scattering cross-
section coupled to the π-π* modes. We utilize this high sensitivity
to distinguish the syn and anti isomers, in combination with
density functional theory (DFT) calculations. The sub-micron
focus possible in Raman spectroscopy minimizes averaging in the
molecular signatures, allowing us to resolve the coexistence of
pure isomer domains within mixed-isomer thin films with spatial
resolution down to 200 nm. Our results suggest that the reduced
mobility in mixed-isomer devices can be attributed to the grain
boundaries arising from isomeric phase segregation, rather than
changes in order, orientation, or intermolecular interactions.

Results
Vibrational modes of pure isomers. The experimental Raman
spectra of syn and anti diF-TES ADT films on PFBT-treated Au
electrodes are shown in Fig. 2, with the associated DFT calcula-
tions (gray). The calculated spectra were convolved with a Lor-
entzian with full-width at half-maximum bandwidth of 2 cm−1.
The PFBT-modified Au substrate shows a vibrational mode at
1555 cm−1 (Supplementary Figure 1), but the diF-TES ADT thin
films were sufficiently thick that this mode was not typically
observed. By comparing the experimentally obtained spectra with
calculations and previous reports in five-ring small-molecule
analogous, pentacene and 6,13-Bis(triisopropylsilylethynyl)pen-
tacene (TIPS-pentacene), Raman modes of diF-TES ADT are
assigned and shown in Table 1. The calculated displacement
vectors for selected vibrational modes are included in Supple-
mentary Figure 2.

In both the syn the anti isomers, the C-C stretch modes along
the long axis of the molecular core appear at 1597 cm−1,
consistent with a previously assigned mode in pentacene (1596
cm−1)30,31. Figure 1c shows the atomic displacements, with blue
arrows indicating stretching along the long axis of the conjugated
backbone. A lower frequency long-axis stretching band appears as
a doublet at 1543/1529 cm−1 for both isomers. A similar doublet
appears in pentacene, where the splitting arises due to stretch
motions predominantly at the central or end rings of the
conjugated backbone32. In spite of the similarity in the spectral
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Fig. 1 Chemical and packing structure of 2,8-difluoro-5,11-bis
(triethylsilylethynyl)anthradithiophene (diF-TES ADT). a Chemical
structure of diF-TES ADT, with syn (black) and anti (red) isomers.
b Schematic representation of orientation of molecular on surface. The blue
and orange arrows indicate the polarization directions that predominantly
excite long- and short-axis vibrational modes along the conjugated
backbone. c The displacement vectors associated with the dominant long-
and short-axis stretch modes
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positions, the calculations indicate that these frequencies
correspond to different atomic motion, with the heteroatom
modification suppressing terminal ring stretching and altering the
distribution of atomic motion along the long axis (Supplementary
Figure 2).

Vibrations of the C-C ring stretch along the short axis are
significantly shifted in syn and anti isomers relative to pentacene.
In the anti isomer, these vibrational modes occur at 1434 and
1421 cm−1, compared to 1436 and 1407 cm−1 in the syn isomer.
The band splitting is in line with previous studies on pentacene,
where it is attributed to different displacements of the H atoms
located at the terminal rings (1408 cm−1) from the central rings
(1370 cm−1)32. Figure 1c illustrates the atomic displacements of
central rings stretching along the short axis of the conjugated
backbone with orange arrows.

While pentacene exhibits no signature bands in the range
1200–1300 cm−1, diF-TES ADT molecules possess multiple vibra-
tional modes, assigned as aromatic ring breathing modes. These
vibrations result in uniform C-C bond length elongation. The ring-
breathing mode in the anti isomer is found at 1300 cm−1, and
is red-shifted to 1286 cm−1 in the syn isomer. The C-H bending
modes from the sides of the molecular core are also significantly
blue-shifted from pentacene (1178 cm−1) due to the fluorination,

appearing at 1200 and 1207 cm−1 for anti and syn isomers,
respectively.

While our DFT calculations are performed for an isolated
molecule, we find good agreement with the experimental
measurements. We also experimentally investigated the possibi-
lity of delocalized crystalline vibrational modes. At low Raman
shifts, from approximately 300 to 800 cm−1, we observe weak
vibrational modes, with no differences detected for the syn, anti,
or mixed-isomer structures (Supplementary Figure 3). Previous
X-ray diffraction (XRD) measurement confirmed that both
isomers possess triclinic structures, resulting in P−1 symmetry25.
Therefore, it is reasonable that there is no differentiation in the
Raman spectra for different isomers. Furthermore, the low-
frequency Raman responses were much reduced in comparison to
the molecular vibration modes. We therefore focus on the higher
frequency, localized vibrational modes for our studies of crystal-
line orientation and isomeric phase coexistence.

Molecular orientation. The diF-TES ADT films grown on PFBT-
treated Au are highly crystalline, as confirmed by XRD
studies20,24,33. The narrow linewidths observed in the micro-
Raman spectra also indicate high crystallinity, and optical
microscope images suggest crystallite sizes on the order of 100 μm
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Fig. 2 Raman spectra for pure isomers. a Syn 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT) and b anti diF-TES ADT in the
1100–1700cm−1 range. Density functional theory (DFT) calculations are shown in gray. The blue lines indicate vibrational modes associated with the long
axis of the acene backbone, which are relatively insensitive to the isomers. The orange lines indicate the short-axis C-C bonds, which are spectrally shifted
between the syn and anti isomers

Table 1 Raman mode assignments for the dominant peaks of anti and syn diF-TES ADT (in cm−1)

Anti Syn Reference

DFT Experiment DFT Experiment Assignment Pentacene31 TIPS-pentacene38, 39

1594
1587

1597 1604
1592
1587

1597 C-C ring stretch (long axis) 1596 1576

1529 1543 1529 1543 C-C ring stretch (center rings) 149832 (center rings)
1494 1529 1496 1529 C-C ring stretch (partial-long axis) 153232 (end rings)
1406 1434 1420

1415
1436 C-C ring stretch (short axis, end rings) 140832 1374

1419 1421 1390 1407 (short axis, center rings) 137032

1283 1300 1269 1286 Ring breathing
1263 1278 Ring breathing
1245 1256 1244 1256 Ring breathing
1193 1200 1179 1207 C-H bending (sides) 1178 1194
1172 1187 1171 1186 C-H bending
1138 1143 1142 1143 C-H bending (ends) 1158 1158

diF-TES ADT 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, DFT density functional theory, TIPS-pentacene 6,13-Bis(triisopropylsilylethynyl)-pentacene
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(Supplementary Figure 4a). The measured micro-Raman spectra
do not vary within a crystallite (Supplementary Figure 4b and c).
However, while the positions of vibrational modes do not change,
the relative intensities of specific modes do vary on adjacent
crystallites (Fig. 3a, b). In particular, the long-axis and short-axis
vibrational modes are anticorrelated in intensity. Grazing-
incidence X-ray diffraction (GIXD) showed that diF-TES ADT
adopts an optimal “edge-on” orientation with either one of the
silylethynyl side groups adsorbed on the substrate, resulting in the
long axis of the conjugated core oriented perpendicular to the
plane of the film, as illustrated in Fig. 1b34. We therefore attribute
the variable intensities of the vibrational modes to changes in the
local molecular orientation within the crystallites with respect to
the laser polarization. To confirm this hypothesis, we performed
angle-dependent polarized Raman spectroscopy, shown for the
anti isomer in Fig. 3c. When the incident laser polarization aligns
parallel to the long axis (θ= 0°, blue), a maximum Raman scat-
tering intensity is observed for the 1597/1529 cm−1 modes. The
in-phase correlation between the two long-axis vibrational modes
was also observed in pentacene characterized by polarization-
dependent Raman35. The 1421 cm−1 band is in contrast
enhanced when the laser polarization is aligned along the short
axis (θ= 90°, orange). The polarization dependence of the C-C
long axis and C-C short axis are therefore 90° out of phase, and
both follow the expected cos2(θ) dependence (Fig. 3c). These
results support the anisotropic structure of diF-TES ADT
observed in mixed samples using transient absorption
microscopy36.

Spatial heterogeneity in mixed sample. With the ability to
spectrally distinguish the syn and anti isomers, and determine
crystallite orientation, we extend our studies to the Raman spectra
of mixed diF-TES ADT films. These mixtures of the two isomer
structures showed reduced mobility and increased subthreshold
slope, resulting in slower turn-on performance in comparison to
pure isomer samples26,27,37. GIXD revealed a similar structure to

that of single crystals, indicating extended crystalline domains in
the thin-film phase, but the spatial extent of these domains has
not been determined18–20,34. Raman spectra of mixed diF-TES
ADT are shown in Fig. 4a. The modes observed appear to be a
superposition of the pure isomer spectra, shown in black and red,
suggesting there is no intermolecular coupling between the two
isomers. The linewidths of the vibrational modes are comparable
to those for pure spectra, indicating that long-range order is
maintained. This result is in agreement with calculations which
found that the two isomers segregate into separate domains where
they maintain the local crystalline structure of the pure isomers27.
We conclude that under the sample preparation conditions for
highly ordered films, the mixed sample segregates into pure syn
and pure anti crystallites on length scales shorter than the few
hundred nanometer focus region in our experiments.

While the Raman spectra for pure isomers indicated spatially
homogeneity within tens to hundreds of micron-sized crystallites,
the mixed sample displays significant variations over length scales
as short as 200 nm. This can be observed in changes in the
relative intensity of the two modes at 1300 cm−1 (Fig. 4b), the
three modes close to 1420 cm−1 (Fig. 4c), and the doublet
vibrational mode close to 1540 cm−1 (Fig. 4d). Since the long-axis
and short-axis vibrational modes (1540 cm−1, 1420 cm−1 respec-
tively) vary significantly in intensity with molecular orientation, as
discussed above, we focus on the breathing modes at 1300 cm−1

(anti) and 1286 cm−1 (syn) as proxies for the pure isomer
crystallites.

To resolve the details of the spatial distribution, we performed
spectroscopy and imaging of the mixed sample across a 2 × 1 μm2

region at 200-nm intervals. Figure 5a shows a contour plot of the
spectral region 1270–1310 cm−1. Both vibrational modes are
consistently resolved in the mixed spectrum, but with variable
peak intensity. We are able to resolve correlated changes in the
relative intensity of the two vibrational modes. We further extend
our analysis to map the integrated intensity ratio I1300/I1286
extracted from these spectra (Fig. 5b). This map demonstrates the
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Fig. 3 Polarized Raman spectra of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT). a Syn isomer and b anti isomer with the laser
polarization aligned parallel to the C-C long axis (θ= 0°, dark blue) and short axis (θ= 90°, orange). c Polar plot showing the anticorrelation of the short
axis (1421 cm−1, orange) and long axis (1529 and 1597 cm−1, hollow and solid light blue, respectively) modes for the anti isomer in b. The lines show fits to
cos2(θ)
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variation of the breathing modes associated with anti and syn
isomers, respectively, with yellow regions indicating a higher
proportion of anti isomer, and blue regions with more syn
isomer. Additional intensity maps showing the raw intensities for
the 1300 and 1286 cm−1 modes are shown in Supplementary
Figure 5a and 5b.

The variation in the spatially distributed spectra and integrated
intensity of both vibrational modes indicate that the mixed-
isomer films form into homogeneous anti and syn crystallite sub-
domains on length scales below 200 nm. These sub-domains have
variable size and local distribution, resulting in superposition
spectra with different contributions of anti and syn spectral
signatures, as resolved in Figs. 4 and 5. As we observe no regions
with only one of the 1286 or 1300 cm−1 vibrational modes, we
conclude that the pure isomer sub-domains have spatial extent
significantly below the 200-nm step size measured here, possibly
on the order of tens of nanometers. Higher spatial resolution
techniques are therefore necessary to directly resolve the pure
isomer domains.

It is important to note that our observations of isomeric
segregation based on Raman spectroscopy apply to the highly
ordered structures arising from SAC deposition. This deposition
method is known to produce high crystallinity and therefore
favorable mobilities, in particular in pure isomer systems. Other

thin-film preparations, for example, rapid spin casting, would
lead to lower molecular order and therefore reduced phase
separation29. Raman spectroscopy can provide valuable informa-
tion about the degree of order in organic semiconductors, but is
additionally helpful in characterizing isomer distribution in
highly crystalline systems to optimize mobilities for high-
performance applications.

Discussion
Micro-Raman spectroscopy is a powerful technique to investigate
crystalline order in molecular systems. Here, we demonstrate its
use for characterizing the spatial properties of a mixed-isomer
organic small-molecule semiconductor, diF-TES ADT, through
the spectroscopic signatures of the pure isomers. Our results
indicate that crystallites of isomeric purity coexist intimately,
while maintaining their high crystallinity and orientational order,
even across sub-domains. This phase segregated behavior
explains the reduction in mobility and slower turn-on response
observed in mixed diF-TES ADT TFTs, with grain boundaries
between crystallites potentially introducing defects and reducing
the efficiency of charge transfer in spite of their high crystallinity.
The ability to spectrally discriminate isomer crystallites and their
heterogeneous distribution and packing is important to optimize
thin-film preparation in this small-molecule semiconductor, and
can also provide information about isomer microstructure in
other small molecules. These results highlight the importance of
thin-film preparation for control of isomer distribution and
domain engineering, and provide a means to characterize and
optimize device performance.

Methods
Sample preparation. The pure form syn and anti diF-TES ADT and 50–50
mixtures of isomers were synthesized by a previously reported method26.
n++-doped Si with 200 nm of thermally oxidized SiO2 was used as the underlying
substrate. Contacts patterned by photolithography were deposited by electron
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beam evaporation of 5 nm of Ti followed by 45 nm of Au. The substrates were
cleaned by soaking in hot acetone, then hot isopropyl alcohol for 10 min each,
followed by a 10-min exposure to ultraviolet/ozone and a rinse with deionized
water. Upon drying, the substrates were soaked in 30 mM solutions of PFBT in
room-temperature ethanol for 30 min, followed by a 5-min sonication in fresh
ethanol to remove any excess PFBT. Substrates with Au features were necessary in
order to obtain a highly ordered film with molecular orientation out of plane
(Fig. 1b), as we have explained in detail elsewhere33. Solutions of 0.3% w/w diF-
TES ADT in chlorobenzene were drop cast on these substrates and placed in a
closed Petri dish with an additional 250 μL of chlorobenzene, creating a solvent-
rich environment. The thin films were formed after the solvents were allowed to
evaporate over 1–2 days.

Raman spectroscopy. Micro-Raman spectra were acquired using a Renishaw
inVia Raman microscope with 488-nm laser excitation (objective 0.75 NA Olym-
pus, ×50). The corresponding lateral resolution of the beam spot was around
0.32 μm2, defined by λ/(2NA). All samples were measured in air. Spectra were
averaged for 20 accumulations each with 2-s duration. In polarized Raman spectra,
a half-wave plate was placed between the laser and the sample to control the
incident polarization (Fig. 1b). Two-dimensional mapping of the mixed sample was
performed using a Horiba LabRAM HR Evolution Raman microscope with 473-
nm laser excitation (objective 0.9 NA Olympus, ×100). The corresponding lateral
resolution was around 0.26 μm2. The spectra were collected 200 nm apart, with
each point averaged for two accumulations with 5-s duration.

DFT calculation. DFT calculations were performed with the
GAUSSIAN09 software. The geometry of a symmetric segment was first optimized,
then frequency analysis was performed using the B3LYP hybrid functional, and the
6-31G(d) basis set. The frequencies were scaled by a factor of 0.96 for comparison.
The molecular core is defined as the conjugated fused acene rings. The anti isomer
has a core with C2h symmetry, with the two sulfurs in thiophene rings in inversion
correlation. The core of the syn isomer has C2v symmetry.

Data availability
The authors declare that the data within the article and Supplementary Information, as
well as additional data supporting the findings of this study, are available upon
reasonable request.
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